1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 /* 12 * DMI stands for "Desktop Management Interface". It is part 13 * of and an antecedent to, SMBIOS, which stands for System 14 * Management BIOS. See further: http://www.dmtf.org/standards 15 */ 16 static char dmi_empty_string[] = " "; 17 18 /* 19 * Catch too early calls to dmi_check_system(): 20 */ 21 static int dmi_initialized; 22 23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 24 { 25 const u8 *bp = ((u8 *) dm) + dm->length; 26 27 if (s) { 28 s--; 29 while (s > 0 && *bp) { 30 bp += strlen(bp) + 1; 31 s--; 32 } 33 34 if (*bp != 0) { 35 size_t len = strlen(bp)+1; 36 size_t cmp_len = len > 8 ? 8 : len; 37 38 if (!memcmp(bp, dmi_empty_string, cmp_len)) 39 return dmi_empty_string; 40 return bp; 41 } 42 } 43 44 return ""; 45 } 46 47 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 48 { 49 const char *bp = dmi_string_nosave(dm, s); 50 char *str; 51 size_t len; 52 53 if (bp == dmi_empty_string) 54 return dmi_empty_string; 55 56 len = strlen(bp) + 1; 57 str = dmi_alloc(len); 58 if (str != NULL) 59 strcpy(str, bp); 60 else 61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 62 63 return str; 64 } 65 66 /* 67 * We have to be cautious here. We have seen BIOSes with DMI pointers 68 * pointing to completely the wrong place for example 69 */ 70 static void dmi_table(u8 *buf, int len, int num, 71 void (*decode)(const struct dmi_header *, void *), 72 void *private_data) 73 { 74 u8 *data = buf; 75 int i = 0; 76 77 /* 78 * Stop when we see all the items the table claimed to have 79 * OR we run off the end of the table (also happens) 80 */ 81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 82 const struct dmi_header *dm = (const struct dmi_header *)data; 83 84 /* 85 * We want to know the total length (formatted area and 86 * strings) before decoding to make sure we won't run off the 87 * table in dmi_decode or dmi_string 88 */ 89 data += dm->length; 90 while ((data - buf < len - 1) && (data[0] || data[1])) 91 data++; 92 if (data - buf < len - 1) 93 decode(dm, private_data); 94 data += 2; 95 i++; 96 } 97 } 98 99 static u32 dmi_base; 100 static u16 dmi_len; 101 static u16 dmi_num; 102 103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 104 void *)) 105 { 106 u8 *buf; 107 108 buf = dmi_ioremap(dmi_base, dmi_len); 109 if (buf == NULL) 110 return -1; 111 112 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 113 114 dmi_iounmap(buf, dmi_len); 115 return 0; 116 } 117 118 static int __init dmi_checksum(const u8 *buf) 119 { 120 u8 sum = 0; 121 int a; 122 123 for (a = 0; a < 15; a++) 124 sum += buf[a]; 125 126 return sum == 0; 127 } 128 129 static char *dmi_ident[DMI_STRING_MAX]; 130 static LIST_HEAD(dmi_devices); 131 int dmi_available; 132 133 /* 134 * Save a DMI string 135 */ 136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 137 { 138 const char *d = (const char*) dm; 139 char *p; 140 141 if (dmi_ident[slot]) 142 return; 143 144 p = dmi_string(dm, d[string]); 145 if (p == NULL) 146 return; 147 148 dmi_ident[slot] = p; 149 } 150 151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 152 { 153 const u8 *d = (u8*) dm + index; 154 char *s; 155 int is_ff = 1, is_00 = 1, i; 156 157 if (dmi_ident[slot]) 158 return; 159 160 for (i = 0; i < 16 && (is_ff || is_00); i++) { 161 if(d[i] != 0x00) is_ff = 0; 162 if(d[i] != 0xFF) is_00 = 0; 163 } 164 165 if (is_ff || is_00) 166 return; 167 168 s = dmi_alloc(16*2+4+1); 169 if (!s) 170 return; 171 172 sprintf(s, 173 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 174 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], 175 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); 176 177 dmi_ident[slot] = s; 178 } 179 180 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 181 { 182 const u8 *d = (u8*) dm + index; 183 char *s; 184 185 if (dmi_ident[slot]) 186 return; 187 188 s = dmi_alloc(4); 189 if (!s) 190 return; 191 192 sprintf(s, "%u", *d & 0x7F); 193 dmi_ident[slot] = s; 194 } 195 196 static void __init dmi_save_one_device(int type, const char *name) 197 { 198 struct dmi_device *dev; 199 200 /* No duplicate device */ 201 if (dmi_find_device(type, name, NULL)) 202 return; 203 204 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 205 if (!dev) { 206 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 207 return; 208 } 209 210 dev->type = type; 211 strcpy((char *)(dev + 1), name); 212 dev->name = (char *)(dev + 1); 213 