1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 struct kobject *dmi_kobj; 15 EXPORT_SYMBOL_GPL(dmi_kobj); 16 17 /* 18 * DMI stands for "Desktop Management Interface". It is part 19 * of and an antecedent to, SMBIOS, which stands for System 20 * Management BIOS. See further: http://www.dmtf.org/standards 21 */ 22 static const char dmi_empty_string[] = ""; 23 24 static u32 dmi_ver __initdata; 25 static u32 dmi_len; 26 static u16 dmi_num; 27 static u8 smbios_entry_point[32]; 28 static int smbios_entry_point_size; 29 30 /* DMI system identification string used during boot */ 31 static char dmi_ids_string[128] __initdata; 32 33 static struct dmi_memdev_info { 34 const char *device; 35 const char *bank; 36 u64 size; /* bytes */ 37 u16 handle; 38 u8 type; /* DDR2, DDR3, DDR4 etc */ 39 } *dmi_memdev; 40 static int dmi_memdev_nr; 41 42 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 43 { 44 const u8 *bp = ((u8 *) dm) + dm->length; 45 const u8 *nsp; 46 47 if (s) { 48 while (--s > 0 && *bp) 49 bp += strlen(bp) + 1; 50 51 /* Strings containing only spaces are considered empty */ 52 nsp = bp; 53 while (*nsp == ' ') 54 nsp++; 55 if (*nsp != '\0') 56 return bp; 57 } 58 59 return dmi_empty_string; 60 } 61 62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 63 { 64 const char *bp = dmi_string_nosave(dm, s); 65 char *str; 66 size_t len; 67 68 if (bp == dmi_empty_string) 69 return dmi_empty_string; 70 71 len = strlen(bp) + 1; 72 str = dmi_alloc(len); 73 if (str != NULL) 74 strcpy(str, bp); 75 76 return str; 77 } 78 79 /* 80 * We have to be cautious here. We have seen BIOSes with DMI pointers 81 * pointing to completely the wrong place for example 82 */ 83 static void dmi_decode_table(u8 *buf, 84 void (*decode)(const struct dmi_header *, void *), 85 void *private_data) 86 { 87 u8 *data = buf; 88 int i = 0; 89 90 /* 91 * Stop when we have seen all the items the table claimed to have 92 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 93 * >= 3.0 only) OR we run off the end of the table (should never 94 * happen but sometimes does on bogus implementations.) 95 */ 96 while ((!dmi_num || i < dmi_num) && 97 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 98 const struct dmi_header *dm = (const struct dmi_header *)data; 99 100 /* 101 * We want to know the total length (formatted area and 102 * strings) before decoding to make sure we won't run off the 103 * table in dmi_decode or dmi_string 104 */ 105 data += dm->length; 106 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 107 data++; 108 if (data - buf < dmi_len - 1) 109 decode(dm, private_data); 110 111 data += 2; 112 i++; 113 114 /* 115 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 116 * For tables behind a 64-bit entry point, we have no item 117 * count and no exact table length, so stop on end-of-table 118 * marker. For tables behind a 32-bit entry point, we have 119 * seen OEM structures behind the end-of-table marker on 120 * some systems, so don't trust it. 121 */ 122 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 123 break; 124 } 125 126 /* Trim DMI table length if needed */ 127 if (dmi_len > data - buf) 128 dmi_len = data - buf; 129 } 130 131 static phys_addr_t dmi_base; 132 133 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 134 void *)) 135 { 136 u8 *buf; 137 u32 orig_dmi_len = dmi_len; 138 139 buf = dmi_early_remap(dmi_base, orig_dmi_len); 140 if (buf == NULL) 141 return -ENOMEM; 142 143 dmi_decode_table(buf, decode, NULL); 144 145 add_device_randomness(buf, dmi_len); 146 147 dmi_early_unmap(buf, orig_dmi_len); 148 return 0; 149 } 150 151 static int __init dmi_checksum(const u8 *buf, u8 len) 152 { 153 u8 sum = 0; 154 int a; 155 156 for (a = 0; a < len; a++) 157 sum += buf[a]; 158 159 return sum == 0; 160 } 161 162 static const char *dmi_ident[DMI_STRING_MAX]; 163 static LIST_HEAD(dmi_devices); 164 int dmi_available; 165 166 /* 