1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <asm/dmi.h> 10 11 /* 12 * DMI stands for "Desktop Management Interface". It is part 13 * of and an antecedent to, SMBIOS, which stands for System 14 * Management BIOS. See further: http://www.dmtf.org/standards 15 */ 16 static char dmi_empty_string[] = " "; 17 18 /* 19 * Catch too early calls to dmi_check_system(): 20 */ 21 static int dmi_initialized; 22 23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 24 { 25 const u8 *bp = ((u8 *) dm) + dm->length; 26 27 if (s) { 28 s--; 29 while (s > 0 && *bp) { 30 bp += strlen(bp) + 1; 31 s--; 32 } 33 34 if (*bp != 0) { 35 size_t len = strlen(bp)+1; 36 size_t cmp_len = len > 8 ? 8 : len; 37 38 if (!memcmp(bp, dmi_empty_string, cmp_len)) 39 return dmi_empty_string; 40 return bp; 41 } 42 } 43 44 return ""; 45 } 46 47 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 48 { 49 const char *bp = dmi_string_nosave(dm, s); 50 char *str; 51 size_t len; 52 53 if (bp == dmi_empty_string) 54 return dmi_empty_string; 55 56 len = strlen(bp) + 1; 57 str = dmi_alloc(len); 58 if (str != NULL) 59 strcpy(str, bp); 60 else 61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 62 63 return str; 64 } 65 66 /* 67 * We have to be cautious here. We have seen BIOSes with DMI pointers 68 * pointing to completely the wrong place for example 69 */ 70 static void dmi_table(u8 *buf, int len, int num, 71 void (*decode)(const struct dmi_header *, void *), 72 void *private_data) 73 { 74 u8 *data = buf; 75 int i = 0; 76 77 /* 78 * Stop when we see all the items the table claimed to have 79 * OR we run off the end of the table (also happens) 80 */ 81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 82 const struct dmi_header *dm = (const struct dmi_header *)data; 83 84 /* 85 * We want to know the total length (formatted area and 86 * strings) before decoding to make sure we won't run off the 87 * table in dmi_decode or dmi_string 88 */ 89 data += dm->length; 90 while ((data - buf < len - 1) && (data[0] || data[1])) 91 data++; 92 if (data - buf < len - 1) 93 decode(dm, private_data); 94 data += 2; 95 i++; 96 } 97 } 98 99 static u32 dmi_base; 100 static u16 dmi_len; 101 static u16 dmi_num; 102 103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 104 void *)) 105 { 106 u8 *buf; 107 108 buf = dmi_ioremap(dmi_base, dmi_len); 109 if (buf == NULL) 110 return -1; 111 112 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 113 114 dmi_iounmap(buf, dmi_len); 115 return 0; 116 } 117 118 static int __init dmi_checksum(const u8 *buf) 119 { 120 u8 sum = 0; 121 int a; 122 123 for (a = 0; a < 15; a++) 124 sum += buf[a]; 125 126 return sum == 0; 127 } 128 129 static char *dmi_ident[DMI_STRING_MAX]; 130 static LIST_HEAD(dmi_devices); 131 int dmi_available; 132 133 /* 134 * Save a DMI string 135 */ 136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 137 { 138 const char *d = (const char*) dm; 139 char *p; 140 141 if (dmi_ident[slot]) 142 return; 143 144 p = dmi_string(dm, d[string]); 145 if (p == NULL) 146 return; 147 148 dmi_ident[slot] = p; 149 } 150 151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 152 { 153 const u8 *d = (u8*) dm + index; 154 char *s; 155 int is_ff = 1, is_00 = 1, i; 156 157 if (dmi_ident[slot]) 158 return; 159 160 for (i = 0; i < 16 && (is_ff || is_00); i++) { 161 if(d[i] != 0x00) is_ff = 0; 162 if(d[i] != 0xFF) is_00 = 0; 163 } 164 165 if (is_ff || is_00) 166 return; 167 168 s = dmi_alloc(16*2+4+1); 169 if (!s) 170 return; 171 172 sprintf(s, "%pUB", d); 173 174 dmi_ident[slot] = s; 175 } 176 177 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 178 { 179 const u8 *d = (u8*) dm + index; 180 char *s; 181 182 if (dmi_ident[slot]) 183 return; 184 185 s = dmi_alloc(4); 186 if (!s) 187 return; 188 189 