1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/types.h> 3 #include <linux/string.h> 4 #include <linux/init.h> 5 #include <linux/module.h> 6 #include <linux/ctype.h> 7 #include <linux/dmi.h> 8 #include <linux/efi.h> 9 #include <linux/memblock.h> 10 #include <linux/random.h> 11 #include <asm/dmi.h> 12 #include <asm/unaligned.h> 13 14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START 15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 16 #endif 17 18 struct kobject *dmi_kobj; 19 EXPORT_SYMBOL_GPL(dmi_kobj); 20 21 /* 22 * DMI stands for "Desktop Management Interface". It is part 23 * of and an antecedent to, SMBIOS, which stands for System 24 * Management BIOS. See further: https://www.dmtf.org/standards 25 */ 26 static const char dmi_empty_string[] = ""; 27 28 static u32 dmi_ver __initdata; 29 static u32 dmi_len; 30 static u16 dmi_num; 31 static u8 smbios_entry_point[32]; 32 static int smbios_entry_point_size; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u64 size; /* bytes */ 41 u16 handle; 42 u8 type; /* DDR2, DDR3, DDR4 etc */ 43 } *dmi_memdev; 44 static int dmi_memdev_nr; 45 46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 47 { 48 const u8 *bp = ((u8 *) dm) + dm->length; 49 const u8 *nsp; 50 51 if (s) { 52 while (--s > 0 && *bp) 53 bp += strlen(bp) + 1; 54 55 /* Strings containing only spaces are considered empty */ 56 nsp = bp; 57 while (*nsp == ' ') 58 nsp++; 59 if (*nsp != '\0') 60 return bp; 61 } 62 63 return dmi_empty_string; 64 } 65 66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 67 { 68 const char *bp = dmi_string_nosave(dm, s); 69 char *str; 70 size_t len; 71 72 if (bp == dmi_empty_string) 73 return dmi_empty_string; 74 75 len = strlen(bp) + 1; 76 str = dmi_alloc(len); 77 if (str != NULL) 78 strcpy(str, bp); 79 80 return str; 81 } 82 83 /* 84 * We have to be cautious here. We have seen BIOSes with DMI pointers 85 * pointing to completely the wrong place for example 86 */ 87 static void dmi_decode_table(u8 *buf, 88 void (*decode)(const struct dmi_header *, void *), 89 void *private_data) 90 { 91 u8 *data = buf; 92 int i = 0; 93 94 /* 95 * Stop when we have seen all the items the table claimed to have 96 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 97 * >= 3.0 only) OR we run off the end of the table (should never 98 * happen but sometimes does on bogus implementations.) 99 */ 100 while ((!dmi_num || i < dmi_num) && 101 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 102 const struct dmi_header *dm = (const struct dmi_header *)data; 103 104 /* 105 * We want to know the total length (formatted area and 106 * strings) before decoding to make sure we won't run off the 107 * table in dmi_decode or dmi_string 108 */ 109 data += dm->length; 110 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 111 data++; 112 if (data - buf < dmi_len - 1) 113 decode(dm, private_data); 114 115 data += 2; 116 i++; 117 118 /* 119 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 120 * For tables behind a 64-bit entry point, we have no item 121 * count and no exact table length, so stop on end-of-table 122 * marker. For tables behind a 32-bit entry point, we have 123 * seen OEM structures behind the end-of-table marker on 124 * some systems, so don't trust it. 125 */ 126 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 127 break; 128 } 129 130 /* Trim DMI table length if needed */ 131 if (dmi_len > data - buf) 132 dmi_len = data - buf; 133 } 134 135 static phys_addr_t dmi_base; 136 137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 138 void *)) 139 { 140 u8 *buf; 141 u32 orig_dmi_len = dmi_len; 142 143 buf = dmi_early_remap(dmi_base, orig_dmi_len); 144 if (buf == NULL) 145 return -ENOMEM; 146 147 dmi_decode_table(buf, decode, NULL); 148 149 add_device_randomness(buf, dmi_len); 150 151 dmi_early_unmap(buf, orig_dmi_len); 152 return 0; 153 } 154 155 static int __init dmi_checksum(const u8 *buf, u8 len) 156 { 157 u8 sum = 0; 158 int a; 159 160 for (a = 0; a < len; a++) 161 sum += buf[a]; 162 163 return sum == 0; 164 } 165 166 static const char *dmi_ident[DMI_STRING_MAX]; 167 static LIST_HEAD(dmi_devices); 168 int dmi_available; 169 170 /* 171 * Save a DMI string 172 */ 173 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 