167 * Save a DMI string 168 */ 169 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 170 int string) 171 { 172 const char *d = (const char *) dm; 173 const char *p; 174 175 if (dmi_ident[slot] || dm->length <= string) 176 return; 177 178 p = dmi_string(dm, d[string]); 179 if (p == NULL) 180 return; 181 182 dmi_ident[slot] = p; 183 } 184 185 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 186 int index) 187 { 188 const u8 *d; 189 char *s; 190 int is_ff = 1, is_00 = 1, i; 191 192 if (dmi_ident[slot] || dm->length < index + 16) 193 return; 194 195 d = (u8 *) dm + index; 196 for (i = 0; i < 16 && (is_ff || is_00); i++) { 197 if (d[i] != 0x00) 198 is_00 = 0; 199 if (d[i] != 0xFF) 200 is_ff = 0; 201 } 202 203 if (is_ff || is_00) 204 return; 205 206 s = dmi_alloc(16*2+4+1); 207 if (!s) 208 return; 209 210 /* 211 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 212 * the UUID are supposed to be little-endian encoded. The specification 213 * says that this is the defacto standard. 214 */ 215 if (dmi_ver >= 0x020600) 216 sprintf(s, "%pUl", d); 217 else 218 sprintf(s, "%pUb", d); 219 220 dmi_ident[slot] = s; 221 } 222 223 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 224 int index) 225 { 226 const u8 *d; 227 char *s; 228 229 if (dmi_ident[slot] || dm->length <= index) 230 return; 231 232 s = dmi_alloc(4); 233 if (!s) 234 return; 235 236 d = (u8 *) dm + index; 237 sprintf(s, "%u", *d & 0x7F); 238 dmi_ident[slot] = s; 239 } 240 241 static void __init dmi_save_one_device(int type, const char *name) 242 { 243 struct dmi_device *dev; 244 245 /* No duplicate device */ 246 if (dmi_find_device(type, name, NULL)) 247 return; 248 249 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 250 if (!dev) 251 return; 252 253 dev->type = type; 254 strcpy((char *)(dev + 1), name); 255 dev->name = (char *)(dev + 1); 256 dev->device_data = NULL; 257 list_add(&dev->list, &dmi_devices); 258 } 259 260 static void __init dmi_save_devices(const struct dmi_header *dm) 261 { 262 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 263 264 for (i = 0; i < count; i++) { 265 const char *d = (char *)(dm + 1) + (i * 2); 266 267 /* Skip disabled device */ 268 if ((*d & 0x80) == 0) 269 continue; 270 271 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 272 } 273 } 274 275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 276 { 277 int i, count; 278 struct dmi_device *dev; 279 280 if (dm->length < 0x05) 281 return; 282 283 count = *(u8 *)(dm + 1); 284 for (i = 1; i <= count; i++) { 285 const char *devname = dmi_string(dm, i); 286 287 if (devname == dmi_empty_string) 288 continue; 289 290 dev = dmi_alloc(sizeof(*dev)); 291 if (!dev) 292 break; 293 294 dev->type = DMI_DEV_TYPE_OEM_STRING; 295 dev->name = devname; 296 dev->device_data = NULL; 297 298 list_add(&dev->list, &dmi_devices); 299 } 300 } 301 302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 303 { 304 struct dmi_device *dev; 305 void *data; 306 307 data = dmi_alloc(dm->length); 308 if (data == NULL) 309 return; 310 311 memcpy(data, dm, dm->length); 312 313 dev = dmi_alloc(sizeof(*dev)); 314 if (!dev) 315 return; 316 317 dev->type = DMI_DEV_TYPE_IPMI; 318 dev->name = "IPMI controller"; 319 dev->device_data = data; 320 321 list_add_tail(&dev->list, &dmi_devices); 322 } 323 324 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 325 int devfn, const char *name, int type) 326 { 327 struct dmi_dev_onboard *dev; 328 329 /* Ignore invalid values */ 330 if (type == DMI_DEV_TYPE_DEV_SLOT && 331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 332 return; 333 334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 335 if (!dev) 336 return; 337 338 dev->instance = instance; 339 dev->segment = segment; 340 dev->bus = bus; 341 dev->devfn = devfn; 342 343 strcpy((char *)&dev[1], name); 344 dev->dev.type = type; 345 dev->dev.name = (char *)&dev[1]; 346 dev->dev.device_data = dev; 347 348 list_add(&dev->dev.list, &dmi_devices); 349 } 350 351 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 352 { 353 const char *name; 354 const u8 *d = (u8 *)dm; 355 356 if (dm->length < 0x0B) 357 return; 358 359 /* Skip disabled device */ 360 if ((d[0x5] & 0x80) == 0) 361 return; 362 363 name = dmi_string_nosave(dm, d[0x4]); 364 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 365 DMI_DEV_TYPE_DEV_ONBOARD); 366 dmi_save_one_device(d[0x5] & 0x7f, name); 367 } 368 369 static void __init dmi_save_system_slot(const struct dmi_header *dm) 370 { 371 const u8 *d = (u8 *)dm; 372 373 /* Need SMBIOS 2.6+ structure */ 374 if (dm->length < 0x11) 375 return; 376 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 377 d[0x10], dmi_string_nosave(dm, d[0x4]), 378 DMI_DEV_TYPE_DEV_SLOT); 379 } 380 381 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 382 { 383 if (dm->type != DMI_ENTRY_MEM_DEVICE) 384 return; 385 dmi_memdev_nr++; 386 } 387 388 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 389 { 390 const char *d = (const char *)dm; 391 static int nr; 392 u64 bytes; 393 u16 size; 394 395 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 396 return; 397 if (nr >= dmi_memdev_nr) { 398 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 399 return; 400 } 401 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 402 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 403 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 404 dmi_memdev[nr].type = d[0x12]; 405 406 size = get_unaligned((u16 *)&d[0xC]); 407 if (size == 0) 408 bytes = 0; 409 else if (size == 0xffff) 410 bytes = ~0ull; 411 else if (size & 0x8000) 412 bytes = (u64)(size & 0x7fff) << 10; 413 else if (size != 0x7fff || dm->length < 0x20) 414 bytes = (u64)size << 20; 415 else 416 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 417 418 dmi_memdev[nr].size = bytes; 419 nr++; 420 } 421 422 static void __init dmi_memdev_walk(void) 423 { 424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 426 if (dmi_memdev) 427 dmi_walk_early(save_mem_devices); 428 } 429 } 430 431 /* 432 * Process a DMI table entry. Right now all we care about are the BIOS 433 * and machine entries. For 2.5 we should pull the smbus controller info 434 * out of here. 435 */ 436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 437 { 438 switch (dm->type) { 439 case 0: /* BIOS Information */ 440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 442 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 443 break; 444 case 1: /* System Information */ 445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 450 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 451 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 452 break; 453 case 2: /* Base Board Information */ 454 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 455 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 456 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 457 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 458 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 459 break; 460 case 3: /* Chassis Information */ 461 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 462 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 463 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 464 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 465 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 466 break; 467 case 9: /* System Slots */ 468 dmi_save_system_slot(dm); 469 break; 470 case 10: /* Onboard Devices Information */ 471 dmi_save_devices(dm); 472 break; 473 case 11: /* OEM Strings */ 474 dmi_save_oem_strings_devices(dm); 475 break; 476 case 38: /* IPMI Device Information */ 477 dmi_save_ipmi_device(dm); 478 break; 479 case 41: /* Onboard Devices Extended Information */ 480 dmi_save_extended_devices(dm); 481 } 482 } 483 484 static int __init print_filtered(char *buf, size_t len, const char *info) 485 { 486 int c = 0; 487 const char *p; 488 489 if (!info) 490 return c; 491 492 for (p = info; *p; p++) 493 if (isprint(*p)) 494 c += scnprintf(buf + c, len - c, "%c", *p); 495 else 496 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 497 return c; 498 } 499 500 static void __init dmi_format_ids(char *buf, size_t len) 501 { 502 int c = 0; 503 const char *board; /* Board Name is optional */ 504 505 c += print_filtered(buf + c, len - c, 506 dmi_get_system_info(DMI_SYS_VENDOR)); 507 c += scnprintf(buf + c, len - c, " "); 508 c += print_filtered(buf + c, len - c, 509 dmi_get_system_info(DMI_PRODUCT_NAME)); 510 511 board = dmi_get_system_info(DMI_BOARD_NAME); 512 if (board) { 513 c += scnprintf(buf + c, len - c, "/"); 514 c += print_filtered(buf + c, len - c, board); 515 } 516 c += scnprintf(buf + c, len - c, ", BIOS "); 517 c += print_filtered(buf + c, len - c, 518 dmi_get_system_info(DMI_BIOS_VERSION)); 519 c += scnprintf(buf + c, len - c, " "); 520 c += print_filtered(buf + c, len - c, 521 dmi_get_system_info(DMI_BIOS_DATE)); 522 } 523 524 /* 525 * Check for DMI/SMBIOS headers in the system firmware image. Any 526 * SMBIOS header must start 16 bytes before the DMI header, so take a 527 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 528 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 529 * takes precedence) and return 0. Otherwise return 1. 530 */ 531 static int __init dmi_present(const u8 *buf) 532 { 533 u32 smbios_ver; 534 535 if (memcmp(buf, "_SM_", 4) == 0 && 536 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 537 smbios_ver = get_unaligned_be16(buf + 6); 538 smbios_entry_point_size = buf[5]; 539 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 540 541 /* Some BIOS report weird SMBIOS version, fix that up */ 542 switch (smbios_ver) { 543 case 0x021F: 544 case 0x0221: 545 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 546 smbios_ver & 0xFF, 3); 547 smbios_ver = 0x0203; 548 break; 549 case 0x0233: 550 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 551 smbios_ver = 0x0206; 552 break; 553 } 554 } else { 555 smbios_ver = 0; 556 } 557 558 buf += 16; 559 560 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 561 if (smbios_ver) 562 dmi_ver = smbios_ver; 563 else 564 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 565 dmi_ver <<= 8; 566 dmi_num = get_unaligned_le16(buf + 12); 567 dmi_len = get_unaligned_le16(buf + 6); 568 dmi_base = get_unaligned_le32(buf + 8); 569 570 if (dmi_walk_early(dmi_decode) == 0) { 571 if (smbios_ver) { 572 pr_info("SMBIOS %d.%d present.\n", 573 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 574 } else { 575 smbios_entry_point_size = 15; 576 memcpy(smbios_entry_point, buf, 577 smbios_entry_point_size); 578 pr_info("Legacy DMI %d.%d present.\n", 579 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 580 } 581 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 582 pr_info("DMI: %s\n", dmi_ids_string); 583 return 0; 584 } 585 } 586 587 return 1; 588 } 589 590 /* 591 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 592 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 593 */ 594 static int __init dmi_smbios3_present(const u8 *buf) 595 { 596 if (memcmp(buf, "_SM3_", 5) == 0 && 597 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 598 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 599 dmi_num = 0; /* No longer specified */ 600 dmi_len = get_unaligned_le32(buf + 12); 601 dmi_base = get_unaligned_le64(buf + 16); 602 smbios_entry_point_size = buf[6]; 603 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 604 605 if (dmi_walk_early(dmi_decode) == 0) { 606 pr_info("SMBIOS %d.%d.%d present.