xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision ddc141e5)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /* DMI system identification string used during boot */
30 static char dmi_ids_string[128] __initdata;
31 
32 static struct dmi_memdev_info {
33 	const char *device;
34 	const char *bank;
35 	u16 handle;
36 } *dmi_memdev;
37 static int dmi_memdev_nr;
38 
39 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
40 {
41 	const u8 *bp = ((u8 *) dm) + dm->length;
42 	const u8 *nsp;
43 
44 	if (s) {
45 		while (--s > 0 && *bp)
46 			bp += strlen(bp) + 1;
47 
48 		/* Strings containing only spaces are considered empty */
49 		nsp = bp;
50 		while (*nsp == ' ')
51 			nsp++;
52 		if (*nsp != '\0')
53 			return bp;
54 	}
55 
56 	return dmi_empty_string;
57 }
58 
59 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
60 {
61 	const char *bp = dmi_string_nosave(dm, s);
62 	char *str;
63 	size_t len;
64 
65 	if (bp == dmi_empty_string)
66 		return dmi_empty_string;
67 
68 	len = strlen(bp) + 1;
69 	str = dmi_alloc(len);
70 	if (str != NULL)
71 		strcpy(str, bp);
72 
73 	return str;
74 }
75 
76 /*
77  *	We have to be cautious here. We have seen BIOSes with DMI pointers
78  *	pointing to completely the wrong place for example
79  */
80 static void dmi_decode_table(u8 *buf,
81 			     void (*decode)(const struct dmi_header *, void *),
82 			     void *private_data)
83 {
84 	u8 *data = buf;
85 	int i = 0;
86 
87 	/*
88 	 * Stop when we have seen all the items the table claimed to have
89 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
90 	 * >= 3.0 only) OR we run off the end of the table (should never
91 	 * happen but sometimes does on bogus implementations.)
92 	 */
93 	while ((!dmi_num || i < dmi_num) &&
94 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
95 		const struct dmi_header *dm = (const struct dmi_header *)data;
96 
97 		/*
98 		 *  We want to know the total length (formatted area and
99 		 *  strings) before decoding to make sure we won't run off the
100 		 *  table in dmi_decode or dmi_string
101 		 */
102 		data += dm->length;
103 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
104 			data++;
105 		if (data - buf < dmi_len - 1)
106 			decode(dm, private_data);
107 
108 		data += 2;
109 		i++;
110 
111 		/*
112 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 		 * For tables behind a 64-bit entry point, we have no item
114 		 * count and no exact table length, so stop on end-of-table
115 		 * marker. For tables behind a 32-bit entry point, we have
116 		 * seen OEM structures behind the end-of-table marker on
117 		 * some systems, so don't trust it.
118 		 */
119 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
120 			break;
121 	}
122 
123 	/* Trim DMI table length if needed */
124 	if (dmi_len > data - buf)
125 		dmi_len = data - buf;
126 }
127 
128 static phys_addr_t dmi_base;
129 
130 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
131 		void *))
132 {
133 	u8 *buf;
134 	u32 orig_dmi_len = dmi_len;
135 
136 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
137 	if (buf == NULL)
138 		return -ENOMEM;
139 
140 	dmi_decode_table(buf, decode, NULL);
141 
142 	add_device_randomness(buf, dmi_len);
143 
144 	dmi_early_unmap(buf, orig_dmi_len);
145 	return 0;
146 }
147 
148 static int __init dmi_checksum(const u8 *buf, u8 len)
149 {
150 	u8 sum = 0;
151 	int a;
152 
153 	for (a = 0; a < len; a++)
154 		sum += buf[a];
155 
156 	return sum == 0;
157 }
158 
159 static const char *dmi_ident[DMI_STRING_MAX];
160 static LIST_HEAD(dmi_devices);
161 int dmi_available;
162 
163 /*
164  *	Save a DMI string
165  */
166 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
167 		int string)
168 {
169 	const char *d = (const char *) dm;
170 	const char *p;
171 
172 	if (dmi_ident[slot] || dm->length <= string)
173 		return;
174 
175 	p = dmi_string(dm, d[string]);
176 	if (p == NULL)
177 		return;
178 
179 	dmi_ident[slot] = p;
180 }
181 
182 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
183 		int index)
184 {
185 	const u8 *d;
186 	char *s;
187 	int is_ff = 1, is_00 = 1, i;
188 
189 	if (dmi_ident[slot] || dm->length <= index + 16)
190 		return;
191 
192 	d = (u8 *) dm + index;
193 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
194 		if (d[i] != 0x00)
195 			is_00 = 0;
196 		if (d[i] != 0xFF)
197 			is_ff = 0;
198 	}
199 
200 	if (is_ff || is_00)
201 		return;
202 
203 	s = dmi_alloc(16*2+4+1);
204 	if (!s)
205 		return;
206 
207 	/*
208 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
209 	 * the UUID are supposed to be little-endian encoded.  The specification
210 	 * says that this is the defacto standard.
