xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision dc6a81c3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
13 
14 struct kobject *dmi_kobj;
15 EXPORT_SYMBOL_GPL(dmi_kobj);
16 
17 /*
18  * DMI stands for "Desktop Management Interface".  It is part
19  * of and an antecedent to, SMBIOS, which stands for System
20  * Management BIOS.  See further: http://www.dmtf.org/standards
21  */
22 static const char dmi_empty_string[] = "";
23 
24 static u32 dmi_ver __initdata;
25 static u32 dmi_len;
26 static u16 dmi_num;
27 static u8 smbios_entry_point[32];
28 static int smbios_entry_point_size;
29 
30 /* DMI system identification string used during boot */
31 static char dmi_ids_string[128] __initdata;
32 
33 static struct dmi_memdev_info {
34 	const char *device;
35 	const char *bank;
36 	u64 size;		/* bytes */
37 	u16 handle;
38 	u8 type;		/* DDR2, DDR3, DDR4 etc */
39 } *dmi_memdev;
40 static int dmi_memdev_nr;
41 
42 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
43 {
44 	const u8 *bp = ((u8 *) dm) + dm->length;
45 	const u8 *nsp;
46 
47 	if (s) {
48 		while (--s > 0 && *bp)
49 			bp += strlen(bp) + 1;
50 
51 		/* Strings containing only spaces are considered empty */
52 		nsp = bp;
53 		while (*nsp == ' ')
54 			nsp++;
55 		if (*nsp != '\0')
56 			return bp;
57 	}
58 
59 	return dmi_empty_string;
60 }
61 
62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63 {
64 	const char *bp = dmi_string_nosave(dm, s);
65 	char *str;
66 	size_t len;
67 
68 	if (bp == dmi_empty_string)
69 		return dmi_empty_string;
70 
71 	len = strlen(bp) + 1;
72 	str = dmi_alloc(len);
73 	if (str != NULL)
74 		strcpy(str, bp);
75 
76 	return str;
77 }
78 
79 /*
80  *	We have to be cautious here. We have seen BIOSes with DMI pointers
81  *	pointing to completely the wrong place for example
82  */
83 static void dmi_decode_table(u8 *buf,
84 			     void (*decode)(const struct dmi_header *, void *),
85 			     void *private_data)
86 {
87 	u8 *data = buf;
88 	int i = 0;
89 
90 	/*
91 	 * Stop when we have seen all the items the table claimed to have
92 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
93 	 * >= 3.0 only) OR we run off the end of the table (should never
94 	 * happen but sometimes does on bogus implementations.)
95 	 */
96 	while ((!dmi_num || i < dmi_num) &&
97 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 		const struct dmi_header *dm = (const struct dmi_header *)data;
99 
100 		/*
101 		 *  We want to know the total length (formatted area and
102 		 *  strings) before decoding to make sure we won't run off the
103 		 *  table in dmi_decode or dmi_string
104 		 */
105 		data += dm->length;
106 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 			data++;
108 		if (data - buf < dmi_len - 1)
109 			decode(dm, private_data);
110 
111 		data += 2;
112 		i++;
113 
114 		/*
115 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
116 		 * For tables behind a 64-bit entry point, we have no item
117 		 * count and no exact table length, so stop on end-of-table
118 		 * marker. For tables behind a 32-bit entry point, we have
119 		 * seen OEM structures behind the end-of-table marker on
120 		 * some systems, so don't trust it.