sprintf(s, "%u", *d & 0x7F); 190 dmi_ident[slot] = s; 191 } 192 193 static void __init dmi_save_one_device(int type, const char *name) 194 { 195 struct dmi_device *dev; 196 197 /* No duplicate device */ 198 if (dmi_find_device(type, name, NULL)) 199 return; 200 201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 202 if (!dev) { 203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 204 return; 205 } 206 207 dev->type = type; 208 strcpy((char *)(dev + 1), name); 209 dev->name = (char *)(dev + 1); 210 dev->device_data = NULL; 211 list_add(&dev->list, &dmi_devices); 212 } 213 214 static void __init dmi_save_devices(const struct dmi_header *dm) 215 { 216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 217 218 for (i = 0; i < count; i++) { 219 const char *d = (char *)(dm + 1) + (i * 2); 220 221 /* Skip disabled device */ 222 if ((*d & 0x80) == 0) 223 continue; 224 225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 226 } 227 } 228 229 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 230 { 231 int i, count = *(u8 *)(dm + 1); 232 struct dmi_device *dev; 233 234 for (i = 1; i <= count; i++) { 235 char *devname = dmi_string(dm, i); 236 237 if (devname == dmi_empty_string) 238 continue; 239 240 dev = dmi_alloc(sizeof(*dev)); 241 if (!dev) { 242 printk(KERN_ERR 243 "dmi_save_oem_strings_devices: out of memory.\n"); 244 break; 245 } 246 247 dev->type = DMI_DEV_TYPE_OEM_STRING; 248 dev->name = devname; 249 dev->device_data = NULL; 250 251 list_add(&dev->list, &dmi_devices); 252 } 253 } 254 255 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 256 { 257 struct dmi_device *dev; 258 void * data; 259 260 data = dmi_alloc(dm->length); 261 if (data == NULL) { 262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 263 return; 264 } 265 266 memcpy(data, dm, dm->length); 267 268 dev = dmi_alloc(sizeof(*dev)); 269 if (!dev) { 270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 271 return; 272 } 273 274 dev->type = DMI_DEV_TYPE_IPMI; 275 dev->name = "IPMI controller"; 276 dev->device_data = data; 277 278 list_add_tail(&dev->list, &dmi_devices); 279 } 280 281 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 282 int devfn, const char *name) 283 { 284 struct dmi_dev_onboard *onboard_dev; 285 286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 287 if (!onboard_dev) { 288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); 289 return; 290 } 291 onboard_dev->instance = instance; 292 onboard_dev->segment = segment; 293 onboard_dev->bus = bus; 294 onboard_dev->devfn = devfn; 295 296 strcpy((char *)&onboard_dev[1], name); 297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 298 onboard_dev->dev.name = (char *)&onboard_dev[1]; 299 onboard_dev->dev.device_data = onboard_dev; 300 301 list_add(&onboard_dev->dev.list, &dmi_devices); 302 } 303 304 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 305 { 306 const u8 *d = (u8*) dm + 5; 307 308 /* Skip disabled device */ 309 if ((*d & 0x80) == 0) 310 return; 311 312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 313 dmi_string_nosave(dm, *(d-1))); 314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 315 } 316 317 /* 318 * Process a DMI table entry. Right now all we care about are the BIOS 319 * and machine entries. For 2.5 we should pull the smbus controller info 320 * out of here. 321 */ 322 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 323 { 324 switch(dm->type) { 325 case 0: /* BIOS Information */ 326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 328 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 329 break; 330 case 1: /* System Information */ 331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 336 break; 337 case 2: /* Base Board Information */ 338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 