1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = ""; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* DMI system identification string used during boot */ 30 static char dmi_ids_string[128] __initdata; 31 32 static struct dmi_memdev_info { 33 const char *device; 34 const char *bank; 35 u16 handle; 36 } *dmi_memdev; 37 static int dmi_memdev_nr; 38 39 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 40 { 41 const u8 *bp = ((u8 *) dm) + dm->length; 42 const u8 *nsp; 43 44 if (s) { 45 while (--s > 0 && *bp) 46 bp += strlen(bp) + 1; 47 48 /* Strings containing only spaces are considered empty */ 49 nsp = bp; 50 while (*nsp == ' ') 51 nsp++; 52 if (*nsp != '\0') 53 return bp; 54 } 55 56 return dmi_empty_string; 57 } 58 59 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 60 { 61 const char *bp = dmi_string_nosave(dm, s); 62 char *str; 63 size_t len; 64 65 if (bp == dmi_empty_string) 66 return dmi_empty_string; 67 68 len = strlen(bp) + 1; 69 str = dmi_alloc(len); 70 if (str != NULL) 71 strcpy(str, bp); 72 73 return str; 74 } 75 76 /* 77 * We have to be cautious here. We have seen BIOSes with DMI pointers 78 * pointing to completely the wrong place for example 79 */ 80 static void dmi_decode_table(u8 *buf, 81 void (*decode)(const struct dmi_header *, void *), 82 void *private_data) 83 { 84 u8 *data = buf; 85 int i = 0; 86 87 /* 88 * Stop when we have seen all the items the table claimed to have 89 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 90 * >= 3.0 only) OR we run off the end of the table (should never 91 * happen but sometimes does on bogus implementations.) 92 */ 93 while ((!dmi_num || i < dmi_num) && 94 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 95 const struct dmi_header *dm = (const struct dmi_header *)data; 96 97 /* 98 * We want to know the total length (formatted area and 99 * strings) before decoding to make sure we won't run off the 100 * table in dmi_decode or dmi_string 101 */ 102 data += dm->length; 103 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 104 data++; 105 if (data - buf < dmi_len - 1) 106 decode(dm, private_data); 107 108 data += 2; 109 i++; 110 111 /* 112 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 113 * For tables behind a 64-bit entry point, we have no item 114 * count and no exact table length, so stop on end-of-table 115 * marker. For tables behind a 32-bit entry point, we have 116 * seen OEM structures behind the end-of-table marker on 117 * some systems, so don't trust it. 118 */ 119 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 120 break; 121 } 122 123 /* Trim DMI table length if needed */ 124 if (dmi_len > data - buf) 125 dmi_len = data - buf; 126 } 127 128 static phys_addr_t dmi_base; 129 130 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 131 void *)) 132 { 133 u8 *buf; 134 u32 orig_dmi_len = dmi_len; 135 136 buf = dmi_early_remap(dmi_base, orig_dmi_len); 137 if (buf == NULL) 138 return -ENOMEM; 139 140 dmi_decode_table(buf, decode, NULL); 141 142 add_device_randomness(buf, dmi_len); 143 144 dmi_early_unmap(buf, orig_dmi_len); 145 return 0; 146 } 147 148 static int __init dmi_checksum(const u8 *buf, u8 len) 149 { 150 u8 sum = 0; 151 int a; 152 153 for (a = 0; a < len; a++) 154 sum += buf[a]; 155 156 return sum == 0; 157 } 158 159 static const char *dmi_ident[DMI_STRING_MAX]; 160 static LIST_HEAD(dmi_devices); 161 int dmi_available; 162 163 /* 164 * Save a DMI string 165 */ 166 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 167 int string) 168 { 169 const char *d = (const char *) dm; 170 const char *p; 171 172 if (dmi_ident[slot] || dm->length <= string) 173 return; 174 175 p = dmi_string(dm, d[string]); 176 if (p == NULL) 177 return; 178 179 dmi_ident[slot] = p; 180 } 181 182 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 183 int index) 184 { 185 const u8 *d; 186 char *s; 187 int is_ff = 1, is_00 = 1, i; 188 189 if (dmi_ident[slot] || dm->length <= index + 16) 190 return; 191 192 d = (u8 *) dm + index; 193 for (i = 0; i < 16 && (is_ff || is_00); i++) { 194 if (d[i] != 0x00) 195 is_00 = 0; 196 if (d[i] != 0xFF) 197 is_ff = 0; 198 } 199 200 if (is_ff || is_00) 201 return; 202 203 s = dmi_alloc(16*2+4+1); 204 if (!s) 205 return; 206 207 /* 208 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 209 * the UUID are supposed to be little-endian encoded. The specification 210 * says that this is the defacto standard. 