121 		 */
122 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
123 			break;
124 	}
125 
126 	/* Trim DMI table length if needed */
127 	if (dmi_len > data - buf)
128 		dmi_len = data - buf;
129 }
130 
131 static phys_addr_t dmi_base;
132 
133 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
134 		void *))
135 {
136 	u8 *buf;
137 	u32 orig_dmi_len = dmi_len;
138 
139 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
140 	if (buf == NULL)
141 		return -ENOMEM;
142 
143 	dmi_decode_table(buf, decode, NULL);
144 
145 	add_device_randomness(buf, dmi_len);
146 
147 	dmi_early_unmap(buf, orig_dmi_len);
148 	return 0;
149 }
150 
151 static int __init dmi_checksum(const u8 *buf, u8 len)
152 {
153 	u8 sum = 0;
154 	int a;
155 
156 	for (a = 0; a < len; a++)
157 		sum += buf[a];
158 
159 	return sum == 0;
160 }
161 
162 static const char *dmi_ident[DMI_STRING_MAX];
163 static LIST_HEAD(dmi_devices);
164 int dmi_available;
165 
166 /*
167  *	Save a DMI string
168  */
169 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
170 		int string)
171 {
172 	const char *d = (const char *) dm;
173 	const char *p;
174 
175 	if (dmi_ident[slot] || dm->length <= string)
176 		return;
177 
178 	p = dmi_string(dm, d[string]);
179 	if (p == NULL)
180 		return;
181 
182 	dmi_ident[slot] = p;
183 }
184 
185 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
186 		int index)
187 {
188 	const u8 *d;
189 	char *s;
190 	int is_ff = 1, is_00 = 1, i;
191 
192 	if (dmi_ident[slot] || dm->length < index + 16)
193 		return;
194 
195 	d = (u8 *) dm + index;
196 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
197 		if (d[i] != 0x00)
198 			is_00 = 0;
199 		if (d[i] != 0xFF)
200 			is_ff = 0;
201 	}
202 
203 	if (is_ff || is_00)
204 		return;
205 
206 	s = dmi_alloc(16*2+4+1);
207 	if (!s)
208 		return;
209 
210 	/*
211 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
212 	 * the UUID are supposed to be little-endian encoded.  The specification
213 	 * says that this is the defacto standard.
214 	 */
215 	if (dmi_ver >= 0x020600)
216 		sprintf(s, "%pUl", d);
217 	else
218 		sprintf(s, "%pUb", d);
219 
220 	dmi_ident[slot] = s;
221 }
222 
223 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
224 		int index)
225 {
226 	const u8 *d;
227 	char *s;
228 
229 	if (dmi_ident[slot] || dm->length <= index)
230 		return;
231 
232 	s = dmi_alloc(4);
233 	if (!s)
234 		return;
235 
236 	d = (u8 *) dm + index;
237 	sprintf(s, "%u", *d & 0x7F);
238 	dmi_ident[slot] = s;
239 }
240 
241 static void __init dmi_save_one_device(int type, const char *name)
242 {
243 	struct dmi_device *dev;
244 
245 	/* No duplicate device */
246 	if (dmi_find_device(type, name, NULL))
247 		return;
248 
249 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
250 	if (!dev)
251 		return;
252 
253 	dev->type = type;
254 	strcpy((char *)(dev + 1), name);
255 	dev->name = (char *)(dev + 1);
256 	dev->device_data = NULL;
257 	list_add(&dev->list, &dmi_devices);
258 }
259 
260 static void __init dmi_save_devices(const struct dmi_header *dm)
261 {
262 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
263 
264 	for (i = 0; i < count; i++) {
265 		const char *d = (char *)(dm + 1) + (i * 2);
266 
267 		/* Skip disabled device */
268 		if ((*d & 0x80) == 0)
269 			continue;
270 
271 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
272 	}
273 }
274 
275 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
276 {
277 	int i, count;
278 	struct dmi_device *dev;
279 
280 	if (dm->length < 0x05)
281 		return;
282 
283 	count = *(u8 *)(dm + 1);
284 	for (i = 1; i <= count; i++) {
285 		const char *devname = dmi_string(dm, i);
286 
287 		if (devname == dmi_empty_string)
288 			continue;
289 
290 		dev = dmi_alloc(sizeof(*dev));
291 		if (!dev)
292 			break;
293 
294 		dev->type = DMI_DEV_TYPE_OEM_STRING;
295 		dev->name = devname;
296 		dev->device_data = NULL;
297 
298 		list_add(&dev->list, &dmi_devices);
299 	}
300 }
301 
302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
303 {
304 	struct dmi_device *dev;
305 	void *data;
306 
307 	data = dmi_alloc(dm->length);
308 	if (data == NULL)
309 		return;
310 
311 	memcpy(data, dm, dm->length);
312 
313 	dev = dmi_alloc(sizeof(*dev));
314 	if (!dev)
315 		return;
316 
317 	dev->type = DMI_DEV_TYPE_IPMI;
318 	dev->name = "IPMI controller";
319 	dev->device_data = data;
320 
321 	list_add_tail(&dev->list, &dmi_devices);
322 }
323 
324 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
325 					int devfn, const char *name, int type)
326 {
327 	struct dmi_dev_onboard *dev;
328 
329 	/* Ignore invalid values */
330 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
331 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
332 		return;
333 
334 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
335 	if (!dev)
336 		return;
337 
338 	dev->instance = instance;
