1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START 15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 16 #endif 17 18 struct kobject *dmi_kobj; 19 EXPORT_SYMBOL_GPL(dmi_kobj); 20 21 /* 22 * DMI stands for "Desktop Management Interface". It is part 23 * of and an antecedent to, SMBIOS, which stands for System 24 * Management BIOS. See further: https://www.dmtf.org/standards 25 */ 26 static const char dmi_empty_string[] = ""; 27 28 static u32 dmi_ver __initdata; 29 static u32 dmi_len; 30 static u16 dmi_num; 31 static u8 smbios_entry_point[32]; 32 static int smbios_entry_point_size; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u64 size; /* bytes */ 41 u16 handle; 42 u8 type; /* DDR2, DDR3, DDR4 etc */ 43 } *dmi_memdev; 44 static int dmi_memdev_nr; 45 46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 47 { 48 const u8 *bp = ((u8 *) dm) + dm->length; 49 const u8 *nsp; 50 51 if (s) { 52 while (--s > 0 && *bp) 53 bp += strlen(bp) + 1; 54 55 /* Strings containing only spaces are considered empty */ 56 nsp = bp; 57 while (*nsp == ' ') 58 nsp++; 59 if (*nsp != '\0') 60 return bp; 61 } 62 63 return dmi_empty_string; 64 } 65 66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 67 { 68 const char *bp = dmi_string_nosave(dm, s); 69 char *str; 70 size_t len; 71 72 if (bp == dmi_empty_string) 73 return dmi_empty_string; 74 75 len = strlen(bp) + 1; 76 str = dmi_alloc(len); 77 if (str != NULL) 78 strcpy(str, bp); 79 80 return str; 81 } 82 83 /* 84 * We have to be cautious here. We have seen BIOSes with DMI pointers 85 * pointing to completely the wrong place for example 86 */ 87 static void dmi_decode_table(u8 *buf, 88 void (*decode)(const struct dmi_header *, void *), 89 void *private_data) 90 { 91 u8 *data = buf; 92 int i = 0; 93 94 /* 95 * Stop when we have seen all the items the table claimed to have 96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 97 * >= 3.0 only) OR we run off the end of the table (should never 98 * happen but sometimes does on bogus implementations.) 99 */ 100 while ((!dmi_num || i < dmi_num) && 101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 102 const struct dmi_header *dm = (const struct dmi_header *)data; 103 104 /* 105 * We want to know the total length (formatted area and 106 * strings) before decoding to make sure we won't run off the 107 * table in dmi_decode or dmi_string 108 */ 109 data += dm->length; 110 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 111 data++; 112 if (data - buf < dmi_len - 1) 113 decode(dm, private_data); 114 115 data += 2; 116 i++; 117 118 /* 119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 120 * For tables behind a 64-bit entry point, we have no item 121 * count and no exact table length, so stop on end-of-table 122 * marker. For tables behind a 32-bit entry point, we have 123 * seen OEM structures behind the end-of-table marker on 124 * some systems, so don't trust it. 125 */ 126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 127 break; 128 } 129 130 /* Trim DMI table length if needed */ 131 if (dmi_len > data - buf) 132 dmi_len = data - buf; 133 } 134 135 static phys_addr_t dmi_base; 136 137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 138 void *)) 139 { 140 u8 *buf; 141 u32 orig_dmi_len = dmi_len; 142 143 buf = dmi_early_remap(dmi_base, orig_dmi_len); 144 if (buf == NULL) 145 return -ENOMEM; 146 147 dmi_decode_table(buf, decode, NULL); 148 149 add_device_randomness(buf, dmi_len); 150 151 dmi_early_unmap(buf, orig_dmi_len); 152 return 0; 153 } 154 155 static int __init dmi_checksum(const u8 *buf, u8 len) 156 { 157 u8 sum = 0; 158 int a; 159 160 for (a = 0; a < len; a++) 161 sum += buf[a]; 162 163 return sum == 0; 164 } 165 166 static const char *dmi_ident[DMI_STRING_MAX]; 167 static LIST_HEAD(dmi_devices); 168 int dmi_available; 169 EXPORT_SYMBOL_GPL(dmi_available); 170 171 /* 172 * Save a DMI string 173 */ 174 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 175 int string) 176 { 177 const char *d = (const char *) dm; 178 const char *p; 179 180 if (dmi_ident[slot] || dm->length <= string) 181 return; 182 183 p = dmi_string(dm, d[string]); 184 if (p == NULL) 185 return; 186 187 dmi_ident[slot] = p; 188 } 189 190 static void __init dmi_save_release(const struct dmi_header *dm, int slot, 191 int index) 192 { 193 const u8 *minor, *major; 194 char *s; 195 196 /* If the table doesn't have the field, let's return */ 197 if (dmi_ident[slot] || dm->length < index) 198 return; 199 200 minor = (u8 *) dm + index; 201 major = (u8 *) dm + index - 1; 202 203 /* As per the spec, if the system doesn't support this field, 204 * the value is FF 205 */ 206 if (*major == 0xFF && *minor == 0xFF) 207 return; 208 209 s = dmi_alloc(8); 210 if (!s) 211 return; 212 213 sprintf(s, "%u.%u", *major, *minor); 214 215 dmi_ident[slot] = s; 216 } 217 218 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 219 int index) 220 { 221 const u8 *d; 222 char *s; 223 int is_ff = 1, is_00 = 1, i; 224 225 if (dmi_ident[slot] || dm->length < index + 16) 226 return; 227 228 d = (u8 *) dm + index; 229 for (i = 0; i < 16 && (is_ff || is_00); i++) { 230 if (d[i] != 0x00) 231 is_00 = 0; 232 if (d[i] != 0xFF) 233 is_ff = 0; 234 } 235 236 if (is_ff || is_00) 237 return; 238 239 s = dmi_alloc(16*2+4+1); 240 if (!s) 241 return; 242 243 /* 244 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 245 * the UUID are supposed to be little-endian encoded. The specification 246 * says that this is the defacto standard. 247 */ 248 if (dmi_ver >= 0x020600) 249 sprintf(s, "%pUl", d); 250 else 251 sprintf(s, "%pUb", d); 252 253 dmi_ident[slot] = s; 254 } 255 256 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 257 int index) 258 { 259 const u8 *d; 260 char *s; 261 262 if (dmi_ident[slot] || dm->length <= index) 263 return; 264 265 s = dmi_alloc(4); 266 if (!s) 267 return; 268 269 d = (u8 *) dm + index; 270 sprintf(s, "%u", *d & 0x7F); 271 dmi_ident[slot] = s; 272 } 273 274 static void __init dmi_save_one_device(int type, const char *name) 275 { 276 struct dmi_device *dev; 277 278 /* No duplicate device */ 279 if (dmi_find_device(type, name, NULL)) 280 return; 281 282 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 283 if (!dev) 284 return; 285 286 dev->type = type; 287 strcpy((char *)(dev + 1), name); 288 dev->name = (char *)(dev + 1); 289 dev->device_data = NULL; 290 list_add(&dev->list, &dmi_devices); 291 } 292 293 static void __init dmi_save_devices(const struct dmi_header *dm) 294 { 295 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 296 297 for (i = 0; i < count; i++) { 298 const char *d = (char *)(dm + 1) + (i * 2); 299 300 /* Skip disabled device */ 301 if ((*d & 0x80) == 0) 302 continue; 303 304 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 305 } 306 } 307 308 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 309 { 310 int i, count; 311 struct dmi_device *dev; 312 313 if (dm->length < 0x05) 314 return; 315 316 count = *(u8 *)(dm + 1); 317 for (i = 1; i <= count; i++) { 318 const char *devname = dmi_string(dm, i); 319 320 if (devname == dmi_empty_string) 321 continue; 322 323 dev = dmi_alloc(sizeof(*dev)); 324 if (!dev) 325 break; 326 327 dev->type = DMI_DEV_TYPE_OEM_STRING; 328 dev->name = devname; 329 dev->device_data = NULL; 330 331 list_add(&dev->list, &dmi_devices); 332 } 333 } 334 335 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 336 { 337 struct dmi_device *dev; 338 void *data; 339 340 data = dmi_alloc(dm->length); 341 if (data == NULL) 342 return; 343 344 memcpy(data, dm, dm->length); 345 346 dev = dmi_alloc(sizeof(*dev)); 347 if (!dev) 348 return; 349 350 dev->type = DMI_DEV_TYPE_IPMI; 351 dev->name = "IPMI controller"; 352 dev->device_data = data; 353 354 list_add_tail(&dev->list, &dmi_devices); 355 } 356 357 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 358 int devfn, const char *name, int type) 359 { 360 struct dmi_dev_onboard *dev; 361 362 /* Ignore invalid values */ 363 if (type == DMI_DEV_TYPE_DEV_SLOT && 364 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 365 return; 