dev->device_data = NULL; 214 list_add(&dev->list, &dmi_devices); 215 } 216 217 static void __init dmi_save_devices(const struct dmi_header *dm) 218 { 219 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 220 221 for (i = 0; i < count; i++) { 222 const char *d = (char *)(dm + 1) + (i * 2); 223 224 /* Skip disabled device */ 225 if ((*d & 0x80) == 0) 226 continue; 227 228 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 229 } 230 } 231 232 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 233 { 234 int i, count = *(u8 *)(dm + 1); 235 struct dmi_device *dev; 236 237 for (i = 1; i <= count; i++) { 238 char *devname = dmi_string(dm, i); 239 240 if (devname == dmi_empty_string) 241 continue; 242 243 dev = dmi_alloc(sizeof(*dev)); 244 if (!dev) { 245 printk(KERN_ERR 246 "dmi_save_oem_strings_devices: out of memory.\n"); 247 break; 248 } 249 250 dev->type = DMI_DEV_TYPE_OEM_STRING; 251 dev->name = devname; 252 dev->device_data = NULL; 253 254 list_add(&dev->list, &dmi_devices); 255 } 256 } 257 258 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 259 { 260 struct dmi_device *dev; 261 void * data; 262 263 data = dmi_alloc(dm->length); 264 if (data == NULL) { 265 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 266 return; 267 } 268 269 memcpy(data, dm, dm->length); 270 271 dev = dmi_alloc(sizeof(*dev)); 272 if (!dev) { 273 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 274 return; 275 } 276 277 dev->type = DMI_DEV_TYPE_IPMI; 278 dev->name = "IPMI controller"; 279 dev->device_data = data; 280 281 list_add_tail(&dev->list, &dmi_devices); 282 } 283 284 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 285 { 286 const u8 *d = (u8*) dm + 5; 287 288 /* Skip disabled device */ 289 if ((*d & 0x80) == 0) 290 return; 291 292 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 293 } 294 295 /* 296 * Process a DMI table entry. Right now all we care about are the BIOS 297 * and machine entries. For 2.5 we should pull the smbus controller info 298 * out of here. 299 */ 300 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 301 { 302 switch(dm->type) { 303 case 0: /* BIOS Information */ 304 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 305 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 306 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 307 break; 308 case 1: /* System Information */ 309 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 310 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 311 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 312 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 313 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 314 break; 315 case 2: /* Base Board Information */ 316 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 317 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 318 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 319 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 320 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 321 break; 322 case 3: /* Chassis Information */ 323 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 324 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 325 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 326 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 327 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 328 break; 329 case 10: /* Onboard Devices Information */ 330 dmi_save_devices(dm); 331 break; 332 case 11: /* OEM Strings */ 333 dmi_save_oem_strings_devices(dm); 334 break; 335 case 38: /* IPMI Device Information */ 336 dmi_save_ipmi_device(dm); 337 break; 338 case 41: /* Onboard Devices Extended Information */ 339 dmi_save_extended_devices(dm); 340 } 341 } 342 343 static int __init dmi_present(const char __iomem *p) 344 { 345 u8 buf[15]; 346 347 memcpy_fromio(buf, p, 15); 348 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 349 dmi_num = (buf[13] << 8) | buf[12]; 350 dmi_len = (buf[7] << 8) | buf[6]; 351 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 352 (buf[9] << 8) | buf[8]; 353 354 /* 355 * DMI version 0.0 means that the real version is taken from 356 * the SMBIOS version, which we don't know at this point. 357 */ 358 if (buf[14] != 0) 359 printk(KERN_INFO "DMI %d.%d present.\n", 360 buf[14] >> 4, buf[14] & 0xF); 361 else 362 printk(KERN_INFO "DMI present.