211 */ 212 if (dmi_ver >= 0x020600) 213 sprintf(s, "%pUL", d); 214 else 215 sprintf(s, "%pUB", d); 216 217 dmi_ident[slot] = s; 218 } 219 220 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 221 int index) 222 { 223 const u8 *d; 224 char *s; 225 226 if (dmi_ident[slot] || dm->length <= index) 227 return; 228 229 s = dmi_alloc(4); 230 if (!s) 231 return; 232 233 d = (u8 *) dm + index; 234 sprintf(s, "%u", *d & 0x7F); 235 dmi_ident[slot] = s; 236 } 237 238 static void __init dmi_save_one_device(int type, const char *name) 239 { 240 struct dmi_device *dev; 241 242 /* No duplicate device */ 243 if (dmi_find_device(type, name, NULL)) 244 return; 245 246 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 247 if (!dev) 248 return; 249 250 dev->type = type; 251 strcpy((char *)(dev + 1), name); 252 dev->name = (char *)(dev + 1); 253 dev->device_data = NULL; 254 list_add(&dev->list, &dmi_devices); 255 } 256 257 static void __init dmi_save_devices(const struct dmi_header *dm) 258 { 259 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 260 261 for (i = 0; i < count; i++) { 262 const char *d = (char *)(dm + 1) + (i * 2); 263 264 /* Skip disabled device */ 265 if ((*d & 0x80) == 0) 266 continue; 267 268 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 269 } 270 } 271 272 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 273 { 274 int i, count; 275 struct dmi_device *dev; 276 277 if (dm->length < 0x05) 278 return; 279 280 count = *(u8 *)(dm + 1); 281 for (i = 1; i <= count; i++) { 282 const char *devname = dmi_string(dm, i); 283 284 if (devname == dmi_empty_string) 285 continue; 286 287 dev = dmi_alloc(sizeof(*dev)); 288 if (!dev) 289 break; 290 291 dev->type = DMI_DEV_TYPE_OEM_STRING; 292 dev->name = devname; 293 dev->device_data = NULL; 294 295 list_add(&dev->list, &dmi_devices); 296 } 297 } 298 299 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 300 { 301 struct dmi_device *dev; 302 void *data; 303 304 data = dmi_alloc(dm->length); 305 if (data == NULL) 306 return; 307 308 memcpy(data, dm, dm->length); 309 310 dev = dmi_alloc(sizeof(*dev)); 311 if (!dev) 312 return; 313 314 dev->type = DMI_DEV_TYPE_IPMI; 315 dev->name = "IPMI controller"; 316 dev->device_data = data; 317 318 list_add_tail(&dev->list, &dmi_devices); 319 } 320 321 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 322 int devfn, const char *name, int type) 323 { 324 struct dmi_dev_onboard *dev; 325 326 /* Ignore invalid values */ 327 if (type == DMI_DEV_TYPE_DEV_SLOT && 328 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 329 return; 330 331 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 332 if (!dev) 333 return; 334 335 dev->instance = instance; 336 dev->segment = segment; 337 dev->bus = bus; 338 dev->devfn = devfn; 339 340 strcpy((char *)&dev[1], name); 341 dev->dev.type = type; 342 dev->dev.name = (char *)&dev[1]; 343 dev->dev.device_data = dev; 344 345 list_add(&dev->dev.list, &dmi_devices); 346 } 347 348 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 349 { 350 const char *name; 351 const u8 *d = (u8 *)dm; 352 353 if (dm->length < 0x0B) 354 return; 355 356 /* Skip disabled device */ 357 if ((d[0x5] & 0x80) == 0) 358 return; 359 360 name = dmi_string_nosave(dm, d[0x4]); 361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 362 DMI_DEV_TYPE_DEV_ONBOARD); 363 dmi_save_one_device(d[0x5] & 0x7f, name); 364 } 365 366 static void __init dmi_save_system_slot(const struct dmi_header *dm) 367 { 368 const u8 *d = (u8 *)dm; 369 370 /* Need SMBIOS 2.6+ structure */ 371 if (dm->length < 0x11) 372 