211 	 */
212 	if (dmi_ver >= 0x020600)
213 		sprintf(s, "%pUL", d);
214 	else
215 		sprintf(s, "%pUB", d);
216 
217 	dmi_ident[slot] = s;
218 }
219 
220 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
221 		int index)
222 {
223 	const u8 *d;
224 	char *s;
225 
226 	if (dmi_ident[slot] || dm->length <= index)
227 		return;
228 
229 	s = dmi_alloc(4);
230 	if (!s)
231 		return;
232 
233 	d = (u8 *) dm + index;
234 	sprintf(s, "%u", *d & 0x7F);
235 	dmi_ident[slot] = s;
236 }
237 
238 static void __init dmi_save_one_device(int type, const char *name)
239 {
240 	struct dmi_device *dev;
241 
242 	/* No duplicate device */
243 	if (dmi_find_device(type, name, NULL))
244 		return;
245 
246 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
247 	if (!dev)
248 		return;
249 
250 	dev->type = type;
251 	strcpy((char *)(dev + 1), name);
252 	dev->name = (char *)(dev + 1);
253 	dev->device_data = NULL;
254 	list_add(&dev->list, &dmi_devices);
255 }
256 
257 static void __init dmi_save_devices(const struct dmi_header *dm)
258 {
259 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
260 
261 	for (i = 0; i < count; i++) {
262 		const char *d = (char *)(dm + 1) + (i * 2);
263 
264 		/* Skip disabled device */
265 		if ((*d & 0x80) == 0)
266 			continue;
267 
268 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
269 	}
270 }
271 
272 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
273 {
274 	int i, count;
275 	struct dmi_device *dev;
276 
277 	if (dm->length < 0x05)
278 		return;
279 
280 	count = *(u8 *)(dm + 1);
281 	for (i = 1; i <= count; i++) {
282 		const char *devname = dmi_string(dm, i);
283 
284 		if (devname == dmi_empty_string)
285 			continue;
286 
287 		dev = dmi_alloc(sizeof(*dev));
288 		if (!dev)
289 			break;
290 
291 		dev->type = DMI_DEV_TYPE_OEM_STRING;
292 		dev->name = devname;
293 		dev->device_data = NULL;
294 
295 		list_add(&dev->list, &dmi_devices);
296 	}
297 }
298 
299 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
300 {
301 	struct dmi_device *dev;
302 	void *data;
303 
304 	data = dmi_alloc(dm->length);
305 	if (data == NULL)
306 		return;
307 
308 	memcpy(data, dm, dm->length);
309 
310 	dev = dmi_alloc(sizeof(*dev));
311 	if (!dev)
312 		return;
313 
314 	dev->type = DMI_DEV_TYPE_IPMI;
315 	dev->name = "IPMI controller";
316 	dev->device_data = data;
317 
318 	list_add_tail(&dev->list, &dmi_devices);
319 }
320 
321 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
322 					int devfn, const char *name, int type)
323 {
324 	struct dmi_dev_onboard *dev;
325 
326 	/* Ignore invalid values */
327 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
328 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
329 		return;
330 
331 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
332 	if (!dev)
333 		return;
334 
335 	dev->instance = instance;
336 	dev->segment = segment;
337 	dev->bus = bus;
338 	dev->devfn = devfn;
339 
340 	strcpy((char *)&dev[1], name);
341 	dev->dev.type = type;
342 	dev->dev.name = (char *)&dev[1];
343 	dev->dev.device_data = dev;
344 
345 	list_add(&dev->dev.list, &dmi_devices);
346 }
347 
348 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
349 {
350 	const char *name;
351 	const u8 *d = (u8 *)dm;
352 
353 	if (dm->length < 0x0B)
354 		return;
355 
356 	/* Skip disabled device */
357 	if ((d[0x5] & 0x80) == 0)
358 		return;
359 
360 	name = dmi_string_nosave(dm, d[0x4]);
361 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
362 			     DMI_DEV_TYPE_DEV_ONBOARD);
363 	dmi_save_one_device(d[0x5] & 0x7f, name);
364 }
365 
366 static void __init dmi_save_system_slot(const struct dmi_header *dm)
367 {
368 	const u8 *d = (u8 *)dm;
369 
370 	/* Need SMBIOS 2.6+ structure */
371 	if (dm->length < 0x11)
372 		return;
373 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
374 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
375 			     DMI_DEV_TYPE_DEV_SLOT);
376 }
377 
378 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
379 {
380 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
381 		return;
382 	dmi_memdev_nr++;
383 }
384 
385 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
386 {
387 	const char *d = (const char *)dm;
388 	static int nr;
389 