366 367 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 368 if (!dev) 369 return; 370 371 dev->instance = instance; 372 dev->segment = segment; 373 dev->bus = bus; 374 dev->devfn = devfn; 375 376 strcpy((char *)&dev[1], name); 377 dev->dev.type = type; 378 dev->dev.name = (char *)&dev[1]; 379 dev->dev.device_data = dev; 380 381 list_add(&dev->dev.list, &dmi_devices); 382 } 383 384 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 385 { 386 const char *name; 387 const u8 *d = (u8 *)dm; 388 389 if (dm->length < 0x0B) 390 return; 391 392 /* Skip disabled device */ 393 if ((d[0x5] & 0x80) == 0) 394 return; 395 396 name = dmi_string_nosave(dm, d[0x4]); 397 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 398 DMI_DEV_TYPE_DEV_ONBOARD); 399 dmi_save_one_device(d[0x5] & 0x7f, name); 400 } 401 402 static void __init dmi_save_system_slot(const struct dmi_header *dm) 403 { 404 const u8 *d = (u8 *)dm; 405 406 /* Need SMBIOS 2.6+ structure */ 407 if (dm->length < 0x11) 408 return; 409 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 410 d[0x10], dmi_string_nosave(dm, d[0x4]), 411 DMI_DEV_TYPE_DEV_SLOT); 412 } 413 414 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 415 { 416 if (dm->type != DMI_ENTRY_MEM_DEVICE) 417 return; 418 dmi_memdev_nr++; 419 } 420 421 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 422 { 423 const char *d = (const char *)dm; 424 static int nr; 425 u64 bytes; 426 u16 size; 427 428 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 429 return; 430 if (nr >= dmi_memdev_nr) { 431 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 432 return; 433 } 434 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 435 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 436 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 437 dmi_memdev[nr].type = d[0x12]; 438 439 size = get_unaligned((u16 *)&d[0xC]); 440 if (size == 0) 441 bytes = 0; 442 else if (size == 0xffff) 443 bytes = ~0ull; 444 else if (size & 0x8000) 445 bytes = (u64)(size & 0x7fff) << 10; 446 else if (size != 0x7fff || dm->length < 0x20) 447 bytes = (u64)size << 20; 448 else 449 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 450 451 dmi_memdev[nr].size = bytes; 452 nr++; 453 } 454 455 static void __init dmi_memdev_walk(void) 456 { 457 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 458 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 459 if (dmi_memdev) 460 dmi_walk_early(save_mem_devices); 461 } 462 } 463 464 /* 465 * Process a DMI table entry. Right now all we care about are the BIOS 466 * and machine entries. For 2.5 we should pull the smbus controller info 467 * out of here. 468 */ 469 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 470 { 471 switch (dm->type) { 472 case 0: /* BIOS Information */ 473 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 474 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 475 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 476 dmi_save_release(dm, DMI_BIOS_RELEASE, 21); 477 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23); 478 break; 479 case 1: /* System Information */ 480 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 481 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 482 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 483 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 484 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 485 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 486 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 487 break; 488 case 2: /* Base Board Information */ 489 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 490 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 491 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 492 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 493 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 494 break; 495 case 3: /* Chassis Information */ 496 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 497 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 498 