339 	dev->segment = segment;
340 	dev->bus = bus;
341 	dev->devfn = devfn;
342 
343 	strcpy((char *)&dev[1], name);
344 	dev->dev.type = type;
345 	dev->dev.name = (char *)&dev[1];
346 	dev->dev.device_data = dev;
347 
348 	list_add(&dev->dev.list, &dmi_devices);
349 }
350 
351 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
352 {
353 	const char *name;
354 	const u8 *d = (u8 *)dm;
355 
356 	if (dm->length < 0x0B)
357 		return;
358 
359 	/* Skip disabled device */
360 	if ((d[0x5] & 0x80) == 0)
361 		return;
362 
363 	name = dmi_string_nosave(dm, d[0x4]);
364 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
365 			     DMI_DEV_TYPE_DEV_ONBOARD);
366 	dmi_save_one_device(d[0x5] & 0x7f, name);
367 }
368 
369 static void __init dmi_save_system_slot(const struct dmi_header *dm)
370 {
371 	const u8 *d = (u8 *)dm;
372 
373 	/* Need SMBIOS 2.6+ structure */
374 	if (dm->length < 0x11)
375 		return;
376 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
377 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
378 			     DMI_DEV_TYPE_DEV_SLOT);
379 }
380 
381 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
382 {
383 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
384 		return;
385 	dmi_memdev_nr++;
386 }
387 
388 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
389 {
390 	const char *d = (const char *)dm;
391 	static int nr;
392 	u64 bytes;
393 	u16 size;
394 
395 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
396 		return;
397 	if (nr >= dmi_memdev_nr) {
398 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
399 		return;
400 	}
401 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
402 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
403 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
404 	dmi_memdev[nr].type = d[0x12];
405 
406 	size = get_unaligned((u16 *)&d[0xC]);
407 	if (size == 0)
408 		bytes = 0;
409 	else if (size == 0xffff)
410 		bytes = ~0ull;
411 	else if (size & 0x8000)
412 		bytes = (u64)(size & 0x7fff) << 10;
413 	else if (size != 0x7fff || dm->length < 0x20)
414 		bytes = (u64)size << 20;
415 	else
416 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
417 
418 	dmi_memdev[nr].size = bytes;
419 	nr++;
420 }
421 
422 static void __init dmi_memdev_walk(void)
423 {
424 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 		if (dmi_memdev)
427 			dmi_walk_early(save_mem_devices);
428 	}
429 }
430 
431 /*
432  *	Process a DMI table entry. Right now all we care about are the BIOS
433  *	and machine entries. For 2.5 we should pull the smbus controller info
434  *	out of here.
435  */
436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
437 {
438 	switch (dm->type) {
439 	case 0:		/* BIOS Information */
440 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 		break;
444 	case 1:		/* System Information */
445 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
451 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
452 		break;
453 	case 2:		/* Base Board Information */
454 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
455 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
456 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
457 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
458 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
459 		break;
460 	case 3:		/* Chassis Information */
461 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
462 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
463 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
464 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
465 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
466 		break;
467 	case 9:		/* System Slots */
468 		dmi_save_system_slot(dm);
469 		break;
470 	case 10:	/* Onboard Devices Information */
471 		dmi_save_devices(dm);
472 		break;
473 	case 11:	/* OEM Strings */
474 		dmi_save_oem_strings_devices(dm);
475 		break;
476 	case 38:	/* IPMI Device Information */
477 		dmi_save_ipmi_device(dm);
478 		break;
479 	case 41:	/* Onboard Devices Extended Information */
480 		dmi_save_extended_devices(dm);
481 	}
482 }
483 
484 static int __init print_filtered(char *buf, size_t len, const char *info)
485 {
486 	int c = 0;
487 	const char *p;
488 
489 	if (!info)
490 		return c;
491 
492 	for (p = info; *p; p++)
493 		if (isprint(*p))
494 			c += scnprintf(buf + c, len - c, "%c", *p);
495 		else
496 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
497 	return c;
498 }
499 
500 static void __init dmi_format_ids(char *buf, size_t len)
501 {
502 	int c = 0;
503 	const char *board;	/* Board Name is optional */
504 
505 	c += print_filtered(buf + c, len - c,
506 			    dmi_get_system_info(DMI_SYS_VENDOR));
507 	c += scnprintf(buf + c, len - c, " ");
508 	c += print_filtered(buf + c, len - c,
509 			    dmi_get_system_info(DMI_PRODUCT_NAME));
510 