return; 373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 374 d[0x10], dmi_string_nosave(dm, d[0x4]), 375 DMI_DEV_TYPE_DEV_SLOT); 376 } 377 378 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 379 { 380 if (dm->type != DMI_ENTRY_MEM_DEVICE) 381 return; 382 dmi_memdev_nr++; 383 } 384 385 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 386 { 387 const char *d = (const char *)dm; 388 static int nr; 389 390 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 391 return; 392 if (nr >= dmi_memdev_nr) { 393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 394 return; 395 } 396 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 399 nr++; 400 } 401 402 void __init dmi_memdev_walk(void) 403 { 404 if (!dmi_available) 405 return; 406 407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 409 if (dmi_memdev) 410 dmi_walk_early(save_mem_devices); 411 } 412 } 413 414 /* 415 * Process a DMI table entry. Right now all we care about are the BIOS 416 * and machine entries. For 2.5 we should pull the smbus controller info 417 * out of here. 418 */ 419 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 420 { 421 switch (dm->type) { 422 case 0: /* BIOS Information */ 423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 425 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 426 break; 427 case 1: /* System Information */ 428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 433 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 434 break; 435 case 2: /* Base Board Information */ 436 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 437 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 438 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 439 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 440 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 441 break; 442 case 3: /* Chassis Information */ 443 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 444 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 445 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 446 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 447 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 448 break; 449 case 9: /* System Slots */ 450 dmi_save_system_slot(dm); 451 break; 452 case 10: /* Onboard Devices Information */ 453 dmi_save_devices(dm); 454 break; 455 case 11: /* OEM Strings */ 456 dmi_save_oem_strings_devices(dm); 457 break; 458 case 38: /* IPMI Device Information */ 459 dmi_save_ipmi_device(dm); 460 break; 461 case 41: /* Onboard Devices Extended Information */ 462 dmi_save_extended_devices(dm); 463 } 464 } 465 466 static int __init print_filtered(char *buf, size_t len, const char *info) 467 { 468 int c = 0; 469 const char *p; 470 471 if (!info) 472 return c; 473 474 for (p = info; *p; p++) 475 if (isprint(*p)) 476 c += scnprintf(buf + c, len - c, "%c", *p); 477 else 478 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 479 return c; 480 } 481 482 static void __init dmi_format_ids(char *buf, size_t len) 483 { 484 int c = 0; 485 const char *board; /* Board Name is optional */ 486 487 c += print_filtered(buf + c, len - c, 488 dmi_get_system_info(DMI_SYS_VENDOR)); 489 c += scnprintf(buf + c, len - c, " "); 490 c += print_filtered(buf + c, len - c, 491 dmi_get_system_info(DMI_PRODUCT_NAME)); 492 493 board = dmi_get_system_info(DMI_BOARD_NAME); 494 if (board) { 495 c += scnprintf(buf + c, len - c, "/"); 496 c += print_filtered(buf + c, len - c, board); 497 } 498 c += scnprintf(buf + c, len - c, ", BIOS "); 499 c += print_filtered(buf + c, len - c, 500 dmi_get_system_info(DMI_BIOS_VERSION)); 501 c += scnprintf(buf + c, len - c, " "); 502 c += print_filtered(buf + c, len - c, 503 dmi_get_system_info(DMI_BIOS_DATE)); 504 } 505 506 /* 507 * Check for DMI/SMBIOS headers in the system firmware image. Any 508 * SMBIOS header must start 16 bytes before the DMI header, so take a 509 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 510 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 511 * takes precedence) and return 0. Otherwise return 1. 