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 499 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 500 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 501 break; 502 case 9: /* System Slots */ 503 dmi_save_system_slot(dm); 504 break; 505 case 10: /* Onboard Devices Information */ 506 dmi_save_devices(dm); 507 break; 508 case 11: /* OEM Strings */ 509 dmi_save_oem_strings_devices(dm); 510 break; 511 case 38: /* IPMI Device Information */ 512 dmi_save_ipmi_device(dm); 513 break; 514 case 41: /* Onboard Devices Extended Information */ 515 dmi_save_extended_devices(dm); 516 } 517 } 518 519 static int __init print_filtered(char *buf, size_t len, const char *info) 520 { 521 int c = 0; 522 const char *p; 523 524 if (!info) 525 return c; 526 527 for (p = info; *p; p++) 528 if (isprint(*p)) 529 c += scnprintf(buf + c, len - c, "%c", *p); 530 else 531 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 532 return c; 533 } 534 535 static void __init dmi_format_ids(char *buf, size_t len) 536 { 537 int c = 0; 538 const char *board; /* Board Name is optional */ 539 540 c += print_filtered(buf + c, len - c, 541 dmi_get_system_info(DMI_SYS_VENDOR)); 542 c += scnprintf(buf + c, len - c, " "); 543 c += print_filtered(buf + c, len - c, 544 dmi_get_system_info(DMI_PRODUCT_NAME)); 545 546 board = dmi_get_system_info(DMI_BOARD_NAME); 547 if (board) { 548 c += scnprintf(buf + c, len - c, "/"); 549 c += print_filtered(buf + c, len - c, board); 550 } 551 c += scnprintf(buf + c, len - c, ", BIOS "); 552 c += print_filtered(buf + c, len - c, 553 dmi_get_system_info(DMI_BIOS_VERSION)); 554 c += scnprintf(buf + c, len - c, " "); 555 c += print_filtered(buf + c, len - c, 556 dmi_get_system_info(DMI_BIOS_DATE)); 557 } 558 559 /* 560 * Check for DMI/SMBIOS headers in the system firmware image. Any 561 * SMBIOS header must start 16 bytes before the DMI header, so take a 562 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 563 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 564 * takes precedence) and return 0. Otherwise return 1. 565 */ 566 static int __init dmi_present(const u8 *buf) 567 { 568 u32 smbios_ver; 569 570 if (memcmp(buf, "_SM_", 4) == 0 && 571 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 572 smbios_ver = get_unaligned_be16(buf + 6); 573 smbios_entry_point_size = buf[5]; 574 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 575 576 /* Some BIOS report weird SMBIOS version, fix that up */ 577 switch (smbios_ver) { 578 case 0x021F: 579 case 0x0221: 580 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 581 smbios_ver & 0xFF, 3); 582 smbios_ver = 0x0203; 583 break; 584 case 0x0233: 585 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 586 smbios_ver = 0x0206; 587 break; 588 } 589 } else { 590 smbios_ver = 0; 591 } 592 593 buf += 16; 594 595 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 596 if (smbios_ver) 597 dmi_ver = smbios_ver; 598 else 599 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 600 dmi_ver <<= 8; 601 dmi_num = get_unaligned_le16(buf + 12); 602 dmi_len = get_unaligned_le16(buf + 6); 603 dmi_base = get_unaligned_le32(buf + 8); 604 605 if (dmi_walk_early(dmi_decode) == 0) { 606 if (smbios_ver) { 607 pr_info("SMBIOS %d.%d present.\n", 608 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 609 } else { 610 smbios_entry_point_size = 15; 611 memcpy(smbios_entry_point, buf, 612 smbios_entry_point_size); 613 pr_info("Legacy DMI %d.%d present.\n", 614 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 615 } 616 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 617 pr_info("DMI: %s\n", dmi_ids_string); 618 return 0; 619 } 620 } 621 622 return 1; 623 } 624 625 /* 626 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 627 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 628 */ 629 static int __init dmi_smbios3_present(const u8 *buf) 630 { 631 if (memcmp(buf, "_SM3_", 5) == 0 && 632 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 633 dmi_ver = get_unaligned_be24(buf + 7); 634 dmi_num = 0; /* No longer specified */ 635 dmi_len = get_unaligned_le32(buf + 12); 636 dmi_base = get_unaligned_le64(buf + 16); 637 smbios_entry_point_size = buf[6]; 638 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 639 640 if (dmi_walk_early(dmi_decode) == 0) { 641 pr_info("SMBIOS %d.