174 int string) 175 { 176 const char *d = (const char *) dm; 177 const char *p; 178 179 if (dmi_ident[slot] || dm->length <= string) 180 return; 181 182 p = dmi_string(dm, d[string]); 183 if (p == NULL) 184 return; 185 186 dmi_ident[slot] = p; 187 } 188 189 static void __init dmi_save_release(const struct dmi_header *dm, int slot, 190 int index) 191 { 192 const u8 *minor, *major; 193 char *s; 194 195 /* If the table doesn't have the field, let's return */ 196 if (dmi_ident[slot] || dm->length < index) 197 return; 198 199 minor = (u8 *) dm + index; 200 major = (u8 *) dm + index - 1; 201 202 /* As per the spec, if the system doesn't support this field, 203 * the value is FF 204 */ 205 if (*major == 0xFF && *minor == 0xFF) 206 return; 207 208 s = dmi_alloc(8); 209 if (!s) 210 return; 211 212 sprintf(s, "%u.%u", *major, *minor); 213 214 dmi_ident[slot] = s; 215 } 216 217 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 218 int index) 219 { 220 const u8 *d; 221 char *s; 222 int is_ff = 1, is_00 = 1, i; 223 224 if (dmi_ident[slot] || dm->length < index + 16) 225 return; 226 227 d = (u8 *) dm + index; 228 for (i = 0; i < 16 && (is_ff || is_00); i++) { 229 if (d[i] != 0x00) 230 is_00 = 0; 231 if (d[i] != 0xFF) 232 is_ff = 0; 233 } 234 235 if (is_ff || is_00) 236 return; 237 238 s = dmi_alloc(16*2+4+1); 239 if (!s) 240 return; 241 242 /* 243 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 244 * the UUID are supposed to be little-endian encoded. The specification 245 * says that this is the defacto standard. 246 */ 247 if (dmi_ver >= 0x020600) 248 sprintf(s, "%pUl", d); 249 else 250 sprintf(s, "%pUb", d); 251 252 dmi_ident[slot] = s; 253 } 254 255 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 256 int index) 257 { 258 const u8 *d; 259 char *s; 260 261 if (dmi_ident[slot] || dm->length <= index) 262 return; 263 264 s = dmi_alloc(4); 265 if (!s) 266 return; 267 268 d = (u8 *) dm + index; 269 sprintf(s, "%u", *d & 0x7F); 270 dmi_ident[slot] = s; 271 } 272 273 static void __init dmi_save_one_device(int type, const char *name) 274 { 275 struct dmi_device *dev; 276 277 /* No duplicate device */ 278 if (dmi_find_device(type, name, NULL)) 279 return; 280 281 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 282 if (!dev) 283 return; 284 285 dev->type = type; 286 strcpy((char *)(dev + 1), name); 287 dev->name = (char *)(dev + 1); 288 dev->device_data = NULL; 289 list_add(&dev->list, &dmi_devices); 290 } 291 292 static void __init dmi_save_devices(const struct dmi_header *dm) 293 { 294 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 295 296 for (i = 0; i < count; i++) { 297 const char *d = (char *)(dm + 1) + (i * 2); 298 299 /* Skip disabled device */ 300 if ((*d & 0x80) == 0) 301 continue; 302 303 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 304 } 305 } 306 307 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 308 { 309 int i, count; 310 struct dmi_device *dev; 311 312 if (dm->length < 0x05) 313 return; 314 315 count = *(u8 *)(dm + 1); 316 for (i = 1; i <= count; i++) { 317 const char *devname = dmi_string(dm, i); 318 319 if (devname == dmi_empty_string) 320 continue; 321 322 dev = dmi_alloc(sizeof(*dev)); 323 if (!dev) 324 break; 325 326 dev->type = DMI_DEV_TYPE_OEM_STRING; 327 dev->name = devname; 328 dev->device_data = NULL; 329 330 list_add(&dev->list, &dmi_devices); 331 } 332 } 333 334 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 335 { 336 struct dmi_device *dev; 337 void *data; 338 339 data = dmi_alloc(dm->length); 340 if (data == NULL) 341 return; 342 343 memcpy(data, dm, dm->length); 344 345 dev = dmi_alloc(sizeof(*dev)); 346 if (!dev) 347 return; 348 349 dev->type = DMI_DEV_TYPE_IPMI; 350 dev->name = "IPMI controller"; 351 dev->device_data = data; 352 353 list_add_tail(&dev->list, &dmi_devices); 354 } 355 356 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 357 int devfn, const char *name, int type) 358 { 359 struct dmi_dev_onboard *dev; 360 361 /* Ignore invalid values */ 362 if (type == DMI_DEV_TYPE_DEV_SLOT && 363 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 364 return; 365 366 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 367 if (!dev) 368 return; 369 370 dev->instance = instance; 