511 	board = dmi_get_system_info(DMI_BOARD_NAME);
512 	if (board) {
513 		c += scnprintf(buf + c, len - c, "/");
514 		c += print_filtered(buf + c, len - c, board);
515 	}
516 	c += scnprintf(buf + c, len - c, ", BIOS ");
517 	c += print_filtered(buf + c, len - c,
518 			    dmi_get_system_info(DMI_BIOS_VERSION));
519 	c += scnprintf(buf + c, len - c, " ");
520 	c += print_filtered(buf + c, len - c,
521 			    dmi_get_system_info(DMI_BIOS_DATE));
522 }
523 
524 /*
525  * Check for DMI/SMBIOS headers in the system firmware image.  Any
526  * SMBIOS header must start 16 bytes before the DMI header, so take a
527  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
528  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
529  * takes precedence) and return 0.  Otherwise return 1.
530  */
531 static int __init dmi_present(const u8 *buf)
532 {
533 	u32 smbios_ver;
534 
535 	if (memcmp(buf, "_SM_", 4) == 0 &&
536 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
537 		smbios_ver = get_unaligned_be16(buf + 6);
538 		smbios_entry_point_size = buf[5];
539 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
540 
541 		/* Some BIOS report weird SMBIOS version, fix that up */
542 		switch (smbios_ver) {
543 		case 0x021F:
544 		case 0x0221:
545 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
546 				 smbios_ver & 0xFF, 3);
547 			smbios_ver = 0x0203;
548 			break;
549 		case 0x0233:
550 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
551 			smbios_ver = 0x0206;
552 			break;
553 		}
554 	} else {
555 		smbios_ver = 0;
556 	}
557 
558 	buf += 16;
559 
560 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
561 		if (smbios_ver)
562 			dmi_ver = smbios_ver;
563 		else
564 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
565 		dmi_ver <<= 8;
566 		dmi_num = get_unaligned_le16(buf + 12);
567 		dmi_len = get_unaligned_le16(buf + 6);
568 		dmi_base = get_unaligned_le32(buf + 8);
569 
570 		if (dmi_walk_early(dmi_decode) == 0) {
571 			if (smbios_ver) {
572 				pr_info("SMBIOS %d.%d present.\n",
573 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
574 			} else {
575 				smbios_entry_point_size = 15;
576 				memcpy(smbios_entry_point, buf,
577 				       smbios_entry_point_size);
578 				pr_info("Legacy DMI %d.%d present.\n",
579 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
580 			}
581 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
582 			pr_info("DMI: %s\n", dmi_ids_string);
583 			return 0;
584 		}
585 	}
586 
587 	return 1;
588 }
589 
590 /*
591  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
592  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
593  */
594 static int __init dmi_smbios3_present(const u8 *buf)
595 {
596 	if (memcmp(buf, "_SM3_", 5) == 0 &&
597 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
598 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
599 		dmi_num = 0;			/* No longer specified */
600 		dmi_len = get_unaligned_le32(buf + 12);
601 		dmi_base = get_unaligned_le64(buf + 16);
602 		smbios_entry_point_size = buf[6];
603 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
604 
605 		if (dmi_walk_early(dmi_decode) == 0) {
606 			pr_info("SMBIOS %d.%d.%d present.\n",
607 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
608 				dmi_ver & 0xFF);
609 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
610 			pr_info("DMI: %s\n", dmi_ids_string);
611 			return 0;
612 		}
613 	}
614 	return 1;
615 }
616 
617 static void __init dmi_scan_machine(void)
618 {
619 	char __iomem *p, *q;
620 	char buf[32];
621 
622 	if (efi_enabled(EFI_CONFIG_TABLES)) {
623 		/*
624 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
625 		 * allowed to define both the 64-bit entry point (smbios3) and
626 		 * the 32-bit entry point (smbios), in which case they should
627 		 * either both point to the same SMBIOS structure table, or the
628 		 * table pointed to by the 64-bit entry point should contain a
629 		 * superset of the table contents pointed to by the 32-bit entry
630 		 * point (section 5.2)
631 		 * This implies that the 64-bit entry point should have
632 		 * precedence if it is defined and supported by the OS. If we
633 		 * have the 64-bit entry point, but fail to decode it, fall
634 		 * back to the legacy one (if available)
635 		 */
636 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
637 			p = dmi_early_remap(efi.smbios3, 32);
638 			if (p == NULL)
639 				goto error;
640 			memcpy_fromio(buf, p, 32);
641 			dmi_early_unmap(p, 32);
642 
643 			if (!dmi_smbios3_present(buf)) {
644 				dmi_available = 1;
645 				return;
646 			}
647 		}
648 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
649 			goto error;
650 
651 		/* This is called as a core_initcall() because it isn't
652 		 * needed during early boot.  This also means we can
653 		 * iounmap the space when we're done with it.