%d.%d present.\n", 642 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 643 dmi_ver & 0xFF); 644 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 645 pr_info("DMI: %s\n", dmi_ids_string); 646 return 0; 647 } 648 } 649 return 1; 650 } 651 652 static void __init dmi_scan_machine(void) 653 { 654 char __iomem *p, *q; 655 char buf[32]; 656 657 if (efi_enabled(EFI_CONFIG_TABLES)) { 658 /* 659 * According to the DMTF SMBIOS reference spec v3.0.0, it is 660 * allowed to define both the 64-bit entry point (smbios3) and 661 * the 32-bit entry point (smbios), in which case they should 662 * either both point to the same SMBIOS structure table, or the 663 * table pointed to by the 64-bit entry point should contain a 664 * superset of the table contents pointed to by the 32-bit entry 665 * point (section 5.2) 666 * This implies that the 64-bit entry point should have 667 * precedence if it is defined and supported by the OS. If we 668 * have the 64-bit entry point, but fail to decode it, fall 669 * back to the legacy one (if available) 670 */ 671 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 672 p = dmi_early_remap(efi.smbios3, 32); 673 if (p == NULL) 674 goto error; 675 memcpy_fromio(buf, p, 32); 676 dmi_early_unmap(p, 32); 677 678 if (!dmi_smbios3_present(buf)) { 679 dmi_available = 1; 680 return; 681 } 682 } 683 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 684 goto error; 685 686 /* This is called as a core_initcall() because it isn't 687 * needed during early boot. This also means we can 688 * iounmap the space when we're done with it. 689 */ 690 p = dmi_early_remap(efi.smbios, 32); 691 if (p == NULL) 692 goto error; 693 memcpy_fromio(buf, p, 32); 694 dmi_early_unmap(p, 32); 695 696 if (!dmi_present(buf)) { 697 dmi_available = 1; 698 return; 699 } 700 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 701 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); 702 if (p == NULL) 703 goto error; 704 705 /* 706 * Same logic as above, look for a 64-bit entry point 707 * first, and if not found, fall back to 32-bit entry point. 708 */ 709 memcpy_fromio(buf, p, 16); 710 for (q = p + 16; q < p + 0x10000; q += 16) { 711 memcpy_fromio(buf + 16, q, 16); 712 if (!dmi_smbios3_present(buf)) { 713 dmi_available = 1; 714 dmi_early_unmap(p, 0x10000); 715 return; 716 } 717 memcpy(buf, buf + 16, 16); 718 } 719 720 /* 721 * Iterate over all possible DMI header addresses q. 722 * Maintain the 32 bytes around q in buf. On the 723 * first iteration, substitute zero for the 724 * out-of-range bytes so there is no chance of falsely 725 * detecting an SMBIOS header. 726 */ 727 memset(buf, 0, 16); 728 for (q = p; q < p + 0x10000; q += 16) { 729 memcpy_fromio(buf + 16, q, 16); 730 if (!dmi_present(buf)) { 731 dmi_available = 1; 732 dmi_early_unmap(p, 0x10000); 733 return; 734 } 735 memcpy(buf, buf + 16, 16); 736 } 737 dmi_early_unmap(p, 0x10000); 738 } 739 error: 740 pr_info("DMI not present or invalid.\n"); 741 } 742 743 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 744 struct bin_attribute *attr, char *buf, 745 loff_t pos, size_t count) 746 { 747 memcpy(buf, attr->private + pos, count); 748 return count; 749 } 750 751 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 752 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 753 754 static int __init dmi_init(void) 755 { 756 struct kobject *tables_kobj; 757 u8 *dmi_table; 758 int ret = -ENOMEM; 759 760 if (!dmi_available) 761 return 0; 762 763 /* 764 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 765 * even after farther error, as it can be used by other modules like 766 * dmi-sysfs. 