390 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
391 		return;
392 	if (nr >= dmi_memdev_nr) {
393 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
394 		return;
395 	}
396 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
397 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
398 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
399 	nr++;
400 }
401 
402 void __init dmi_memdev_walk(void)
403 {
404 	if (!dmi_available)
405 		return;
406 
407 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
408 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
409 		if (dmi_memdev)
410 			dmi_walk_early(save_mem_devices);
411 	}
412 }
413 
414 /*
415  *	Process a DMI table entry. Right now all we care about are the BIOS
416  *	and machine entries. For 2.5 we should pull the smbus controller info
417  *	out of here.
418  */
419 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
420 {
421 	switch (dm->type) {
422 	case 0:		/* BIOS Information */
423 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
424 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
425 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
426 		break;
427 	case 1:		/* System Information */
428 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
429 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
430 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
431 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
432 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
433 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
434 		break;
435 	case 2:		/* Base Board Information */
436 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
437 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
438 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
439 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
440 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
441 		break;
442 	case 3:		/* Chassis Information */
443 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
444 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
445 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
446 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
447 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
448 		break;
449 	case 9:		/* System Slots */
450 		dmi_save_system_slot(dm);
451 		break;
452 	case 10:	/* Onboard Devices Information */
453 		dmi_save_devices(dm);
454 		break;
455 	case 11:	/* OEM Strings */
456 		dmi_save_oem_strings_devices(dm);
457 		break;
458 	case 38:	/* IPMI Device Information */
459 		dmi_save_ipmi_device(dm);
460 		break;
461 	case 41:	/* Onboard Devices Extended Information */
462 		dmi_save_extended_devices(dm);
463 	}
464 }
465 
466 static int __init print_filtered(char *buf, size_t len, const char *info)
467 {
468 	int c = 0;
469 	const char *p;
470 
471 	if (!info)
472 		return c;
473 
474 	for (p = info; *p; p++)
475 		if (isprint(*p))
476 			c += scnprintf(buf + c, len - c, "%c", *p);
477 		else
478 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
479 	return c;
480 }
481 
482 static void __init dmi_format_ids(char *buf, size_t len)
483 {
484 	int c = 0;
485 	const char *board;	/* Board Name is optional */
486 
487 	c += print_filtered(buf + c, len - c,
488 			    dmi_get_system_info(DMI_SYS_VENDOR));
489 	c += scnprintf(buf + c, len - c, " ");
490 	c += print_filtered(buf + c, len - c,
491 			    dmi_get_system_info(DMI_PRODUCT_NAME));
492 
493 	board = dmi_get_system_info(DMI_BOARD_NAME);
494 	if (board) {
495 		c += scnprintf(buf + c, len - c, "/");
496 		c += print_filtered(buf + c, len - c, board);
497 	}
498 	c += scnprintf(buf + c, len - c, ", BIOS ");
499 	c += print_filtered(buf + c, len - c,
500 			    dmi_get_system_info(DMI_BIOS_VERSION));
501 	c += scnprintf(buf + c, len - c, " ");
502 	c += print_filtered(buf + c, len - c,
503 			    dmi_get_system_info(DMI_BIOS_DATE));
504 }
505 
506 /*
507  * Check for DMI/SMBIOS headers in the system firmware image.  Any
508  * SMBIOS header must start 16 bytes before the DMI header, so take a
509  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
510  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
511  * takes precedence) and return 0.  Otherwise return 1.