\n", 607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 608 dmi_ver & 0xFF); 609 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 610 pr_info("DMI: %s\n", dmi_ids_string); 611 return 0; 612 } 613 } 614 return 1; 615 } 616 617 static void __init dmi_scan_machine(void) 618 { 619 char __iomem *p, *q; 620 char buf[32]; 621 622 if (efi_enabled(EFI_CONFIG_TABLES)) { 623 /* 624 * According to the DMTF SMBIOS reference spec v3.0.0, it is 625 * allowed to define both the 64-bit entry point (smbios3) and 626 * the 32-bit entry point (smbios), in which case they should 627 * either both point to the same SMBIOS structure table, or the 628 * table pointed to by the 64-bit entry point should contain a 629 * superset of the table contents pointed to by the 32-bit entry 630 * point (section 5.2) 631 * This implies that the 64-bit entry point should have 632 * precedence if it is defined and supported by the OS. If we 633 * have the 64-bit entry point, but fail to decode it, fall 634 * back to the legacy one (if available) 635 */ 636 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 637 p = dmi_early_remap(efi.smbios3, 32); 638 if (p == NULL) 639 goto error; 640 memcpy_fromio(buf, p, 32); 641 dmi_early_unmap(p, 32); 642 643 if (!dmi_smbios3_present(buf)) { 644 dmi_available = 1; 645 return; 646 } 647 } 648 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 649 goto error; 650 651 /* This is called as a core_initcall() because it isn't 652 * needed during early boot. This also means we can 653 * iounmap the space when we're done with it. 654 */ 655 p = dmi_early_remap(efi.smbios, 32); 656 if (p == NULL) 657 goto error; 658 memcpy_fromio(buf, p, 32); 659 dmi_early_unmap(p, 32); 660 661 if (!dmi_present(buf)) { 662 dmi_available = 1; 663 return; 664 } 665 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 666 p = dmi_early_remap(0xF0000, 0x10000); 667 if (p == NULL) 668 goto error; 669 670 /* 671 * Same logic as above, look for a 64-bit entry point 672 * first, and if not found, fall back to 32-bit entry point. 673 */ 674 memcpy_fromio(buf, p, 16); 675 for (q = p + 16; q < p + 0x10000; q += 16) { 676 memcpy_fromio(buf + 16, q, 16); 677 if (!dmi_smbios3_present(buf)) { 678 dmi_available = 1; 679 dmi_early_unmap(p, 0x10000); 680 return; 681 } 682 memcpy(buf, buf + 16, 16); 683 } 684 685 /* 686 * Iterate over all possible DMI header addresses q. 687 * Maintain the 32 bytes around q in buf. On the 688 * first iteration, substitute zero for the 689 * out-of-range bytes so there is no chance of falsely 690 * detecting an SMBIOS header. 691 */ 692 memset(buf, 0, 16); 693 for (q = p; q < p + 0x10000; q += 16) { 694 memcpy_fromio(buf + 16, q, 16); 695 if (!dmi_present(buf)) { 696 dmi_available = 1; 697 dmi_early_unmap(p, 0x10000); 698 return; 699 } 700 memcpy(buf, buf + 16, 16); 701 } 702 dmi_early_unmap(p, 0x10000); 703 } 704 error: 705 pr_info("DMI not present or invalid.\n"); 706 } 707 708 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 709 struct bin_attribute *attr, char *buf, 710 loff_t pos, size_t count) 711 { 712 memcpy(buf, attr->private + pos, count); 713 return count; 714 } 715 716 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 717 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 718 719 static int __init dmi_init(void) 720 { 721 struct kobject *tables_kobj; 722 u8 *dmi_table; 723 int ret = -ENOMEM; 724 725 if (!dmi_available) 726 return 0; 727 728 /* 729 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 730 * even after farther error, as it can be used by other modules like 731 * dmi-sysfs. 732 */ 733 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 734 if (!dmi_kobj) 735 goto err; 736 737 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 738 if (!tables_kobj) 739 goto err; 740 741 dmi_table = dmi_remap(dmi_base, dmi_len); 742 if (!dmi_table) 743 goto err_tables; 744 745 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 746 bin_attr_smbios_entry_point.private = smbios_entry_point; 747 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 748 if (ret) 749 goto err_unmap; 750 751 bin_attr_DMI.size = dmi_len; 752 bin_attr_DMI.private = dmi_table; 753 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 754 if (!ret) 755 return 0; 756 757 sysfs_remove_bin_file(tables_kobj, 758 &bin_attr_smbios_entry_point); 759 err_unmap: 760 dmi_unmap(dmi_table); 761 err_tables: 762 kobject_del(tables_kobj); 763 kobject_put(tables_kobj); 764 err: 765 pr_err("dmi: Firmware registration failed.