339 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 343 break; 344 case 3: /* Chassis Information */ 345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 350 break; 351 case 10: /* Onboard Devices Information */ 352 dmi_save_devices(dm); 353 break; 354 case 11: /* OEM Strings */ 355 dmi_save_oem_strings_devices(dm); 356 break; 357 case 38: /* IPMI Device Information */ 358 dmi_save_ipmi_device(dm); 359 break; 360 case 41: /* Onboard Devices Extended Information */ 361 dmi_save_extended_devices(dm); 362 } 363 } 364 365 static void __init print_filtered(const char *info) 366 { 367 const char *p; 368 369 if (!info) 370 return; 371 372 for (p = info; *p; p++) 373 if (isprint(*p)) 374 printk(KERN_CONT "%c", *p); 375 else 376 printk(KERN_CONT "\\x%02x", *p & 0xff); 377 } 378 379 static void __init dmi_dump_ids(void) 380 { 381 const char *board; /* Board Name is optional */ 382 383 printk(KERN_DEBUG "DMI: "); 384 print_filtered(dmi_get_system_info(DMI_SYS_VENDOR)); 385 printk(KERN_CONT " "); 386 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME)); 387 board = dmi_get_system_info(DMI_BOARD_NAME); 388 if (board) { 389 printk(KERN_CONT "/"); 390 print_filtered(board); 391 } 392 printk(KERN_CONT ", BIOS "); 393 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION)); 394 printk(KERN_CONT " "); 395 print_filtered(dmi_get_system_info(DMI_BIOS_DATE)); 396 printk(KERN_CONT "\n"); 397 } 398 399 static int __init dmi_present(const char __iomem *p) 400 { 401 u8 buf[15]; 402 403 memcpy_fromio(buf, p, 15); 404 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 405 dmi_num = (buf[13] << 8) | buf[12]; 406 dmi_len = (buf[7] << 8) | buf[6]; 407 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 408 (buf[9] << 8) | buf[8]; 409 410 /* 411 * DMI version 0.0 means that the real version is taken from 412 * the SMBIOS version, which we don't know at this point. 413 */ 414 if (buf[14] != 0) 415 printk(KERN_INFO "DMI %d.%d present.\n", 416 buf[14] >> 4, buf[14] & 0xF); 417 else 418 printk(KERN_INFO "DMI present.\n"); 419 if (dmi_walk_early(dmi_decode) == 0) { 420 dmi_dump_ids(); 421 return 0; 422 } 423 } 424 return 1; 425 } 426 427 void __init dmi_scan_machine(void) 428 { 429 char __iomem *p, *q; 430 int rc; 431 432 if (efi_enabled) { 433 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 434 goto error; 435 436 /* This is called as a core_initcall() because it isn't 437 * needed during early boot. This also means we can 438 * iounmap the space when we're done with it. 439 */ 440 p = dmi_ioremap(efi.smbios, 32); 441 if (p == NULL) 442 goto error; 443 444 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 445 dmi_iounmap(p, 32); 446 if (!rc) { 447 dmi_available = 1; 448 goto out; 449 } 450 } 451 else { 452 /* 453 * no iounmap() for that ioremap(); it would be a no-op, but 454 * it's so early in setup that sucker gets confused into doing 455 * what it shouldn't if we actually call it. 456 */ 457 p = dmi_ioremap(0xF0000, 0x10000); 458 if (p == NULL) 459 goto error; 460 461 for (q = p; q < p + 0x10000; q += 16) { 462 rc = dmi_present(q); 463 if (!rc) { 464 dmi_available = 1; 465 dmi_iounmap(p, 0x10000); 466 goto out; 467 } 468 } 469 dmi_iounmap(p, 0x10000); 470 } 471 error: 472 printk(KERN_INFO "DMI not present or invalid.