512  */
513 static int __init dmi_present(const u8 *buf)
514 {
515 	u32 smbios_ver;
516 
517 	if (memcmp(buf, "_SM_", 4) == 0 &&
518 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
519 		smbios_ver = get_unaligned_be16(buf + 6);
520 		smbios_entry_point_size = buf[5];
521 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
522 
523 		/* Some BIOS report weird SMBIOS version, fix that up */
524 		switch (smbios_ver) {
525 		case 0x021F:
526 		case 0x0221:
527 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
528 				 smbios_ver & 0xFF, 3);
529 			smbios_ver = 0x0203;
530 			break;
531 		case 0x0233:
532 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
533 			smbios_ver = 0x0206;
534 			break;
535 		}
536 	} else {
537 		smbios_ver = 0;
538 	}
539 
540 	buf += 16;
541 
542 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
543 		if (smbios_ver)
544 			dmi_ver = smbios_ver;
545 		else
546 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
547 		dmi_ver <<= 8;
548 		dmi_num = get_unaligned_le16(buf + 12);
549 		dmi_len = get_unaligned_le16(buf + 6);
550 		dmi_base = get_unaligned_le32(buf + 8);
551 
552 		if (dmi_walk_early(dmi_decode) == 0) {
553 			if (smbios_ver) {
554 				pr_info("SMBIOS %d.%d present.\n",
555 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
556 			} else {
557 				smbios_entry_point_size = 15;
558 				memcpy(smbios_entry_point, buf,
559 				       smbios_entry_point_size);
560 				pr_info("Legacy DMI %d.%d present.\n",
561 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
562 			}
563 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
564 			pr_info("DMI: %s\n", dmi_ids_string);
565 			return 0;
566 		}
567 	}
568 
569 	return 1;
570 }
571 
572 /*
573  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
574  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
575  */
576 static int __init dmi_smbios3_present(const u8 *buf)
577 {
578 	if (memcmp(buf, "_SM3_", 5) == 0 &&
579 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
580 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
581 		dmi_num = 0;			/* No longer specified */
582 		dmi_len = get_unaligned_le32(buf + 12);
583 		dmi_base = get_unaligned_le64(buf + 16);
584 		smbios_entry_point_size = buf[6];
585 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
586 
587 		if (dmi_walk_early(dmi_decode) == 0) {
588 			pr_info("SMBIOS %d.%d.%d present.\n",
589 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
590 				dmi_ver & 0xFF);
591 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
592 			pr_info("DMI: %s\n", dmi_ids_string);
593 			return 0;
594 		}
595 	}
596 	return 1;
597 }
598 
599 void __init dmi_scan_machine(void)
600 {
601 	char __iomem *p, *q;
602 	char buf[32];
603 
604 	if (efi_enabled(EFI_CONFIG_TABLES)) {
605 		/*
606 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
607 		 * allowed to define both the 64-bit entry point (smbios3) and
608 		 * the 32-bit entry point (smbios), in which case they should
609 		 * either both point to the same SMBIOS structure table, or the
610 		 * table pointed to by the 64-bit entry point should contain a
611 		 * superset of the table contents pointed to by the 32-bit entry
612 		 * point (section 5.2)
613 		 * This implies that the 64-bit entry point should have
614 		 * precedence if it is defined and supported by the OS. If we
615 		 * have the 64-bit entry point, but fail to decode it, fall
616 		 * back to the legacy one (if available)
617 		 */
618 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
619 			p = dmi_early_remap(efi.smbios3, 32);
620 			if (p == NULL)
621 				goto error;
622 			memcpy_fromio(buf, p, 32);
623 			dmi_early_unmap(p, 32);
624 
625 			if (!dmi_smbios3_present(buf)) {
626 				dmi_available = 1;
627 				return;
628 			}
629 		}
630 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
631 			goto error;
632 
633 		/* This is called as a core_initcall() because it isn't
634 		 * needed during early boot.  This also means we can
635 		 * iounmap the space when we're done with it.
636 		 */
637 		p = dmi_early_remap(efi.smbios, 32);
638 		if (p == NULL)
639 			goto error;
640 		memcpy_fromio(buf, p, 32);
641 		dmi_early_unmap(p, 32);
642 
643 		if (!dmi_present(buf)) {
644 			dmi_available = 1;
645 			return;
646 		}
647 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
648 		p = dmi_early_remap(0xF0000, 0x10000);
649 		if (p == NULL)
650 			goto error;
651 
652 		/*
653 		 * Same logic as above, look for a 64-bit entry point
654 		 * first, and if not found, fall back to 32-bit entry point.