767 */ 768 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 769 if (!dmi_kobj) 770 goto err; 771 772 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 773 if (!tables_kobj) 774 goto err; 775 776 dmi_table = dmi_remap(dmi_base, dmi_len); 777 if (!dmi_table) 778 goto err_tables; 779 780 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 781 bin_attr_smbios_entry_point.private = smbios_entry_point; 782 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 783 if (ret) 784 goto err_unmap; 785 786 bin_attr_DMI.size = dmi_len; 787 bin_attr_DMI.private = dmi_table; 788 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 789 if (!ret) 790 return 0; 791 792 sysfs_remove_bin_file(tables_kobj, 793 &bin_attr_smbios_entry_point); 794 err_unmap: 795 dmi_unmap(dmi_table); 796 err_tables: 797 kobject_del(tables_kobj); 798 kobject_put(tables_kobj); 799 err: 800 pr_err("dmi: Firmware registration failed.\n"); 801 802 return ret; 803 } 804 subsys_initcall(dmi_init); 805 806 /** 807 * dmi_setup - scan and setup DMI system information 808 * 809 * Scan the DMI system information. This setups DMI identifiers 810 * (dmi_system_id) for printing it out on task dumps and prepares 811 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 812 * for using this when reporting memory errors. 813 */ 814 void __init dmi_setup(void) 815 { 816 dmi_scan_machine(); 817 if (!dmi_available) 818 return; 819 820 dmi_memdev_walk(); 821 dump_stack_set_arch_desc("%s", dmi_ids_string); 822 } 823 824 /** 825 * dmi_matches - check if dmi_system_id structure matches system DMI data 826 * @dmi: pointer to the dmi_system_id structure to check 827 */ 828 static bool dmi_matches(const struct dmi_system_id *dmi) 829 { 830 int i; 831 832 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 833 int s = dmi->matches[i].slot; 834 if (s == DMI_NONE) 835 break; 836 if (s == DMI_OEM_STRING) { 837 /* DMI_OEM_STRING must be exact match */ 838 const struct dmi_device *valid; 839 840 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 841 dmi->matches[i].substr, NULL); 842 if (valid) 843 continue; 844 } else if (dmi_ident[s]) { 845 if (dmi->matches[i].exact_match) { 846 if (!strcmp(dmi_ident[s], 847 dmi->matches[i].substr)) 848 continue; 849 } else { 850 if (strstr(dmi_ident[s], 851 dmi->matches[i].substr)) 852 continue; 853 } 854 } 855 856 /* No match */ 857 return false; 858 } 859 return true; 860 } 861 862 /** 863 * dmi_is_end_of_table - check for end-of-table marker 864 * @dmi: pointer to the dmi_system_id structure to check 865 */ 866 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 867 { 868 return dmi->matches[0].slot == DMI_NONE; 869 } 870 871 /** 872 * dmi_check_system - check system DMI data 873 * @list: array of dmi_system_id structures to match against 874 * All non-null elements of the list must match 875 * their slot's (field index's) data (i.e., each 876 * list string must be a substring of the specified 877 * DMI slot's string data) to be considered a 878 * successful match. 879 * 880 * Walk the blacklist table running matching functions until someone 881 * returns non zero or we hit the end. Callback function is called for 882 * each successful match. Returns the number of matches. 883 * 884 * dmi_setup must be called before this function is called. 885 */ 886 int dmi_check_system(const struct dmi_system_id *list) 887 { 888 int count = 0; 889 const struct dmi_system_id *d; 890 891 for (d = list; !dmi_is_end_of_table(d); d++) 892 if (dmi_matches(d)) { 893 count++; 894 if (d->callback && d->callback(d)) 895 break; 896 } 897 898 return count; 899 } 900 EXPORT_SYMBOL(dmi_check_system); 901 902 /** 903 * dmi_first_match - find dmi_system_id structure matching system DMI data 904 * @list: array of dmi_system_id structures to match against 905 * All non-null elements of the list must match 906 * their slot's (field index's) data (i.e., each 907 * list string must be a substring of the specified 908 * DMI slot's string data) to be considered a 909 * successful match. 910 * 911 * Walk the blacklist table until the first match is found. Return the 912 * pointer to the matching entry or NULL if there's no match. 