654 		 */
655 		p = dmi_early_remap(efi.smbios, 32);
656 		if (p == NULL)
657 			goto error;
658 		memcpy_fromio(buf, p, 32);
659 		dmi_early_unmap(p, 32);
660 
661 		if (!dmi_present(buf)) {
662 			dmi_available = 1;
663 			return;
664 		}
665 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
666 		p = dmi_early_remap(0xF0000, 0x10000);
667 		if (p == NULL)
668 			goto error;
669 
670 		/*
671 		 * Same logic as above, look for a 64-bit entry point
672 		 * first, and if not found, fall back to 32-bit entry point.
673 		 */
674 		memcpy_fromio(buf, p, 16);
675 		for (q = p + 16; q < p + 0x10000; q += 16) {
676 			memcpy_fromio(buf + 16, q, 16);
677 			if (!dmi_smbios3_present(buf)) {
678 				dmi_available = 1;
679 				dmi_early_unmap(p, 0x10000);
680 				return;
681 			}
682 			memcpy(buf, buf + 16, 16);
683 		}
684 
685 		/*
686 		 * Iterate over all possible DMI header addresses q.
687 		 * Maintain the 32 bytes around q in buf.  On the
688 		 * first iteration, substitute zero for the
689 		 * out-of-range bytes so there is no chance of falsely
690 		 * detecting an SMBIOS header.
691 		 */
692 		memset(buf, 0, 16);
693 		for (q = p; q < p + 0x10000; q += 16) {
694 			memcpy_fromio(buf + 16, q, 16);
695 			if (!dmi_present(buf)) {
696 				dmi_available = 1;
697 				dmi_early_unmap(p, 0x10000);
698 				return;
699 			}
700 			memcpy(buf, buf + 16, 16);
701 		}
702 		dmi_early_unmap(p, 0x10000);
703 	}
704  error:
705 	pr_info("DMI not present or invalid.\n");
706 }
707 
708 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
709 			      struct bin_attribute *attr, char *buf,
710 			      loff_t pos, size_t count)
711 {
712 	memcpy(buf, attr->private + pos, count);
713 	return count;
714 }
715 
716 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
717 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
718 
719 static int __init dmi_init(void)
720 {
721 	struct kobject *tables_kobj;
722 	u8 *dmi_table;
723 	int ret = -ENOMEM;
724 
725 	if (!dmi_available)
726 		return 0;
727 
728 	/*
729 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
730 	 * even after farther error, as it can be used by other modules like
731 	 * dmi-sysfs.
732 	 */
733 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
734 	if (!dmi_kobj)
735 		goto err;
736 
737 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
738 	if (!tables_kobj)
739 		goto err;
740 
741 	dmi_table = dmi_remap(dmi_base, dmi_len);
742 	if (!dmi_table)
743 		goto err_tables;
744 
745 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
746 	bin_attr_smbios_entry_point.private = smbios_entry_point;
747 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
748 	if (ret)
749 		goto err_unmap;
750 
751 	bin_attr_DMI.size = dmi_len;
752 	bin_attr_DMI.private = dmi_table;
753 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
754 	if (!ret)
755 		return 0;
756 
757 	sysfs_remove_bin_file(tables_kobj,
758 			      &bin_attr_smbios_entry_point);
759  err_unmap:
760 	dmi_unmap(dmi_table);
761  err_tables:
762 	kobject_del(tables_kobj);
763 	kobject_put(tables_kobj);
764  err:
765 	pr_err("dmi: Firmware registration failed.\n");
766 
767 	return ret;
768 }
769 subsys_initcall(dmi_init);
770 
771 /**
772  *	dmi_setup - scan and setup DMI system information
773  *
774  *	Scan the DMI system information. This setups DMI identifiers
775  *	(dmi_system_id) for printing it out on task dumps and prepares
776  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
777  *	for using this when reporting memory errors.