655 		 */
656 		memcpy_fromio(buf, p, 16);
657 		for (q = p + 16; q < p + 0x10000; q += 16) {
658 			memcpy_fromio(buf + 16, q, 16);
659 			if (!dmi_smbios3_present(buf)) {
660 				dmi_available = 1;
661 				dmi_early_unmap(p, 0x10000);
662 				return;
663 			}
664 			memcpy(buf, buf + 16, 16);
665 		}
666 
667 		/*
668 		 * Iterate over all possible DMI header addresses q.
669 		 * Maintain the 32 bytes around q in buf.  On the
670 		 * first iteration, substitute zero for the
671 		 * out-of-range bytes so there is no chance of falsely
672 		 * detecting an SMBIOS header.
673 		 */
674 		memset(buf, 0, 16);
675 		for (q = p; q < p + 0x10000; q += 16) {
676 			memcpy_fromio(buf + 16, q, 16);
677 			if (!dmi_present(buf)) {
678 				dmi_available = 1;
679 				dmi_early_unmap(p, 0x10000);
680 				return;
681 			}
682 			memcpy(buf, buf + 16, 16);
683 		}
684 		dmi_early_unmap(p, 0x10000);
685 	}
686  error:
687 	pr_info("DMI not present or invalid.\n");
688 }
689 
690 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
691 			      struct bin_attribute *attr, char *buf,
692 			      loff_t pos, size_t count)
693 {
694 	memcpy(buf, attr->private + pos, count);
695 	return count;
696 }
697 
698 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
699 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
700 
701 static int __init dmi_init(void)
702 {
703 	struct kobject *tables_kobj;
704 	u8 *dmi_table;
705 	int ret = -ENOMEM;
706 
707 	if (!dmi_available)
708 		return 0;
709 
710 	/*
711 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
712 	 * even after farther error, as it can be used by other modules like
713 	 * dmi-sysfs.
714 	 */
715 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
716 	if (!dmi_kobj)
717 		goto err;
718 
719 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
720 	if (!tables_kobj)
721 		goto err;
722 
723 	dmi_table = dmi_remap(dmi_base, dmi_len);
724 	if (!dmi_table)
725 		goto err_tables;
726 
727 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
728 	bin_attr_smbios_entry_point.private = smbios_entry_point;
729 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
730 	if (ret)
731 		goto err_unmap;
732 
733 	bin_attr_DMI.size = dmi_len;
734 	bin_attr_DMI.private = dmi_table;
735 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
736 	if (!ret)
737 		return 0;
738 
739 	sysfs_remove_bin_file(tables_kobj,
740 			      &bin_attr_smbios_entry_point);
741  err_unmap:
742 	dmi_unmap(dmi_table);
743  err_tables:
744 	kobject_del(tables_kobj);
745 	kobject_put(tables_kobj);
746  err:
747 	pr_err("dmi: Firmware registration failed.\n");
748 
749 	return ret;
750 }
751 subsys_initcall(dmi_init);
752 
753 /**
754  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
755  *
756  * Invoke dump_stack_set_arch_desc() with DMI system information so that
757  * DMI identifiers are printed out on task dumps.  Arch boot code should
758  * call this function after dmi_scan_machine() if it wants to print out DMI
759  * identifiers on task dumps.
760  */
761 void __init dmi_set_dump_stack_arch_desc(void)
762 {
763 	dump_stack_set_arch_desc("%s", dmi_ids_string);
764 }
765 
766 /**
767  *	dmi_matches - check if dmi_system_id structure matches system DMI data
768  *	@dmi: pointer to the dmi_system_id structure to check
769  */
770 static bool dmi_matches(const struct dmi_system_id *dmi)
771 {
772 	int i;
773 
774 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
775 		int s = dmi->matches[i].slot;
776 		if (s == DMI_NONE)
777 			break;
778 		if (dmi_ident[s]) {
779 			if (dmi->matches[i].exact_match) {
780 				if (!strcmp(dmi_ident[s],
781 					    dmi->matches[i].substr))
782 					continue;
783 			} else {
784 				if (strstr(dmi_ident[s],
785 					   dmi->matches[i].substr))
786 					continue;
787 			}
788 		}
789 
790 		/* No match */
791 		return false;
792 	}
793 	return true;
794 }
795 
796 /**
797  *	dmi_is_end_of_table - check for end-of-table marker
798  *	@dmi: pointer to the dmi_system_id structure to check
799  */
800 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
801 {
802 	return dmi->matches[0].slot == DMI_NONE;
803 }
804 
805 /**
806  *	dmi_check_system - check system DMI data
807  *	@list: array of dmi_system_id structures to match against
808  *		All non-null elements of the list must match
809  *		their slot's (field index's) data (i.e., each
810  *		list string must be a substring of the specified
811  *		DMI slot's string data) to be considered a
812  *		successful match.