371 dev->segment = segment; 372 dev->bus = bus; 373 dev->devfn = devfn; 374 375 strcpy((char *)&dev[1], name); 376 dev->dev.type = type; 377 dev->dev.name = (char *)&dev[1]; 378 dev->dev.device_data = dev; 379 380 list_add(&dev->dev.list, &dmi_devices); 381 } 382 383 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 384 { 385 const char *name; 386 const u8 *d = (u8 *)dm; 387 388 if (dm->length < 0x0B) 389 return; 390 391 /* Skip disabled device */ 392 if ((d[0x5] & 0x80) == 0) 393 return; 394 395 name = dmi_string_nosave(dm, d[0x4]); 396 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 397 DMI_DEV_TYPE_DEV_ONBOARD); 398 dmi_save_one_device(d[0x5] & 0x7f, name); 399 } 400 401 static void __init dmi_save_system_slot(const struct dmi_header *dm) 402 { 403 const u8 *d = (u8 *)dm; 404 405 /* Need SMBIOS 2.6+ structure */ 406 if (dm->length < 0x11) 407 return; 408 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 409 d[0x10], dmi_string_nosave(dm, d[0x4]), 410 DMI_DEV_TYPE_DEV_SLOT); 411 } 412 413 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 414 { 415 if (dm->type != DMI_ENTRY_MEM_DEVICE) 416 return; 417 dmi_memdev_nr++; 418 } 419 420 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 421 { 422 const char *d = (const char *)dm; 423 static int nr; 424 u64 bytes; 425 u16 size; 426 427 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) 428 return; 429 if (nr >= dmi_memdev_nr) { 430 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 431 return; 432 } 433 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 434 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 435 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 436 dmi_memdev[nr].type = d[0x12]; 437 438 size = get_unaligned((u16 *)&d[0xC]); 439 if (size == 0) 440 bytes = 0; 441 else if (size == 0xffff) 442 bytes = ~0ull; 443 else if (size & 0x8000) 444 bytes = (u64)(size & 0x7fff) << 10; 445 else if (size != 0x7fff || dm->length < 0x20) 446 bytes = (u64)size << 20; 447 else 448 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 449 450 dmi_memdev[nr].size = bytes; 451 nr++; 452 } 453 454 static void __init dmi_memdev_walk(void) 455 { 456 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 457 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 458 if (dmi_memdev) 459 dmi_walk_early(save_mem_devices); 460 } 461 } 462 463 /* 464 * Process a DMI table entry. Right now all we care about are the BIOS 465 * and machine entries. For 2.5 we should pull the smbus controller info 466 * out of here. 467 */ 468 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 469 { 470 switch (dm->type) { 471 case 0: /* BIOS Information */ 472 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 473 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 474 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 475 dmi_save_release(dm, DMI_BIOS_RELEASE, 21); 476 dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23); 477 break; 478 case 1: /* System Information */ 479 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 480 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 481 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 482 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 483 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 484 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 485 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 486 break; 487 case 2: /* Base Board Information */ 488 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 489 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 490 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 491 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 492 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 493 break; 494 case 3: /* Chassis Information */ 495 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 496 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 497 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 498 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 499 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 500 break; 501 case 9: /* System Slots */ 502 dmi_save_system_slot(dm); 503 break; 504 case 10: /* Onboard Devices Information */ 505 dmi_save_devices(dm); 506 break; 