913 * 914 * dmi_setup must be called before this function is called. 915 */ 916 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 917 { 918 const struct dmi_system_id *d; 919 920 for (d = list; !dmi_is_end_of_table(d); d++) 921 if (dmi_matches(d)) 922 return d; 923 924 return NULL; 925 } 926 EXPORT_SYMBOL(dmi_first_match); 927 928 /** 929 * dmi_get_system_info - return DMI data value 930 * @field: data index (see enum dmi_field) 931 * 932 * Returns one DMI data value, can be used to perform 933 * complex DMI data checks. 934 */ 935 const char *dmi_get_system_info(int field) 936 { 937 return dmi_ident[field]; 938 } 939 EXPORT_SYMBOL(dmi_get_system_info); 940 941 /** 942 * dmi_name_in_serial - Check if string is in the DMI product serial information 943 * @str: string to check for 944 */ 945 int dmi_name_in_serial(const char *str) 946 { 947 int f = DMI_PRODUCT_SERIAL; 948 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 949 return 1; 950 return 0; 951 } 952 953 /** 954 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 955 * @str: Case sensitive Name 956 */ 957 int dmi_name_in_vendors(const char *str) 958 { 959 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 960 int i; 961 for (i = 0; fields[i] != DMI_NONE; i++) { 962 int f = fields[i]; 963 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 964 return 1; 965 } 966 return 0; 967 } 968 EXPORT_SYMBOL(dmi_name_in_vendors); 969 970 /** 971 * dmi_find_device - find onboard device by type/name 972 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 973 * @name: device name string or %NULL to match all 974 * @from: previous device found in search, or %NULL for new search. 975 * 976 * Iterates through the list of known onboard devices. If a device is 977 * found with a matching @type and @name, a pointer to its device 978 * structure is returned. Otherwise, %NULL is returned. 979 * A new search is initiated by passing %NULL as the @from argument. 980 * If @from is not %NULL, searches continue from next device. 981 */ 982 const struct dmi_device *dmi_find_device(int type, const char *name, 983 const struct dmi_device *from) 984 { 985 const struct list_head *head = from ? &from->list : &dmi_devices; 986 struct list_head *d; 987 988 for (d = head->next; d != &dmi_devices; d = d->next) { 989 const struct dmi_device *dev = 990 list_entry(d, struct dmi_device, list); 991 992 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 993 ((name == NULL) || (strcmp(dev->name, name) == 0))) 994 return dev; 995 } 996 997 return NULL; 998 } 999 EXPORT_SYMBOL(dmi_find_device); 1000 1001 /** 1002 * dmi_get_date - parse a DMI date 1003 * @field: data index (see enum dmi_field) 1004 * @yearp: optional out parameter for the year 1005 * @monthp: optional out parameter for the month 1006 * @dayp: optional out parameter for the day 1007 * 1008 * The date field is assumed to be in the form resembling 1009 * [mm[/dd]]/yy[yy] and the result is stored in the out 1010 * parameters any or all of which can be omitted. 1011 * 1012 * If the field doesn't exist, all out parameters are set to zero 1013 * and false is returned. Otherwise, true is returned with any 1014 * invalid part of date set to zero. 1015 * 1016 * On return, year, month and day are guaranteed to be in the 1017 * range of [0,9999], [0,12] and [0,31] respectively. 1018 */ 1019 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 1020 { 1021 int year = 0, month = 0, day = 0; 1022 bool exists; 1023 const char *s, *y; 1024 char *e; 1025 1026 s = dmi_get_system_info(field); 1027 exists = s; 1028 if (!exists) 1029 goto out; 1030 1031 /* 1032 * Determine year first. We assume the date string resembles 1033 * mm/dd/yy[yy] but the original code extracted only the year 1034 * from the end. Keep the behavior in the spirit of no 1035 * surprises. 