813  *
814  *	Walk the blacklist table running matching functions until someone
815  *	returns non zero or we hit the end. Callback function is called for
816  *	each successful match. Returns the number of matches.
817  *
818  *	dmi_scan_machine must be called before this function is called.
819  */
820 int dmi_check_system(const struct dmi_system_id *list)
821 {
822 	int count = 0;
823 	const struct dmi_system_id *d;
824 
825 	for (d = list; !dmi_is_end_of_table(d); d++)
826 		if (dmi_matches(d)) {
827 			count++;
828 			if (d->callback && d->callback(d))
829 				break;
830 		}
831 
832 	return count;
833 }
834 EXPORT_SYMBOL(dmi_check_system);
835 
836 /**
837  *	dmi_first_match - find dmi_system_id structure matching system DMI data
838  *	@list: array of dmi_system_id structures to match against
839  *		All non-null elements of the list must match
840  *		their slot's (field index's) data (i.e., each
841  *		list string must be a substring of the specified
842  *		DMI slot's string data) to be considered a
843  *		successful match.
844  *
845  *	Walk the blacklist table until the first match is found.  Return the
846  *	pointer to the matching entry or NULL if there's no match.
847  *
848  *	dmi_scan_machine must be called before this function is called.
849  */
850 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
851 {
852 	const struct dmi_system_id *d;
853 
854 	for (d = list; !dmi_is_end_of_table(d); d++)
855 		if (dmi_matches(d))
856 			return d;
857 
858 	return NULL;
859 }
860 EXPORT_SYMBOL(dmi_first_match);
861 
862 /**
863  *	dmi_get_system_info - return DMI data value
864  *	@field: data index (see enum dmi_field)
865  *
866  *	Returns one DMI data value, can be used to perform
867  *	complex DMI data checks.
868  */
869 const char *dmi_get_system_info(int field)
870 {
871 	return dmi_ident[field];
872 }
873 EXPORT_SYMBOL(dmi_get_system_info);
874 
875 /**
876  * dmi_name_in_serial - Check if string is in the DMI product serial information
877  * @str: string to check for
878  */
879 int dmi_name_in_serial(const char *str)
880 {
881 	int f = DMI_PRODUCT_SERIAL;
882 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
883 		return 1;
884 	return 0;
885 }
886 
887 /**
888  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
889  *	@str: Case sensitive Name
890  */
891 int dmi_name_in_vendors(const char *str)
892 {
893 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
894 	int i;
895 	for (i = 0; fields[i] != DMI_NONE; i++) {
896 		int f = fields[i];
897 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
898 			return 1;
899 	}
900 	return 0;
901 }
902 EXPORT_SYMBOL(dmi_name_in_vendors);
903 
904 /**
905  *	dmi_find_device - find onboard device by type/name
906  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
907  *	@name: device name string or %NULL to match all
908  *	@from: previous device found in search, or %NULL for new search.
909  *
910  *	Iterates through the list of known onboard devices. If a device is
911  *	found with a matching @type and @name, a pointer to its device
912  *	structure is returned.  Otherwise, %NULL is returned.
913  *	A new search is initiated by passing %NULL as the @from argument.
914  *	If @from is not %NULL, searches continue from next device.