512 */ 513 static int __init dmi_present(const u8 *buf) 514 { 515 u32 smbios_ver; 516 517 if (memcmp(buf, "_SM_", 4) == 0 && 518 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 519 smbios_ver = get_unaligned_be16(buf + 6); 520 smbios_entry_point_size = buf[5]; 521 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 522 523 /* Some BIOS report weird SMBIOS version, fix that up */ 524 switch (smbios_ver) { 525 case 0x021F: 526 case 0x0221: 527 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 528 smbios_ver & 0xFF, 3); 529 smbios_ver = 0x0203; 530 break; 531 case 0x0233: 532 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 533 smbios_ver = 0x0206; 534 break; 535 } 536 } else { 537 smbios_ver = 0; 538 } 539 540 buf += 16; 541 542 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 543 if (smbios_ver) 544 dmi_ver = smbios_ver; 545 else 546 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 547 dmi_ver <<= 8; 548 dmi_num = get_unaligned_le16(buf + 12); 549 dmi_len = get_unaligned_le16(buf + 6); 550 dmi_base = get_unaligned_le32(buf + 8); 551 552 if (dmi_walk_early(dmi_decode) == 0) { 553 if (smbios_ver) { 554 pr_info("SMBIOS %d.%d present.\n", 555 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 556 } else { 557 smbios_entry_point_size = 15; 558 memcpy(smbios_entry_point, buf, 559 smbios_entry_point_size); 560 pr_info("Legacy DMI %d.%d present.\n", 561 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 562 } 563 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 564 pr_info("DMI: %s\n", dmi_ids_string); 565 return 0; 566 } 567 } 568 569 return 1; 570 } 571 572 /* 573 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 574 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 575 */ 576 static int __init dmi_smbios3_present(const u8 *buf) 577 { 578 if (memcmp(buf, "_SM3_", 5) == 0 && 579 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 580 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 581 dmi_num = 0; /* No longer specified */ 582 dmi_len = get_unaligned_le32(buf + 12); 583 dmi_base = get_unaligned_le64(buf + 16); 584 smbios_entry_point_size = buf[6]; 585 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 586 587 if (dmi_walk_early(dmi_decode) == 0) { 588 pr_info("SMBIOS %d.%d.%d present.\n", 589 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 590 dmi_ver & 0xFF); 591 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 592 pr_info("DMI: %s\n", dmi_ids_string); 593 return 0; 594 } 595 } 596 return 1; 597 } 598 599 void __init dmi_scan_machine(void) 600 { 601 char __iomem *p, *q; 602 char buf[32]; 603 604 if (efi_enabled(EFI_CONFIG_TABLES)) { 605 /* 606 * According to the DMTF SMBIOS reference spec v3.0.0, it is 607 * allowed to define both the 64-bit entry point (smbios3) and 608 * the 32-bit entry point (smbios), in which case they should 609 * either both point to the same SMBIOS structure table, or the 610 * table pointed to by the 64-bit entry point should contain a 611 * superset of the table contents pointed to by the 32-bit entry 612 * point (section 5.2) 613 * This implies that the 64-bit entry point should have 614 * precedence if it is defined and supported by the OS. If we 615 * have the 64-bit entry point, but fail to decode it, fall 616 * back to the legacy one (if available) 617 */ 618 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 619 p = dmi_early_remap(efi.smbios3, 32); 620 if (p == NULL) 621 goto error; 622 memcpy_fromio(buf, p, 32); 623 dmi_early_unmap(p, 32); 624 625 if (!dmi_smbios3_present(buf)) { 626 dmi_available = 1; 627 return; 628 } 629 } 630 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 631 goto error; 632 633 /* This is called as a core_initcall() because it isn't 634 * needed during early boot. This also means we can 635 * iounmap the space when we're done with it. 636 */ 637 p = dmi_early_remap(efi.smbios, 32); 638 if (p == NULL) 639 goto error; 640 memcpy_fromio(buf, p, 32); 641 dmi_early_unmap(p, 32); 642 643 if (!dmi_present(buf)) { 644 dmi_available = 1; 645 return; 646 } 647 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 648 p = dmi_early_remap(0xF0000, 0x10000); 649 if (p == NULL) 650 goto error; 651 652 /* 653 * Same logic as above, look for a 64-bit entry point 654 * first, and if not found, fall back to 32-bit entry point. 