\n"); 766 767 return ret; 768 } 769 subsys_initcall(dmi_init); 770 771 /** 772 * dmi_setup - scan and setup DMI system information 773 * 774 * Scan the DMI system information. This setups DMI identifiers 775 * (dmi_system_id) for printing it out on task dumps and prepares 776 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 777 * for using this when reporting memory errors. 778 */ 779 void __init dmi_setup(void) 780 { 781 dmi_scan_machine(); 782 if (!dmi_available) 783 return; 784 785 dmi_memdev_walk(); 786 dump_stack_set_arch_desc("%s", dmi_ids_string); 787 } 788 789 /** 790 * dmi_matches - check if dmi_system_id structure matches system DMI data 791 * @dmi: pointer to the dmi_system_id structure to check 792 */ 793 static bool dmi_matches(const struct dmi_system_id *dmi) 794 { 795 int i; 796 797 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 798 int s = dmi->matches[i].slot; 799 if (s == DMI_NONE) 800 break; 801 if (s == DMI_OEM_STRING) { 802 /* DMI_OEM_STRING must be exact match */ 803 const struct dmi_device *valid; 804 805 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 806 dmi->matches[i].substr, NULL); 807 if (valid) 808 continue; 809 } else if (dmi_ident[s]) { 810 if (dmi->matches[i].exact_match) { 811 if (!strcmp(dmi_ident[s], 812 dmi->matches[i].substr)) 813 continue; 814 } else { 815 if (strstr(dmi_ident[s], 816 dmi->matches[i].substr)) 817 continue; 818 } 819 } 820 821 /* No match */ 822 return false; 823 } 824 return true; 825 } 826 827 /** 828 * dmi_is_end_of_table - check for end-of-table marker 829 * @dmi: pointer to the dmi_system_id structure to check 830 */ 831 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 832 { 833 return dmi->matches[0].slot == DMI_NONE; 834 } 835 836 /** 837 * dmi_check_system - check system DMI data 838 * @list: array of dmi_system_id structures to match against 839 * All non-null elements of the list must match 840 * their slot's (field index's) data (i.e., each 841 * list string must be a substring of the specified 842 * DMI slot's string data) to be considered a 843 * successful match. 844 * 845 * Walk the blacklist table running matching functions until someone 846 * returns non zero or we hit the end. Callback function is called for 847 * each successful match. Returns the number of matches. 848 * 849 * dmi_setup must be called before this function is called. 850 */ 851 int dmi_check_system(const struct dmi_system_id *list) 852 { 853 int count = 0; 854 const struct dmi_system_id *d; 855 856 for (d = list; !dmi_is_end_of_table(d); d++) 857 if (dmi_matches(d)) { 858 count++; 859 if (d->callback && d->callback(d)) 860 break; 861 } 862 863 return count; 864 } 865 EXPORT_SYMBOL(dmi_check_system); 866 867 /** 868 * dmi_first_match - find dmi_system_id structure matching system DMI data 869 * @list: array of dmi_system_id structures to match against 870 * All non-null elements of the list must match 871 * their slot's (field index's) data (i.e., each 872 * list string must be a substring of the specified 873 * DMI slot's string data) to be considered a 874 * successful match. 875 * 876 * Walk the blacklist table until the first match is found. Return the 877 * pointer to the matching entry or NULL if there's no match. 878 * 879 * dmi_setup must be called before this function is called. 