778  */
779 void __init dmi_setup(void)
780 {
781 	dmi_scan_machine();
782 	if (!dmi_available)
783 		return;
784 
785 	dmi_memdev_walk();
786 	dump_stack_set_arch_desc("%s", dmi_ids_string);
787 }
788 
789 /**
790  *	dmi_matches - check if dmi_system_id structure matches system DMI data
791  *	@dmi: pointer to the dmi_system_id structure to check
792  */
793 static bool dmi_matches(const struct dmi_system_id *dmi)
794 {
795 	int i;
796 
797 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
798 		int s = dmi->matches[i].slot;
799 		if (s == DMI_NONE)
800 			break;
801 		if (s == DMI_OEM_STRING) {
802 			/* DMI_OEM_STRING must be exact match */
803 			const struct dmi_device *valid;
804 
805 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
806 						dmi->matches[i].substr, NULL);
807 			if (valid)
808 				continue;
809 		} else if (dmi_ident[s]) {
810 			if (dmi->matches[i].exact_match) {
811 				if (!strcmp(dmi_ident[s],
812 					    dmi->matches[i].substr))
813 					continue;
814 			} else {
815 				if (strstr(dmi_ident[s],
816 					   dmi->matches[i].substr))
817 					continue;
818 			}
819 		}
820 
821 		/* No match */
822 		return false;
823 	}
824 	return true;
825 }
826 
827 /**
828  *	dmi_is_end_of_table - check for end-of-table marker
829  *	@dmi: pointer to the dmi_system_id structure to check
830  */
831 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
832 {
833 	return dmi->matches[0].slot == DMI_NONE;
834 }
835 
836 /**
837  *	dmi_check_system - check system DMI data
838  *	@list: array of dmi_system_id structures to match against
839  *		All non-null elements of the list must match
840  *		their slot's (field index's) data (i.e., each
841  *		list string must be a substring of the specified
842  *		DMI slot's string data) to be considered a
843  *		successful match.
844  *
845  *	Walk the blacklist table running matching functions until someone
846  *	returns non zero or we hit the end. Callback function is called for
847  *	each successful match. Returns the number of matches.
848  *
849  *	dmi_setup must be called before this function is called.
850  */
851 int dmi_check_system(const struct dmi_system_id *list)
852 {
853 	int count = 0;
854 	const struct dmi_system_id *d;
855 
856 	for (d = list; !dmi_is_end_of_table(d); d++)
857 		if (dmi_matches(d)) {
858 			count++;
859 			if (d->callback && d->callback(d))
860 				break;
861 		}
862 
863 	return count;
864 }
865 EXPORT_SYMBOL(dmi_check_system);
866 
867 /**
868  *	dmi_first_match - find dmi_system_id structure matching system DMI data
869  *	@list: array of dmi_system_id structures to match against
870  *		All non-null elements of the list must match
871  *		their slot's (field index's) data (i.e., each
872  *		list string must be a substring of the specified
873  *		DMI slot's string data) to be considered a
874  *		successful match.
875  *
876  *	Walk the blacklist table until the first match is found.  Return the
877  *	pointer to the matching entry or NULL if there's no match.
878  *
879  *	dmi_setup must be called before this function is called.
880  */
881 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
882 {
883 	const struct dmi_system_id *d;
884 
885 	for (d = list; !dmi_is_end_of_table(d); d++)
886 		if (dmi_matches(d))
887 			return d;
888 
889 	return NULL;
890 }
891 EXPORT_SYMBOL(dmi_first_match);
892 
893 /**
894  *	dmi_get_system_info - return DMI data value
895  *	@field: data index (see enum dmi_field)
896  *
897  *	Returns one DMI data value, can be used to perform
898  *	complex DMI data checks.