655 */ 656 memcpy_fromio(buf, p, 16); 657 for (q = p + 16; q < p + 0x10000; q += 16) { 658 memcpy_fromio(buf + 16, q, 16); 659 if (!dmi_smbios3_present(buf)) { 660 dmi_available = 1; 661 dmi_early_unmap(p, 0x10000); 662 return; 663 } 664 memcpy(buf, buf + 16, 16); 665 } 666 667 /* 668 * Iterate over all possible DMI header addresses q. 669 * Maintain the 32 bytes around q in buf. On the 670 * first iteration, substitute zero for the 671 * out-of-range bytes so there is no chance of falsely 672 * detecting an SMBIOS header. 673 */ 674 memset(buf, 0, 16); 675 for (q = p; q < p + 0x10000; q += 16) { 676 memcpy_fromio(buf + 16, q, 16); 677 if (!dmi_present(buf)) { 678 dmi_available = 1; 679 dmi_early_unmap(p, 0x10000); 680 return; 681 } 682 memcpy(buf, buf + 16, 16); 683 } 684 dmi_early_unmap(p, 0x10000); 685 } 686 error: 687 pr_info("DMI not present or invalid.\n"); 688 } 689 690 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 691 struct bin_attribute *attr, char *buf, 692 loff_t pos, size_t count) 693 { 694 memcpy(buf, attr->private + pos, count); 695 return count; 696 } 697 698 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 699 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 700 701 static int __init dmi_init(void) 702 { 703 struct kobject *tables_kobj; 704 u8 *dmi_table; 705 int ret = -ENOMEM; 706 707 if (!dmi_available) 708 return 0; 709 710 /* 711 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 712 * even after farther error, as it can be used by other modules like 713 * dmi-sysfs. 714 */ 715 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 716 if (!dmi_kobj) 717 goto err; 718 719 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 720 if (!tables_kobj) 721 goto err; 722 723 dmi_table = dmi_remap(dmi_base, dmi_len); 724 if (!dmi_table) 725 goto err_tables; 726 727 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 728 bin_attr_smbios_entry_point.private = smbios_entry_point; 729 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 730 if (ret) 731 goto err_unmap; 732 733 bin_attr_DMI.size = dmi_len; 734 bin_attr_DMI.private = dmi_table; 735 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 736 if (!ret) 737 return 0; 738 739 sysfs_remove_bin_file(tables_kobj, 740 &bin_attr_smbios_entry_point); 741 err_unmap: 742 dmi_unmap(dmi_table); 743 err_tables: 744 kobject_del(tables_kobj); 745 kobject_put(tables_kobj); 746 err: 747 pr_err("dmi: Firmware registration failed.\n"); 748 749 return ret; 750 } 751 subsys_initcall(dmi_init); 752 753 /** 754 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 755 * 756 * Invoke dump_stack_set_arch_desc() with DMI system information so that 757 * DMI identifiers are printed out on task dumps. Arch boot code should 758 * call this function after dmi_scan_machine() if it wants to print out DMI 759 * identifiers on task dumps. 760 */ 761 void __init dmi_set_dump_stack_arch_desc(void) 762 { 763 dump_stack_set_arch_desc("%s", dmi_ids_string); 764 } 765 766 /** 767 * dmi_matches - check if dmi_system_id structure matches system DMI data 768 * @dmi: pointer to the dmi_system_id structure to check 769 */ 770 static bool dmi_matches(const struct dmi_system_id *dmi) 771 { 772 int i; 773 774 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 775 int s = dmi->matches[i].slot; 776 if (s == DMI_NONE) 777 break; 778 if (dmi_ident[s]) { 779 if (dmi->matches[i].exact_match) { 780 if (!strcmp(dmi_ident[s], 781 dmi->matches[i].substr)) 782 continue; 783 } else { 784 if (strstr(dmi_ident[s], 785 dmi->matches[i].substr)) 786 continue; 787 } 788 } 789 790 /* No match */ 791 return false; 792 } 793 return true; 794 } 795 796 /** 797 * dmi_is_end_of_table - check for end-of-table marker 798 * @dmi: pointer to the dmi_system_id structure to check 799 */ 800 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 801 { 802 return dmi->matches[0].slot == DMI_NONE; 803 } 804 805 /** 806 * dmi_check_system - check system DMI data 807 * @list: array of dmi_system_id structures to match against 808 * All non-null elements of the list must match 809 * their slot's (field index's) data (i.e., each 810 * list string must be a substring of the specified 811 * DMI slot's string data) to be considered a 812 * successful match. 813 * 814 * Walk the blacklist table running matching functions until someone 815 * returns non zero or we hit the end. Callback function is called for 816 * each successful match. Returns the number of matches. 817 * 818 * dmi_scan_machine must be called before this function is called. 819 */ 820 int dmi_check_system(const struct dmi_system_id *list) 821 { 822 int count = 0; 823 const struct dmi_system_id *d; 824 825 for (d = list; !dmi_is_end_of_table(d); d++) 826 if (dmi_matches(d)) { 827 count++; 828 if (d->callback && d->callback(d)) 829 break; 830 } 831 832 return count; 833 } 834 EXPORT_SYMBOL(dmi_check_system); 835 836 /** 837 * dmi_first_match - find dmi_system_id structure matching system DMI data 838 * @list: array of dmi_system_id structures to match against 839 * All non-null elements of the list must match 840 * their slot's (field index's) data (i.e., each 841 * list string must be a substring of the specified 842 * DMI slot's string data) to be considered a 843 * successful match. 844 * 845 * Walk the blacklist table until the first match is found. Return the 846 * pointer to the matching entry or NULL if there's no match. 847 * 848 * dmi_scan_machine must be called before this function is called. 849 */ 850 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 851 { 852 const struct dmi_system_id *d; 853 854 for (d = list; !dmi_is_end_of_table(d); d++) 855 if (dmi_matches(d)) 856 return d; 857 858 return NULL; 859 } 860 EXPORT_SYMBOL(dmi_first_match); 861 862 /** 863 * dmi_get_system_info - return DMI data value 864 * @field: data index (see enum dmi_field) 865 * 866 * Returns one DMI data value, can be used to perform 867 * complex DMI data checks. 868 */ 869 const char *dmi_get_system_info(int field) 870 { 871 return dmi_ident[field]; 872 } 873 EXPORT_SYMBOL(dmi_get_system_info); 874 875 /** 876 * dmi_name_in_serial - Check if string is in the DMI product serial information 877 * @str: string to check for 878 */ 879 int dmi_name_in_serial(const char *str) 880 { 881 int f = DMI_PRODUCT_SERIAL; 882 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 883 return 1; 884 return 0; 885 } 886 887 /** 888 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 889 * @str: Case sensitive Name 890 */ 891 int dmi_name_in_vendors(const char *str) 892 { 893 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 894 int i; 895 for (i = 0; fields[i] != DMI_NONE; i++) { 896 int f = fields[i]; 897 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 898 return 1; 899 } 900 return 0; 901 } 902 EXPORT_SYMBOL(dmi_name_in_vendors); 903 904 /** 905 * dmi_find_device - find onboard device by type/name 906 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 907 * @name: device name string or %NULL to match all 908 * @from: previous device found in search, or %NULL for new search. 909 * 910 * Iterates through the list of known onboard devices. If a device is 911 * found with a matching @type and @name, a pointer to its device 912 * structure is returned. Otherwise, %NULL is returned. 913 * A new search is initiated by passing %NULL as the @from argument. 914 * If @from is not %NULL, searches continue from next device. 