880 */ 881 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 882 { 883 const struct dmi_system_id *d; 884 885 for (d = list; !dmi_is_end_of_table(d); d++) 886 if (dmi_matches(d)) 887 return d; 888 889 return NULL; 890 } 891 EXPORT_SYMBOL(dmi_first_match); 892 893 /** 894 * dmi_get_system_info - return DMI data value 895 * @field: data index (see enum dmi_field) 896 * 897 * Returns one DMI data value, can be used to perform 898 * complex DMI data checks. 899 */ 900 const char *dmi_get_system_info(int field) 901 { 902 return dmi_ident[field]; 903 } 904 EXPORT_SYMBOL(dmi_get_system_info); 905 906 /** 907 * dmi_name_in_serial - Check if string is in the DMI product serial information 908 * @str: string to check for 909 */ 910 int dmi_name_in_serial(const char *str) 911 { 912 int f = DMI_PRODUCT_SERIAL; 913 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 914 return 1; 915 return 0; 916 } 917 918 /** 919 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 920 * @str: Case sensitive Name 921 */ 922 int dmi_name_in_vendors(const char *str) 923 { 924 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 925 int i; 926 for (i = 0; fields[i] != DMI_NONE; i++) { 927 int f = fields[i]; 928 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 929 return 1; 930 } 931 return 0; 932 } 933 EXPORT_SYMBOL(dmi_name_in_vendors); 934 935 /** 936 * dmi_find_device - find onboard device by type/name 937 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 938 * @name: device name string or %NULL to match all 939 * @from: previous device found in search, or %NULL for new search. 940 * 941 * Iterates through the list of known onboard devices. If a device is 942 * found with a matching @type and @name, a pointer to its device 943 * structure is returned. Otherwise, %NULL is returned. 944 * A new search is initiated by passing %NULL as the @from argument. 945 * If @from is not %NULL, searches continue from next device. 946 */ 947 const struct dmi_device *dmi_find_device(int type, const char *name, 948 const struct dmi_device *from) 949 { 950 const struct list_head *head = from ? &from->list : &dmi_devices; 951 struct list_head *d; 952 953 for (d = head->next; d != &dmi_devices; d = d->next) { 954 const struct dmi_device *dev = 955 list_entry(d, struct dmi_device, list); 956 957 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 958 ((name == NULL) || (strcmp(dev->name, name) == 0))) 959 return dev; 960 } 961 962 return NULL; 963 } 964 EXPORT_SYMBOL(dmi_find_device); 965 966 /** 967 * dmi_get_date - parse a DMI date 968 * @field: data index (see enum dmi_field) 969 * @yearp: optional out parameter for the year 970 * @monthp: optional out parameter for the month 971 * @dayp: optional out parameter for the day 972 * 973 * The date field is assumed to be in the form resembling 974 * [mm[/dd]]/yy[yy] and the result is stored in the out 975 * parameters any or all of which can be omitted. 976 * 977 * If the field doesn't exist, all out parameters are set to zero 978 * and false is returned. Otherwise, true is returned with any 979 * invalid part of date set to zero. 980 * 981 * On return, year, month and day are guaranteed to be in the 982 * range of [0,9999], [0,12] and [0,31] respectively. 983 */ 984 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 985 { 986 int year = 0, month = 0, day = 0; 987 bool exists; 988 const char *s, *y; 989 char *e; 990 991 s = dmi_get_system_info(field); 992 exists = s; 993 if (!exists) 994 goto out; 995 996 /* 997 * Determine year first. We assume the date string resembles 998 * mm/dd/yy[yy] but the original code extracted only the year 999 * from the end. Keep the behavior in the spirit of no 1000 * surprises. 