899  */
900 const char *dmi_get_system_info(int field)
901 {
902 	return dmi_ident[field];
903 }
904 EXPORT_SYMBOL(dmi_get_system_info);
905 
906 /**
907  * dmi_name_in_serial - Check if string is in the DMI product serial information
908  * @str: string to check for
909  */
910 int dmi_name_in_serial(const char *str)
911 {
912 	int f = DMI_PRODUCT_SERIAL;
913 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
914 		return 1;
915 	return 0;
916 }
917 
918 /**
919  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
920  *	@str: Case sensitive Name
921  */
922 int dmi_name_in_vendors(const char *str)
923 {
924 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
925 	int i;
926 	for (i = 0; fields[i] != DMI_NONE; i++) {
927 		int f = fields[i];
928 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
929 			return 1;
930 	}
931 	return 0;
932 }
933 EXPORT_SYMBOL(dmi_name_in_vendors);
934 
935 /**
936  *	dmi_find_device - find onboard device by type/name
937  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
938  *	@name: device name string or %NULL to match all
939  *	@from: previous device found in search, or %NULL for new search.
940  *
941  *	Iterates through the list of known onboard devices. If a device is
942  *	found with a matching @type and @name, a pointer to its device
943  *	structure is returned.  Otherwise, %NULL is returned.
944  *	A new search is initiated by passing %NULL as the @from argument.
945  *	If @from is not %NULL, searches continue from next device.
946  */
947 const struct dmi_device *dmi_find_device(int type, const char *name,
948 				    const struct dmi_device *from)
949 {
950 	const struct list_head *head = from ? &from->list : &dmi_devices;
951 	struct list_head *d;
952 
953 	for (d = head->next; d != &dmi_devices; d = d->next) {
954 		const struct dmi_device *dev =
955 			list_entry(d, struct dmi_device, list);
956 
957 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
958 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
959 			return dev;
960 	}
961 
962 	return NULL;
963 }
964 EXPORT_SYMBOL(dmi_find_device);
965 
966 /**
967  *	dmi_get_date - parse a DMI date
968  *	@field:	data index (see enum dmi_field)
969  *	@yearp: optional out parameter for the year
970  *	@monthp: optional out parameter for the month
971  *	@dayp: optional out parameter for the day
972  *
973  *	The date field is assumed to be in the form resembling
974  *	[mm[/dd]]/yy[yy] and the result is stored in the out
975  *	parameters any or all of which can be omitted.
976  *
977  *	If the field doesn't exist, all out parameters are set to zero
978  *	and false is returned.  Otherwise, true is returned with any
979  *	invalid part of date set to zero.
980  *
981  *	On return, year, month and day are guaranteed to be in the
982  *	range of [0,9999], [0,12] and [0,31] respectively.
983  */
984 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
985 {
986 	int year = 0, month = 0, day = 0;
987 	bool exists;
988 	const char *s, *y;
989 	char *e;
990 
991 	s = dmi_get_system_info(field);
992 	exists = s;
993 	if (!exists)
994 		goto out;
995 
996 	/*
997 	 * Determine year first.  We assume the date string resembles
998 	 * mm/dd/yy[yy] but the original code extracted only the year
999 	 * from the end.  Keep the behavior in the spirit of no
1000 	 * surprises.
1001 	 */
1002 	y = strrchr(s, '/');
1003 	if (!y)
1004 		goto out;
1005 
1006 	y++;
1007 	year = simple_strtoul(y, &e, 10);
1008 	if (y != e && year < 100) {	/* 2-digit year */
1009 		year += 1900;
1010 		if (year < 1996)	/* no dates < spec 1.0 */
1011 			year += 100;
1012 	}
1013 	if (year > 9999)		/* year should fit in %04d */
1014 		year = 0;
1015 
1016 	/* parse the mm and dd */
1017 	month = simple_strtoul(s, &e, 10);
1018 	if (s == e || *e != '/' || !month || month > 12) {
1019 		month = 0;
1020 		goto out;
1021 	}
1022 
1023 	s = e + 1;
1024 	day = simple_strtoul(s, &e, 10);
1025 	if (s == y || s == e || *e != '/' || day > 31)
1026 		day = 0;
1027 out:
1028 	if (yearp)
1029 		*yearp = year;
1030 	if (monthp)
1031 		*monthp = month;
1032 	if (dayp)
1033 		*dayp = day;
1034 	return exists;
1035 }
1036 EXPORT_SYMBOL(dmi_get_date);
1037 
1038 /**
1039  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1040  *
1041  *	Returns year on success, -ENXIO if DMI is not selected,
1042  *	or a different negative error code if DMI field is not present
1043  *	or not parseable.