915 */ 916 const struct dmi_device *dmi_find_device(int type, const char *name, 917 const struct dmi_device *from) 918 { 919 const struct list_head *head = from ? &from->list : &dmi_devices; 920 struct list_head *d; 921 922 for (d = head->next; d != &dmi_devices; d = d->next) { 923 const struct dmi_device *dev = 924 list_entry(d, struct dmi_device, list); 925 926 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 927 ((name == NULL) || (strcmp(dev->name, name) == 0))) 928 return dev; 929 } 930 931 return NULL; 932 } 933 EXPORT_SYMBOL(dmi_find_device); 934 935 /** 936 * dmi_get_date - parse a DMI date 937 * @field: data index (see enum dmi_field) 938 * @yearp: optional out parameter for the year 939 * @monthp: optional out parameter for the month 940 * @dayp: optional out parameter for the day 941 * 942 * The date field is assumed to be in the form resembling 943 * [mm[/dd]]/yy[yy] and the result is stored in the out 944 * parameters any or all of which can be omitted. 945 * 946 * If the field doesn't exist, all out parameters are set to zero 947 * and false is returned. Otherwise, true is returned with any 948 * invalid part of date set to zero. 949 * 950 * On return, year, month and day are guaranteed to be in the 951 * range of [0,9999], [0,12] and [0,31] respectively. 952 */ 953 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 954 { 955 int year = 0, month = 0, day = 0; 956 bool exists; 957 const char *s, *y; 958 char *e; 959 960 s = dmi_get_system_info(field); 961 exists = s; 962 if (!exists) 963 goto out; 964 965 /* 966 * Determine year first. We assume the date string resembles 967 * mm/dd/yy[yy] but the original code extracted only the year 968 * from the end. Keep the behavior in the spirit of no 969 * surprises. 970 */ 971 y = strrchr(s, '/'); 972 if (!y) 973 goto out; 974 975 y++; 976 year = simple_strtoul(y, &e, 10); 977 if (y != e && year < 100) { /* 2-digit year */ 978 year += 1900; 979 if (year < 1996) /* no dates < spec 1.0 */ 980 year += 100; 981 } 982 if (year > 9999) /* year should fit in %04d */ 983 year = 0; 984 985 /* parse the mm and dd */ 986 month = simple_strtoul(s, &e, 10); 987 if (s == e || *e != '/' || !month || month > 12) { 988 month = 0; 989 goto out; 990 } 991 992 s = e + 1; 993 day = simple_strtoul(s, &e, 10); 994 if (s == y || s == e || *e != '/' || day > 31) 995 day = 0; 996 out: 997 if (yearp) 998 *yearp = year; 999 if (monthp) 1000 *monthp = month; 1001 if (dayp) 1002 *dayp = day; 1003 return exists; 1004 } 1005 EXPORT_SYMBOL(dmi_get_date); 1006 1007 /** 1008 * dmi_walk - Walk the DMI table and get called back for every record 1009 * @decode: Callback function 1010 * @private_data: Private data to be passed to the callback function 1011 * 1012 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1013 * or a different negative error code if DMI walking fails. 1014 */ 1015 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1016 void *private_data) 1017 { 1018 u8 *buf; 1019 1020 if (!dmi_available) 1021 return -ENXIO; 1022 1023 buf = dmi_remap(dmi_base, dmi_len); 1024 if (buf == NULL) 1025 return -ENOMEM; 1026 1027 dmi_decode_table(buf, decode, private_data); 1028 1029 dmi_unmap(buf); 1030 return 0; 1031 } 1032 EXPORT_SYMBOL_GPL(dmi_walk); 1033 1034 /** 1035 * dmi_match - compare a string to the dmi field (if exists) 1036 * @f: DMI field identifier 1037 * @str: string to compare the DMI field to 1038 * 1039 * Returns true if the requested field equals to the str (including NULL). 1040 */ 1041 bool dmi_match(enum dmi_field f, const char *str) 1042 { 1043 const char *info = dmi_get_system_info(f); 1044 1045 if (info == NULL || str == NULL) 1046 return info == str; 1047 1048 return !strcmp(info, str); 1049 } 1050 EXPORT_SYMBOL_GPL(dmi_match); 1051 1052 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1053 { 1054 int n; 1055 1056 if (dmi_memdev == NULL) 1057 return; 1058 1059 for (n = 0; n < dmi_memdev_nr; n++) { 1060 if (handle == dmi_memdev[n].handle) { 1061 *bank = dmi_memdev[n].bank; 1062 *device = dmi_memdev[n].device; 1063 break; 1064 } 1065 } 1066 } 1067 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1068