1036 */ 1037 y = strrchr(s, '/'); 1038 if (!y) 1039 goto out; 1040 1041 y++; 1042 year = simple_strtoul(y, &e, 10); 1043 if (y != e && year < 100) { /* 2-digit year */ 1044 year += 1900; 1045 if (year < 1996) /* no dates < spec 1.0 */ 1046 year += 100; 1047 } 1048 if (year > 9999) /* year should fit in %04d */ 1049 year = 0; 1050 1051 /* parse the mm and dd */ 1052 month = simple_strtoul(s, &e, 10); 1053 if (s == e || *e != '/' || !month || month > 12) { 1054 month = 0; 1055 goto out; 1056 } 1057 1058 s = e + 1; 1059 day = simple_strtoul(s, &e, 10); 1060 if (s == y || s == e || *e != '/' || day > 31) 1061 day = 0; 1062 out: 1063 if (yearp) 1064 *yearp = year; 1065 if (monthp) 1066 *monthp = month; 1067 if (dayp) 1068 *dayp = day; 1069 return exists; 1070 } 1071 EXPORT_SYMBOL(dmi_get_date); 1072 1073 /** 1074 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1075 * 1076 * Returns year on success, -ENXIO if DMI is not selected, 1077 * or a different negative error code if DMI field is not present 1078 * or not parseable. 1079 */ 1080 int dmi_get_bios_year(void) 1081 { 1082 bool exists; 1083 int year; 1084 1085 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1086 if (!exists) 1087 return -ENODATA; 1088 1089 return year ? year : -ERANGE; 1090 } 1091 EXPORT_SYMBOL(dmi_get_bios_year); 1092 1093 /** 1094 * dmi_walk - Walk the DMI table and get called back for every record 1095 * @decode: Callback function 1096 * @private_data: Private data to be passed to the callback function 1097 * 1098 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1099 * or a different negative error code if DMI walking fails. 1100 */ 1101 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1102 void *private_data) 1103 { 1104 u8 *buf; 1105 1106 if (!dmi_available) 1107 return -ENXIO; 1108 1109 buf = dmi_remap(dmi_base, dmi_len); 1110 if (buf == NULL) 1111 return -ENOMEM; 1112 1113 dmi_decode_table(buf, decode, private_data); 1114 1115 dmi_unmap(buf); 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(dmi_walk); 1119 1120 /** 1121 * dmi_match - compare a string to the dmi field (if exists) 1122 * @f: DMI field identifier 1123 * @str: string to compare the DMI field to 1124 * 1125 * Returns true if the requested field equals to the str (including NULL). 1126 */ 1127 bool dmi_match(enum dmi_field f, const char *str) 1128 { 1129 const char *info = dmi_get_system_info(f); 1130 1131 if (info == NULL || str == NULL) 1132 return info == str; 1133 1134 return !strcmp(info, str); 1135 } 1136 EXPORT_SYMBOL_GPL(dmi_match); 1137 1138 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1139 { 1140 int n; 1141 1142 if (dmi_memdev == NULL) 1143 return; 1144 1145 for (n = 0; n < dmi_memdev_nr; n++) { 1146 if (handle == dmi_memdev[n].handle) { 1147 *bank = dmi_memdev[n].bank; 1148 *device = dmi_memdev[n].device; 1149 break; 1150 } 1151 } 1152 } 1153 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1154 1155 u64 dmi_memdev_size(u16 handle) 1156 { 1157 int n; 1158 1159 if (dmi_memdev) { 1160 for (n = 0; n < dmi_memdev_nr; n++) { 1161 if (handle == dmi_memdev[n].handle) 1162 return dmi_memdev[n].size; 1163 } 1164 } 1165 return ~0ull; 1166 } 1167 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1168 1169 /** 1170 * dmi_memdev_type - get the memory type 1171 * @handle: DMI structure handle 1172 * 1173 * Return the DMI memory type of the module in the slot associated with the 1174 * given DMI handle, or 0x0 if no such DMI handle exists. 1175 */ 1176 u8 dmi_memdev_type(u16 handle) 1177 { 1178 int n; 1179 1180 if (dmi_memdev) { 1181 for (n = 0; n < dmi_memdev_nr; n++) { 1182 if (handle == dmi_memdev[n].handle) 1183 return dmi_memdev[n].type; 1184 } 1185 } 1186 return 0x0; /* Not a valid value */ 1187 } 1188 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1189 1190 /** 1191 * dmi_memdev_handle - get the DMI handle of a memory slot 1192 * @slot: slot number 1193 * 1194 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1195 * if there is no such slot. 1196 */ 1197 u16 dmi_memdev_handle(int slot) 1198 { 1199 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1200 return dmi_memdev[slot].handle; 1201 1202 return 0xffff; /* Not a valid value */ 1203 } 1204 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1205