507 case 11: /* OEM Strings */ 508 dmi_save_oem_strings_devices(dm); 509 break; 510 case 38: /* IPMI Device Information */ 511 dmi_save_ipmi_device(dm); 512 break; 513 case 41: /* Onboard Devices Extended Information */ 514 dmi_save_extended_devices(dm); 515 } 516 } 517 518 static int __init print_filtered(char *buf, size_t len, const char *info) 519 { 520 int c = 0; 521 const char *p; 522 523 if (!info) 524 return c; 525 526 for (p = info; *p; p++) 527 if (isprint(*p)) 528 c += scnprintf(buf + c, len - c, "%c", *p); 529 else 530 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 531 return c; 532 } 533 534 static void __init dmi_format_ids(char *buf, size_t len) 535 { 536 int c = 0; 537 const char *board; /* Board Name is optional */ 538 539 c += print_filtered(buf + c, len - c, 540 dmi_get_system_info(DMI_SYS_VENDOR)); 541 c += scnprintf(buf + c, len - c, " "); 542 c += print_filtered(buf + c, len - c, 543 dmi_get_system_info(DMI_PRODUCT_NAME)); 544 545 board = dmi_get_system_info(DMI_BOARD_NAME); 546 if (board) { 547 c += scnprintf(buf + c, len - c, "/"); 548 c += print_filtered(buf + c, len - c, board); 549 } 550 c += scnprintf(buf + c, len - c, ", BIOS "); 551 c += print_filtered(buf + c, len - c, 552 dmi_get_system_info(DMI_BIOS_VERSION)); 553 c += scnprintf(buf + c, len - c, " "); 554 c += print_filtered(buf + c, len - c, 555 dmi_get_system_info(DMI_BIOS_DATE)); 556 } 557 558 /* 559 * Check for DMI/SMBIOS headers in the system firmware image. Any 560 * SMBIOS header must start 16 bytes before the DMI header, so take a 561 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 562 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 563 * takes precedence) and return 0. Otherwise return 1. 564 */ 565 static int __init dmi_present(const u8 *buf) 566 { 567 u32 smbios_ver; 568 569 if (memcmp(buf, "_SM_", 4) == 0 && 570 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 571 smbios_ver = get_unaligned_be16(buf + 6); 572 smbios_entry_point_size = buf[5]; 573 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 574 575 /* Some BIOS report weird SMBIOS version, fix that up */ 576 switch (smbios_ver) { 577 case 0x021F: 578 case 0x0221: 579 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 580 smbios_ver & 0xFF, 3); 581 smbios_ver = 0x0203; 582 break; 583 case 0x0233: 584 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 585 smbios_ver = 0x0206; 586 break; 587 } 588 } else { 589 smbios_ver = 0; 590 } 591 592 buf += 16; 593 594 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 595 if (smbios_ver) 596 dmi_ver = smbios_ver; 597 else 598 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 599 dmi_ver <<= 8; 600 dmi_num = get_unaligned_le16(buf + 12); 601 dmi_len = get_unaligned_le16(buf + 6); 602 dmi_base = get_unaligned_le32(buf + 8); 603 604 if (dmi_walk_early(dmi_decode) == 0) { 605 if (smbios_ver) { 606 pr_info("SMBIOS %d.%d present.\n", 607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 608 } else { 609 smbios_entry_point_size = 15; 610 memcpy(smbios_entry_point, buf, 611 smbios_entry_point_size); 612 pr_info("Legacy DMI %d.%d present.\n", 613 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 614 } 615 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 616 pr_info("DMI: %s\n", dmi_ids_string); 617 return 0; 618 } 619 } 620 621 return 1; 622 } 623 624 /* 625 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 626 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 627 */ 628 static int __init dmi_smbios3_present(const u8 *buf) 629 { 630 if (memcmp(buf, "_SM3_", 5) == 0 && 631 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 632 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 633 dmi_num = 0; /* No longer specified */ 634 dmi_len = get_unaligned_le32(buf + 12); 635 dmi_base = get_unaligned_le64(buf + 16); 636 smbios_entry_point_size = buf[6]; 637 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 638 639 if (dmi_walk_early(dmi_decode) == 0) { 640 pr_info("SMBIOS %d.%d.%d present.