1044  */
1045 int dmi_get_bios_year(void)
1046 {
1047 	bool exists;
1048 	int year;
1049 
1050 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1051 	if (!exists)
1052 		return -ENODATA;
1053 
1054 	return year ? year : -ERANGE;
1055 }
1056 EXPORT_SYMBOL(dmi_get_bios_year);
1057 
1058 /**
1059  *	dmi_walk - Walk the DMI table and get called back for every record
1060  *	@decode: Callback function
1061  *	@private_data: Private data to be passed to the callback function
1062  *
1063  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1064  *	or a different negative error code if DMI walking fails.
1065  */
1066 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1067 	     void *private_data)
1068 {
1069 	u8 *buf;
1070 
1071 	if (!dmi_available)
1072 		return -ENXIO;
1073 
1074 	buf = dmi_remap(dmi_base, dmi_len);
1075 	if (buf == NULL)
1076 		return -ENOMEM;
1077 
1078 	dmi_decode_table(buf, decode, private_data);
1079 
1080 	dmi_unmap(buf);
1081 	return 0;
1082 }
1083 EXPORT_SYMBOL_GPL(dmi_walk);
1084 
1085 /**
1086  * dmi_match - compare a string to the dmi field (if exists)
1087  * @f: DMI field identifier
1088  * @str: string to compare the DMI field to
1089  *
1090  * Returns true if the requested field equals to the str (including NULL).
1091  */
1092 bool dmi_match(enum dmi_field f, const char *str)
1093 {
1094 	const char *info = dmi_get_system_info(f);
1095 
1096 	if (info == NULL || str == NULL)
1097 		return info == str;
1098 
1099 	return !strcmp(info, str);
1100 }
1101 EXPORT_SYMBOL_GPL(dmi_match);
1102 
1103 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1104 {
1105 	int n;
1106 
1107 	if (dmi_memdev == NULL)
1108 		return;
1109 
1110 	for (n = 0; n < dmi_memdev_nr; n++) {
1111 		if (handle == dmi_memdev[n].handle) {
1112 			*bank = dmi_memdev[n].bank;
1113 			*device = dmi_memdev[n].device;
1114 			break;
1115 		}
1116 	}
1117 }
1118 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1119 
1120 u64 dmi_memdev_size(u16 handle)
1121 {
1122 	int n;
1123 
1124 	if (dmi_memdev) {
1125 		for (n = 0; n < dmi_memdev_nr; n++) {
1126 			if (handle == dmi_memdev[n].handle)
1127 				return dmi_memdev[n].size;
1128 		}
1129 	}
1130 	return ~0ull;
1131 }
1132 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1133 
1134 /**
1135  * dmi_memdev_type - get the memory type
1136  * @handle: DMI structure handle
1137  *
1138  * Return the DMI memory type of the module in the slot associated with the
1139  * given DMI handle, or 0x0 if no such DMI handle exists.
1140  */
1141 u8 dmi_memdev_type(u16 handle)
1142 {
1143 	int n;
1144 
1145 	if (dmi_memdev) {
1146 		for (n = 0; n < dmi_memdev_nr; n++) {
1147 			if (handle == dmi_memdev[n].handle)
1148 				return dmi_memdev[n].type;
1149 		}
1150 	}
1151 	return 0x0;	/* Not a valid value */
1152 }
1153 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1154 
1155 /**
1156  *	dmi_memdev_handle - get the DMI handle of a memory slot
1157  *	@slot: slot number
1158  *
1159  *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1160  *      if there is no such slot.
1161  */
1162 u16 dmi_memdev_handle(int slot)
1163 {
1164 	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1165 		return dmi_memdev[slot].handle;
1166 
1167 	return 0xffff;	/* Not a valid value */
1168 }
1169 EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1170