\n"); 473 out: 474 dmi_initialized = 1; 475 } 476 477 /** 478 * dmi_matches - check if dmi_system_id structure matches system DMI data 479 * @dmi: pointer to the dmi_system_id structure to check 480 */ 481 static bool dmi_matches(const struct dmi_system_id *dmi) 482 { 483 int i; 484 485 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 486 487 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 488 int s = dmi->matches[i].slot; 489 if (s == DMI_NONE) 490 break; 491 if (dmi_ident[s] 492 && strstr(dmi_ident[s], dmi->matches[i].substr)) 493 continue; 494 /* No match */ 495 return false; 496 } 497 return true; 498 } 499 500 /** 501 * dmi_is_end_of_table - check for end-of-table marker 502 * @dmi: pointer to the dmi_system_id structure to check 503 */ 504 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 505 { 506 return dmi->matches[0].slot == DMI_NONE; 507 } 508 509 /** 510 * dmi_check_system - check system DMI data 511 * @list: array of dmi_system_id structures to match against 512 * All non-null elements of the list must match 513 * their slot's (field index's) data (i.e., each 514 * list string must be a substring of the specified 515 * DMI slot's string data) to be considered a 516 * successful match. 517 * 518 * Walk the blacklist table running matching functions until someone 519 * returns non zero or we hit the end. Callback function is called for 520 * each successful match. Returns the number of matches. 521 */ 522 int dmi_check_system(const struct dmi_system_id *list) 523 { 524 int count = 0; 525 const struct dmi_system_id *d; 526 527 for (d = list; !dmi_is_end_of_table(d); d++) 528 if (dmi_matches(d)) { 529 count++; 530 if (d->callback && d->callback(d)) 531 break; 532 } 533 534 return count; 535 } 536 EXPORT_SYMBOL(dmi_check_system); 537 538 /** 539 * dmi_first_match - find dmi_system_id structure matching system DMI data 540 * @list: array of dmi_system_id structures to match against 541 * All non-null elements of the list must match 542 * their slot's (field index's) data (i.e., each 543 * list string must be a substring of the specified 544 * DMI slot's string data) to be considered a 545 * successful match. 546 * 547 * Walk the blacklist table until the first match is found. Return the 548 * pointer to the matching entry or NULL if there's no match. 549 */ 550 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 551 { 552 const struct dmi_system_id *d; 553 554 for (d = list; !dmi_is_end_of_table(d); d++) 555 if (dmi_matches(d)) 556 return d; 557 558 return NULL; 559 } 560 EXPORT_SYMBOL(dmi_first_match); 561 562 /** 563 * dmi_get_system_info - return DMI data value 564 * @field: data index (see enum dmi_field) 565 * 566 * Returns one DMI data value, can be used to perform 567 * complex DMI data checks. 568 */ 569 const char *dmi_get_system_info(int field) 570 { 571 return dmi_ident[field]; 572 } 573 EXPORT_SYMBOL(dmi_get_system_info); 574 575 /** 576 * dmi_name_in_serial - Check if string is in the DMI product serial information 577 * @str: string to check for 578 */ 579 int dmi_name_in_serial(const char *str) 580 { 581 int f = DMI_PRODUCT_SERIAL; 582 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 583 return 1; 584 return 0; 585 } 586 587 /** 588 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 589 * @str: Case sensitive Name 590 */ 591 int dmi_name_in_vendors(const char *str) 592 { 593 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 594 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 595 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 596 int i; 597 for (i = 0; fields[i] != DMI_NONE; i++) { 598 int f = fields[i]; 599 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 600 return 1; 601 } 602 return 0; 603 } 604 EXPORT_SYMBOL(dmi_name_in_vendors); 605 606 /** 607 * dmi_find_device - find onboard device by type/name 608 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 609 * @name: device name string or %NULL to match all 610 * @from: previous device found in search, or %NULL for new search. 611 * 612 * Iterates through the list of known onboard devices. If a device is 613 * found with a matching @vendor and @device, a pointer to its device 614 * structure is returned. Otherwise, %NULL is returned. 