\n"); 363 if (dmi_walk_early(dmi_decode) == 0) 364 return 0; 365 } 366 return 1; 367 } 368 369 void __init dmi_scan_machine(void) 370 { 371 char __iomem *p, *q; 372 int rc; 373 374 if (efi_enabled) { 375 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 376 goto error; 377 378 /* This is called as a core_initcall() because it isn't 379 * needed during early boot. This also means we can 380 * iounmap the space when we're done with it. 381 */ 382 p = dmi_ioremap(efi.smbios, 32); 383 if (p == NULL) 384 goto error; 385 386 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 387 dmi_iounmap(p, 32); 388 if (!rc) { 389 dmi_available = 1; 390 goto out; 391 } 392 } 393 else { 394 /* 395 * no iounmap() for that ioremap(); it would be a no-op, but 396 * it's so early in setup that sucker gets confused into doing 397 * what it shouldn't if we actually call it. 398 */ 399 p = dmi_ioremap(0xF0000, 0x10000); 400 if (p == NULL) 401 goto error; 402 403 for (q = p; q < p + 0x10000; q += 16) { 404 rc = dmi_present(q); 405 if (!rc) { 406 dmi_available = 1; 407 dmi_iounmap(p, 0x10000); 408 goto out; 409 } 410 } 411 dmi_iounmap(p, 0x10000); 412 } 413 error: 414 printk(KERN_INFO "DMI not present or invalid.\n"); 415 out: 416 dmi_initialized = 1; 417 } 418 419 /** 420 * dmi_matches - check if dmi_system_id structure matches system DMI data 421 * @dmi: pointer to the dmi_system_id structure to check 422 */ 423 static bool dmi_matches(const struct dmi_system_id *dmi) 424 { 425 int i; 426 427 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 428 429 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 430 int s = dmi->matches[i].slot; 431 if (s == DMI_NONE) 432 continue; 433 if (dmi_ident[s] 434 && strstr(dmi_ident[s], dmi->matches[i].substr)) 435 continue; 436 /* No match */ 437 return false; 438 } 439 return true; 440 } 441 442 /** 443 * dmi_check_system - check system DMI data 444 * @list: array of dmi_system_id structures to match against 445 * All non-null elements of the list must match 446 * their slot's (field index's) data (i.e., each 447 * list string must be a substring of the specified 448 * DMI slot's string data) to be considered a 449 * successful match. 450 * 451 * Walk the blacklist table running matching functions until someone 452 * returns non zero or we hit the end. Callback function is called for 453 * each successful match. Returns the number of matches. 454 */ 455 int dmi_check_system(const struct dmi_system_id *list) 456 { 457 int count = 0; 458 const struct dmi_system_id *d; 459 460 for (d = list; d->ident; d++) 461 if (dmi_matches(d)) { 462 count++; 463 if (d->callback && d->callback(d)) 464 break; 465 } 466 467 return count; 468 } 469 EXPORT_SYMBOL(dmi_check_system); 470 471 /** 472 * dmi_first_match - find dmi_system_id structure matching system DMI data 473 * @list: array of dmi_system_id structures to match against 474 * All non-null elements of the list must match 475 * their slot's (field index's) data (i.e., each 476 * list string must be a substring of the specified 477 * DMI slot's string data) to be considered a 478 * successful match. 479 * 480 * Walk the blacklist table until the first match is found. Return the 481 * pointer to the matching entry or NULL if there's no match. 482 */ 483 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 484 { 485 const struct dmi_system_id *d; 486 487 for (d = list; d->ident; d++) 488 if (dmi_matches(d)) 489 return d; 490 491 return NULL; 492 } 493 EXPORT_SYMBOL(dmi_first_match); 494 495 /** 496 * dmi_get_system_info - return DMI data value 497 * @field: data index (see enum dmi_field) 498 * 499 * Returns one DMI data value, can be used to perform 500 * complex DMI data checks. 501 */ 502 const char *dmi_get_system_info(int field) 503 { 504 return dmi_ident[field]; 505 } 506 EXPORT_SYMBOL(dmi_get_system_info); 507 508 /** 509 * dmi_name_in_serial - Check if string is in the DMI product serial information 510 * @str: string to check for 511 */ 512 int dmi_name_in_serial(const char *str) 513 { 514 int f = DMI_PRODUCT_SERIAL; 515 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 516 return 1; 517 return 0; 518 } 519 520 /** 521 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 522 * @str: Case sensitive Name 523 */ 524 int dmi_name_in_vendors(const char *str) 525 { 526 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 527 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 528 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 529 int i; 530 for (i = 0; fields[i] != DMI_NONE; i++) { 531 int f = fields[i]; 532 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 533 return 1; 534 } 535 return 0; 536 } 537 EXPORT_SYMBOL(dmi_name_in_vendors); 538 539 /** 540 * dmi_find_device - find onboard device by type/name 541 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 542 * @name: device name string or %NULL to match all 543 * @from: previous device found in search, or %NULL for new search. 