1001 */ 1002 y = strrchr(s, '/'); 1003 if (!y) 1004 goto out; 1005 1006 y++; 1007 year = simple_strtoul(y, &e, 10); 1008 if (y != e && year < 100) { /* 2-digit year */ 1009 year += 1900; 1010 if (year < 1996) /* no dates < spec 1.0 */ 1011 year += 100; 1012 } 1013 if (year > 9999) /* year should fit in %04d */ 1014 year = 0; 1015 1016 /* parse the mm and dd */ 1017 month = simple_strtoul(s, &e, 10); 1018 if (s == e || *e != '/' || !month || month > 12) { 1019 month = 0; 1020 goto out; 1021 } 1022 1023 s = e + 1; 1024 day = simple_strtoul(s, &e, 10); 1025 if (s == y || s == e || *e != '/' || day > 31) 1026 day = 0; 1027 out: 1028 if (yearp) 1029 *yearp = year; 1030 if (monthp) 1031 *monthp = month; 1032 if (dayp) 1033 *dayp = day; 1034 return exists; 1035 } 1036 EXPORT_SYMBOL(dmi_get_date); 1037 1038 /** 1039 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1040 * 1041 * Returns year on success, -ENXIO if DMI is not selected, 1042 * or a different negative error code if DMI field is not present 1043 * or not parseable. 1044 */ 1045 int dmi_get_bios_year(void) 1046 { 1047 bool exists; 1048 int year; 1049 1050 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1051 if (!exists) 1052 return -ENODATA; 1053 1054 return year ? year : -ERANGE; 1055 } 1056 EXPORT_SYMBOL(dmi_get_bios_year); 1057 1058 /** 1059 * dmi_walk - Walk the DMI table and get called back for every record 1060 * @decode: Callback function 1061 * @private_data: Private data to be passed to the callback function 1062 * 1063 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1064 * or a different negative error code if DMI walking fails. 1065 */ 1066 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1067 void *private_data) 1068 { 1069 u8 *buf; 1070 1071 if (!dmi_available) 1072 return -ENXIO; 1073 1074 buf = dmi_remap(dmi_base, dmi_len); 1075 if (buf == NULL) 1076 return -ENOMEM; 1077 1078 dmi_decode_table(buf, decode, private_data); 1079 1080 dmi_unmap(buf); 1081 return 0; 1082 } 1083 EXPORT_SYMBOL_GPL(dmi_walk); 1084 1085 /** 1086 * dmi_match - compare a string to the dmi field (if exists) 1087 * @f: DMI field identifier 1088 * @str: string to compare the DMI field to 1089 * 1090 * Returns true if the requested field equals to the str (including NULL). 1091 */ 1092 bool dmi_match(enum dmi_field f, const char *str) 1093 { 1094 const char *info = dmi_get_system_info(f); 1095 1096 if (info == NULL || str == NULL) 1097 return info == str; 1098 1099 return !strcmp(info, str); 1100 } 1101 EXPORT_SYMBOL_GPL(dmi_match); 1102 1103 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1104 { 1105 int n; 1106 1107 if (dmi_memdev == NULL) 1108 return; 1109 1110 for (n = 0; n < dmi_memdev_nr; n++) { 1111 if (handle == dmi_memdev[n].handle) { 1112 *bank = dmi_memdev[n].bank; 1113 *device = dmi_memdev[n].device; 1114 break; 1115 } 1116 } 1117 } 1118 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1119 1120 u64 dmi_memdev_size(u16 handle) 1121 { 1122 int n; 1123 1124 if (dmi_memdev) { 1125 for (n = 0; n < dmi_memdev_nr; n++) { 1126 if (handle == dmi_memdev[n].handle) 1127 return dmi_memdev[n].size; 1128 } 1129 } 1130 return ~0ull; 1131 } 1132 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1133 1134 /** 1135 * dmi_memdev_type - get the memory type 1136 * @handle: DMI structure handle 1137 * 1138 * Return the DMI memory type of the module in the slot associated with the 1139 * given DMI handle, or 0x0 if no such DMI handle exists. 1140 */ 1141 u8 dmi_memdev_type(u16 handle) 1142 { 1143 int n; 1144 1145 if (dmi_memdev) { 1146 for (n = 0; n < dmi_memdev_nr; n++) { 1147 if (handle == dmi_memdev[n].handle) 1148 return dmi_memdev[n].type; 1149 } 1150 } 1151 return 0x0; /* Not a valid value */ 1152 } 1153 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1154 1155 /** 1156 * dmi_memdev_handle - get the DMI handle of a memory slot 1157 * @slot: slot number 1158 * 1159 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1160 * if there is no such slot. 1161 */ 1162 u16 dmi_memdev_handle(int slot) 1163 { 1164 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1165 return dmi_memdev[slot].handle; 1166 1167 return 0xffff; /* Not a valid value */ 1168 } 1169 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1170