915  */
916 const struct dmi_device *dmi_find_device(int type, const char *name,
917 				    const struct dmi_device *from)
918 {
919 	const struct list_head *head = from ? &from->list : &dmi_devices;
920 	struct list_head *d;
921 
922 	for (d = head->next; d != &dmi_devices; d = d->next) {
923 		const struct dmi_device *dev =
924 			list_entry(d, struct dmi_device, list);
925 
926 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
927 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
928 			return dev;
929 	}
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(dmi_find_device);
934 
935 /**
936  *	dmi_get_date - parse a DMI date
937  *	@field:	data index (see enum dmi_field)
938  *	@yearp: optional out parameter for the year
939  *	@monthp: optional out parameter for the month
940  *	@dayp: optional out parameter for the day
941  *
942  *	The date field is assumed to be in the form resembling
943  *	[mm[/dd]]/yy[yy] and the result is stored in the out
944  *	parameters any or all of which can be omitted.
945  *
946  *	If the field doesn't exist, all out parameters are set to zero
947  *	and false is returned.  Otherwise, true is returned with any
948  *	invalid part of date set to zero.
949  *
950  *	On return, year, month and day are guaranteed to be in the
951  *	range of [0,9999], [0,12] and [0,31] respectively.
952  */
953 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
954 {
955 	int year = 0, month = 0, day = 0;
956 	bool exists;
957 	const char *s, *y;
958 	char *e;
959 
960 	s = dmi_get_system_info(field);
961 	exists = s;
962 	if (!exists)
963 		goto out;
964 
965 	/*
966 	 * Determine year first.  We assume the date string resembles
967 	 * mm/dd/yy[yy] but the original code extracted only the year
968 	 * from the end.  Keep the behavior in the spirit of no
969 	 * surprises.
970 	 */
971 	y = strrchr(s, '/');
972 	if (!y)
973 		goto out;
974 
975 	y++;
976 	year = simple_strtoul(y, &e, 10);
977 	if (y != e && year < 100) {	/* 2-digit year */
978 		year += 1900;
979 		if (year < 1996)	/* no dates < spec 1.0 */
980 			year += 100;
981 	}
982 	if (year > 9999)		/* year should fit in %04d */
983 		year = 0;
984 
985 	/* parse the mm and dd */
986 	month = simple_strtoul(s, &e, 10);
987 	if (s == e || *e != '/' || !month || month > 12) {
988 		month = 0;
989 		goto out;
990 	}
991 
992 	s = e + 1;
993 	day = simple_strtoul(s, &e, 10);
994 	if (s == y || s == e || *e != '/' || day > 31)
995 		day = 0;
996 out:
997 	if (yearp)
998 		*yearp = year;
999 	if (monthp)
1000 		*monthp = month;
1001 	if (dayp)
1002 		*dayp = day;
1003 	return exists;
1004 }
1005 EXPORT_SYMBOL(dmi_get_date);
1006 
1007 /**
1008  *	dmi_walk - Walk the DMI table and get called back for every record
1009  *	@decode: Callback function
1010  *	@private_data: Private data to be passed to the callback function
1011  *
1012  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1013  *	or a different negative error code if DMI walking fails.
1014  */
1015 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1016 	     void *private_data)
1017 {
1018 	u8 *buf;
1019 
1020 	if (!dmi_available)
1021 		return -ENXIO;
1022 
1023 	buf = dmi_remap(dmi_base, dmi_len);
1024 	if (buf == NULL)
1025 		return -ENOMEM;
1026 
1027 	dmi_decode_table(buf, decode, private_data);
1028 
1029 	dmi_unmap(buf);
1030 	return 0;
1031 }
1032 EXPORT_SYMBOL_GPL(dmi_walk);
1033 
1034 /**
1035  * dmi_match - compare a string to the dmi field (if exists)
1036  * @f: DMI field identifier
1037  * @str: string to compare the DMI field to
1038  *
1039  * Returns true if the requested field equals to the str (including NULL).
1040  */
1041 bool dmi_match(enum dmi_field f, const char *str)
1042 {
1043 	const char *info = dmi_get_system_info(f);
1044 
1045 	if (info == NULL || str == NULL)
1046 		return info == str;
1047 
1048 	return !strcmp(info, str);
1049 }
1050 EXPORT_SYMBOL_GPL(dmi_match);
1051 
1052 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1053 {
1054 	int n;
1055 
1056 	if (dmi_memdev == NULL)
1057 		return;
1058 
1059 	for (n = 0; n < dmi_memdev_nr; n++) {
1060 		if (handle == dmi_memdev[n].handle) {
1061 			*bank = dmi_memdev[n].bank;
1062 			*device = dmi_memdev[n].device;
1063 			break;
1064 		}
1065 	}
1066 }
1067 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1068