615 * A new search is initiated by passing %NULL as the @from argument. 616 * If @from is not %NULL, searches continue from next device. 617 */ 618 const struct dmi_device * dmi_find_device(int type, const char *name, 619 const struct dmi_device *from) 620 { 621 const struct list_head *head = from ? &from->list : &dmi_devices; 622 struct list_head *d; 623 624 for(d = head->next; d != &dmi_devices; d = d->next) { 625 const struct dmi_device *dev = 626 list_entry(d, struct dmi_device, list); 627 628 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 629 ((name == NULL) || (strcmp(dev->name, name) == 0))) 630 return dev; 631 } 632 633 return NULL; 634 } 635 EXPORT_SYMBOL(dmi_find_device); 636 637 /** 638 * dmi_get_date - parse a DMI date 639 * @field: data index (see enum dmi_field) 640 * @yearp: optional out parameter for the year 641 * @monthp: optional out parameter for the month 642 * @dayp: optional out parameter for the day 643 * 644 * The date field is assumed to be in the form resembling 645 * [mm[/dd]]/yy[yy] and the result is stored in the out 646 * parameters any or all of which can be omitted. 647 * 648 * If the field doesn't exist, all out parameters are set to zero 649 * and false is returned. Otherwise, true is returned with any 650 * invalid part of date set to zero. 651 * 652 * On return, year, month and day are guaranteed to be in the 653 * range of [0,9999], [0,12] and [0,31] respectively. 654 */ 655 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 656 { 657 int year = 0, month = 0, day = 0; 658 bool exists; 659 const char *s, *y; 660 char *e; 661 662 s = dmi_get_system_info(field); 663 exists = s; 664 if (!exists) 665 goto out; 666 667 /* 668 * Determine year first. We assume the date string resembles 669 * mm/dd/yy[yy] but the original code extracted only the year 670 * from the end. Keep the behavior in the spirit of no 671 * surprises. 672 */ 673 y = strrchr(s, '/'); 674 if (!y) 675 goto out; 676 677 y++; 678 year = simple_strtoul(y, &e, 10); 679 if (y != e && year < 100) { /* 2-digit year */ 680 year += 1900; 681 if (year < 1996) /* no dates < spec 1.0 */ 682 year += 100; 683 } 684 if (year > 9999) /* year should fit in %04d */ 685 year = 0; 686 687 /* parse the mm and dd */ 688 month = simple_strtoul(s, &e, 10); 689 if (s == e || *e != '/' || !month || month > 12) { 690 month = 0; 691 goto out; 692 } 693 694 s = e + 1; 695 day = simple_strtoul(s, &e, 10); 696 if (s == y || s == e || *e != '/' || day > 31) 697 day = 0; 698 out: 699 if (yearp) 700 *yearp = year; 701 if (monthp) 702 *monthp = month; 703 if (dayp) 704 *dayp = day; 705 return exists; 706 } 707 EXPORT_SYMBOL(dmi_get_date); 708 709 /** 710 * dmi_walk - Walk the DMI table and get called back for every record 711 * @decode: Callback function 712 * @private_data: Private data to be passed to the callback function 713 * 714 * Returns -1 when the DMI table can't be reached, 0 on success. 715 */ 716 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 717 void *private_data) 718 { 719 u8 *buf; 720 721 if (!dmi_available) 722 return -1; 723 724 buf = ioremap(dmi_base, dmi_len); 725 if (buf == NULL) 726 return -1; 727 728 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 729 730 iounmap(buf); 731 return 0; 732 } 733 EXPORT_SYMBOL_GPL(dmi_walk); 734 735 /** 736 * dmi_match - compare a string to the dmi field (if exists) 737 * @f: DMI field identifier 738 * @str: string to compare the DMI field to 739 * 740 * Returns true if the requested field equals to the str (including NULL). 741 */ 742 bool dmi_match(enum dmi_field f, const char *str) 743 { 744 const char *info = dmi_get_system_info(f); 745 746 if (info == NULL || str == NULL) 747 return info == str; 748 749 return !strcmp(info, str); 750 } 751 EXPORT_SYMBOL_GPL(dmi_match); 752