\n", 641 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 642 dmi_ver & 0xFF); 643 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 644 pr_info("DMI: %s\n", dmi_ids_string); 645 return 0; 646 } 647 } 648 return 1; 649 } 650 651 static void __init dmi_scan_machine(void) 652 { 653 char __iomem *p, *q; 654 char buf[32]; 655 656 if (efi_enabled(EFI_CONFIG_TABLES)) { 657 /* 658 * According to the DMTF SMBIOS reference spec v3.0.0, it is 659 * allowed to define both the 64-bit entry point (smbios3) and 660 * the 32-bit entry point (smbios), in which case they should 661 * either both point to the same SMBIOS structure table, or the 662 * table pointed to by the 64-bit entry point should contain a 663 * superset of the table contents pointed to by the 32-bit entry 664 * point (section 5.2) 665 * This implies that the 64-bit entry point should have 666 * precedence if it is defined and supported by the OS. If we 667 * have the 64-bit entry point, but fail to decode it, fall 668 * back to the legacy one (if available) 669 */ 670 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 671 p = dmi_early_remap(efi.smbios3, 32); 672 if (p == NULL) 673 goto error; 674 memcpy_fromio(buf, p, 32); 675 dmi_early_unmap(p, 32); 676 677 if (!dmi_smbios3_present(buf)) { 678 dmi_available = 1; 679 return; 680 } 681 } 682 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 683 goto error; 684 685 /* This is called as a core_initcall() because it isn't 686 * needed during early boot. This also means we can 687 * iounmap the space when we're done with it. 688 */ 689 p = dmi_early_remap(efi.smbios, 32); 690 if (p == NULL) 691 goto error; 692 memcpy_fromio(buf, p, 32); 693 dmi_early_unmap(p, 32); 694 695 if (!dmi_present(buf)) { 696 dmi_available = 1; 697 return; 698 } 699 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 700 p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); 701 if (p == NULL) 702 goto error; 703 704 /* 705 * Same logic as above, look for a 64-bit entry point 706 * first, and if not found, fall back to 32-bit entry point. 707 */ 708 memcpy_fromio(buf, p, 16); 709 for (q = p + 16; q < p + 0x10000; q += 16) { 710 memcpy_fromio(buf + 16, q, 16); 711 if (!dmi_smbios3_present(buf)) { 712 dmi_available = 1; 713 dmi_early_unmap(p, 0x10000); 714 return; 715 } 716 memcpy(buf, buf + 16, 16); 717 } 718 719 /* 720 * Iterate over all possible DMI header addresses q. 721 * Maintain the 32 bytes around q in buf. On the 722 * first iteration, substitute zero for the 723 * out-of-range bytes so there is no chance of falsely 724 * detecting an SMBIOS header. 725 */ 726 memset(buf, 0, 16); 727 for (q = p; q < p + 0x10000; q += 16) { 728 memcpy_fromio(buf + 16, q, 16); 729 if (!dmi_present(buf)) { 730 dmi_available = 1; 731 dmi_early_unmap(p, 0x10000); 732 return; 733 } 734 memcpy(buf, buf + 16, 16); 735 } 736 dmi_early_unmap(p, 0x10000); 737 } 738 error: 739 pr_info("DMI not present or invalid.\n"); 740 } 741 742 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 743 struct bin_attribute *attr, char *buf, 744 loff_t pos, size_t count) 745 { 746 memcpy(buf, attr->private + pos, count); 747 return count; 748 } 749 750 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 751 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 752 753 static int __init dmi_init(void) 754 { 755 struct kobject *tables_kobj; 756 u8 *dmi_table; 757 int ret = -ENOMEM; 758 759 if (!dmi_available) 760 return 0; 761 762 /* 763 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 764 * even after farther error, as it can be used by other modules like 765 * dmi-sysfs. 766 */ 767 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 768 if (!dmi_kobj) 769 goto err; 770 771 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 772 if (!tables_kobj) 773 goto err; 774 775 dmi_table = dmi_remap(dmi_base, dmi_len); 776 if (!dmi_table) 777 goto err_tables; 778 779 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 780 bin_attr_smbios_entry_point.private = smbios_entry_point; 781 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 782 if (ret) 783 goto err_unmap; 784 785 bin_attr_DMI.size = dmi_len; 786 bin_attr_DMI.private = dmi_table; 787 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 788 if (!ret) 789 return 0; 790 791 sysfs_remove_bin_file(tables_kobj, 792 &bin_attr_smbios_entry_point); 793 err_unmap: 794 dmi_unmap(dmi_table); 795 err_tables: 796 kobject_del(tables_kobj); 797 kobject_put(tables_kobj); 798 err: 799 pr_err("dmi: Firmware registration failed.