544 * 545 * Iterates through the list of known onboard devices. If a device is 546 * found with a matching @vendor and @device, a pointer to its device 547 * structure is returned. Otherwise, %NULL is returned. 548 * A new search is initiated by passing %NULL as the @from argument. 549 * If @from is not %NULL, searches continue from next device. 550 */ 551 const struct dmi_device * dmi_find_device(int type, const char *name, 552 const struct dmi_device *from) 553 { 554 const struct list_head *head = from ? &from->list : &dmi_devices; 555 struct list_head *d; 556 557 for(d = head->next; d != &dmi_devices; d = d->next) { 558 const struct dmi_device *dev = 559 list_entry(d, struct dmi_device, list); 560 561 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 562 ((name == NULL) || (strcmp(dev->name, name) == 0))) 563 return dev; 564 } 565 566 return NULL; 567 } 568 EXPORT_SYMBOL(dmi_find_device); 569 570 /** 571 * dmi_get_date - parse a DMI date 572 * @field: data index (see enum dmi_field) 573 * @yearp: optional out parameter for the year 574 * @monthp: optional out parameter for the month 575 * @dayp: optional out parameter for the day 576 * 577 * The date field is assumed to be in the form resembling 578 * [mm[/dd]]/yy[yy] and the result is stored in the out 579 * parameters any or all of which can be omitted. 580 * 581 * If the field doesn't exist, all out parameters are set to zero 582 * and false is returned. Otherwise, true is returned with any 583 * invalid part of date set to zero. 584 * 585 * On return, year, month and day are guaranteed to be in the 586 * range of [0,9999], [0,12] and [0,31] respectively. 587 */ 588 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 589 { 590 int year = 0, month = 0, day = 0; 591 bool exists; 592 const char *s, *y; 593 char *e; 594 595 s = dmi_get_system_info(field); 596 exists = s; 597 if (!exists) 598 goto out; 599 600 /* 601 * Determine year first. We assume the date string resembles 602 * mm/dd/yy[yy] but the original code extracted only the year 603 * from the end. Keep the behavior in the spirit of no 604 * surprises. 605 */ 606 y = strrchr(s, '/'); 607 if (!y) 608 goto out; 609 610 y++; 611 year = simple_strtoul(y, &e, 10); 612 if (y != e && year < 100) { /* 2-digit year */ 613 year += 1900; 614 if (year < 1996) /* no dates < spec 1.0 */ 615 year += 100; 616 } 617 if (year > 9999) /* year should fit in %04d */ 618 year = 0; 619 620 /* parse the mm and dd */ 621 month = simple_strtoul(s, &e, 10); 622 if (s == e || *e != '/' || !month || month > 12) { 623 month = 0; 624 goto out; 625 } 626 627 s = e + 1; 628 day = simple_strtoul(s, &e, 10); 629 if (s == y || s == e || *e != '/' || day > 31) 630 day = 0; 631 out: 632 if (yearp) 633 *yearp = year; 634 if (monthp) 635 *monthp = month; 636 if (dayp) 637 *dayp = day; 638 return exists; 639 } 640 EXPORT_SYMBOL(dmi_get_date); 641 642 /** 643 * dmi_walk - Walk the DMI table and get called back for every record 644 * @decode: Callback function 645 * @private_data: Private data to be passed to the callback function 646 * 647 * Returns -1 when the DMI table can't be reached, 0 on success. 648 */ 649 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 650 void *private_data) 651 { 652 u8 *buf; 653 654 if (!dmi_available) 655 return -1; 656 657 buf = ioremap(dmi_base, dmi_len); 658 if (buf == NULL) 659 return -1; 660 661 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 662 663 iounmap(buf); 664 return 0; 665 } 666 EXPORT_SYMBOL_GPL(dmi_walk); 667 668 /** 669 * dmi_match - compare a string to the dmi field (if exists) 670 * @f: DMI field identifier 671 * @str: string to compare the DMI field to 672 * 673 * Returns true if the requested field equals to the str (including NULL). 674 */ 675 bool dmi_match(enum dmi_field f, const char *str) 676 { 677 const char *info = dmi_get_system_info(f); 678 679 if (info == NULL || str == NULL) 680 return info == str; 681 682 return !strcmp(info, str); 683 } 684 EXPORT_SYMBOL_GPL(dmi_match); 685