\n"); 800 801 return ret; 802 } 803 subsys_initcall(dmi_init); 804 805 /** 806 * dmi_setup - scan and setup DMI system information 807 * 808 * Scan the DMI system information. This setups DMI identifiers 809 * (dmi_system_id) for printing it out on task dumps and prepares 810 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 811 * for using this when reporting memory errors. 812 */ 813 void __init dmi_setup(void) 814 { 815 dmi_scan_machine(); 816 if (!dmi_available) 817 return; 818 819 dmi_memdev_walk(); 820 dump_stack_set_arch_desc("%s", dmi_ids_string); 821 } 822 823 /** 824 * dmi_matches - check if dmi_system_id structure matches system DMI data 825 * @dmi: pointer to the dmi_system_id structure to check 826 */ 827 static bool dmi_matches(const struct dmi_system_id *dmi) 828 { 829 int i; 830 831 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 832 int s = dmi->matches[i].slot; 833 if (s == DMI_NONE) 834 break; 835 if (s == DMI_OEM_STRING) { 836 /* DMI_OEM_STRING must be exact match */ 837 const struct dmi_device *valid; 838 839 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 840 dmi->matches[i].substr, NULL); 841 if (valid) 842 continue; 843 } else if (dmi_ident[s]) { 844 if (dmi->matches[i].exact_match) { 845 if (!strcmp(dmi_ident[s], 846 dmi->matches[i].substr)) 847 continue; 848 } else { 849 if (strstr(dmi_ident[s], 850 dmi->matches[i].substr)) 851 continue; 852 } 853 } 854 855 /* No match */ 856 return false; 857 } 858 return true; 859 } 860 861 /** 862 * dmi_is_end_of_table - check for end-of-table marker 863 * @dmi: pointer to the dmi_system_id structure to check 864 */ 865 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 866 { 867 return dmi->matches[0].slot == DMI_NONE; 868 } 869 870 /** 871 * dmi_check_system - check system DMI data 872 * @list: array of dmi_system_id structures to match against 873 * All non-null elements of the list must match 874 * their slot's (field index's) data (i.e., each 875 * list string must be a substring of the specified 876 * DMI slot's string data) to be considered a 877 * successful match. 878 * 879 * Walk the blacklist table running matching functions until someone 880 * returns non zero or we hit the end. Callback function is called for 881 * each successful match. Returns the number of matches. 882 * 883 * dmi_setup must be called before this function is called. 884 */ 885 int dmi_check_system(const struct dmi_system_id *list) 886 { 887 int count = 0; 888 const struct dmi_system_id *d; 889 890 for (d = list; !dmi_is_end_of_table(d); d++) 891 if (dmi_matches(d)) { 892 count++; 893 if (d->callback && d->callback(d)) 894 break; 895 } 896 897 return count; 898 } 899 EXPORT_SYMBOL(dmi_check_system); 900 901 /** 902 * dmi_first_match - find dmi_system_id structure matching system DMI data 903 * @list: array of dmi_system_id structures to match against 904 * All non-null elements of the list must match 905 * their slot's (field index's) data (i.e., each 906 * list string must be a substring of the specified 907 * DMI slot's string data) to be considered a 908 * successful match. 909 * 910 * Walk the blacklist table until the first match is found. Return the 911 * pointer to the matching entry or NULL if there's no match. 912 * 913 * dmi_setup must be called before this function is called. 914 */ 915 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 916 { 917 const struct dmi_system_id *d; 918 919 for (d = list; !dmi_is_end_of_table(d); d++) 920 if (dmi_matches(d)) 921 return d; 922 923 return NULL; 924 } 925 EXPORT_SYMBOL(dmi_first_match); 926 927 /** 928 * dmi_get_system_info - return DMI data value 929 * @field: data index (see enum dmi_field) 930 * 931 * Returns one DMI data value, can be used to perform 932 * complex DMI data checks. 933 */ 934 const char *dmi_get_system_info(int field) 935 { 936 return dmi_ident[field]; 937 } 938 EXPORT_SYMBOL(dmi_get_system_info); 939 940 /** 941 * dmi_name_in_serial - Check if string is in the DMI product serial information 942 * @str: string to check for 943 */ 944 int dmi_name_in_serial(const char *str) 945 { 946 int f = DMI_PRODUCT_SERIAL; 947 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 948 return 1; 949 return 0; 950 } 951 952 /** 953 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 954 * @str: Case sensitive Name 955 */ 956 int dmi_name_in_vendors(const char *str) 957 { 958 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 959 int i; 960 for (i = 0; fields[i] != DMI_NONE; i++) { 961 int f = fields[i]; 962 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 963 return 1; 964 } 965 return 0; 966 } 967 EXPORT_SYMBOL(dmi_name_in_vendors); 968 969 /** 970 * dmi_find_device - find onboard device by type/name 971 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 972 * @name: device name string or %NULL to match all 973 * @from: previous device found in search, or %NULL for new search. 974 * 975 * Iterates through the list of known onboard devices. If a device is 976 * found with a matching @type and @name, a pointer to its device 977 * structure is returned. Otherwise, %NULL is returned. 978 * A new search is initiated by passing %NULL as the @from argument. 979 * If @from is not %NULL, searches continue from next device. 980 */ 981 const struct dmi_device *dmi_find_device(int type, const char *name, 982 const struct dmi_device *from) 983 { 984 const struct list_head *head = from ? &from->list : &dmi_devices; 985 struct list_head *d; 986 987 for (d = head->next; d != &dmi_devices; d = d->next) { 988 const struct dmi_device *dev = 989 list_entry(d, struct dmi_device, list); 990 991 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 992 ((name == NULL) || (strcmp(dev->name, name) == 0))) 993 return dev; 994 } 995 996 return NULL; 997 } 998 EXPORT_SYMBOL(dmi_find_device); 999 1000 /** 1001 * dmi_get_date - parse a DMI date 1002 * @field: data index (see enum dmi_field) 1003 * @yearp: optional out parameter for the year 1004 * @monthp: optional out parameter for the month 1005 * @dayp: optional out parameter for the day 1006 * 1007 * The date field is assumed to be in the form resembling 1008 * [mm[/dd]]/yy[yy] and the result is stored in the out 1009 * parameters any or all of which can be omitted. 1010 * 1011 * If the field doesn't exist, all out parameters are set to zero 1012 * and false is returned. Otherwise, true is returned with any 1013 * invalid part of date set to zero. 1014 * 1015 * On return, year, month and day are guaranteed to be in the 1016 * range of [0,9999], [0,12] and [0,31] respectively. 1017 */ 1018 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 1019 { 1020 int year = 0, month = 0, day = 0; 1021 bool exists; 1022 const char *s, *y; 1023 char *e; 1024 1025 s = dmi_get_system_info(field); 1026 exists = s; 1027 if (!exists) 1028 goto out; 1029 1030 /* 1031 * Determine year first. We assume the date string resembles 1032 * mm/dd/yy[yy] but the original code extracted only the year 1033 * from the end. Keep the behavior in the spirit of no 1034 * surprises. 1035 */ 1036 y = strrchr(s, '/'); 1037 if (!y) 1038 goto out; 1039 1040 y++; 1041 year = simple_strtoul(y, &e, 10); 1042 if (y != e && year < 100) { /* 2-digit year */ 1043 year += 1900; 1044 if (year < 1996) /* no dates < spec 1.0 */ 1045 year += 100; 1046 } 1047 if (year > 9999) /* year should fit in %04d */ 1048 year = 0; 1049 1050 /* parse the mm and dd */ 1051 month = simple_strtoul(s, &e, 10); 1052 if (s == e || *e != '/' || !month || month > 12) { 1053 month = 0; 1054 goto out; 1055 } 1056 1057 s = e + 1; 1058 day = simple_strtoul(s, &e, 10); 1059 if (s == y || s == e || *e != '/' || day > 31) 1060 day = 0; 1061 out: 1062 if (yearp) 1063 *yearp = year; 1064 if (monthp) 1065 *monthp = month; 1066 if (dayp) 1067 *dayp = day; 1068 return exists; 1069 } 1070 EXPORT_SYMBOL(dmi_get_date); 1071 1072 /** 1073 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1074 * 1075 * Returns year on success, -ENXIO if DMI is not selected, 1076 * or a different negative error code if DMI field is not present 1077 * or not parseable. 1078 */ 1079 int dmi_get_bios_year(void) 1080 { 1081 bool exists; 1082 int year; 1083 1084 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1085 if (!exists) 1086 return -ENODATA; 1087 1088 return year ? year : -ERANGE; 1089 } 1090 EXPORT_SYMBOL(dmi_get_bios_year); 1091 1092 /** 1093 * dmi_walk - Walk the DMI table and get called back for every record 1094 * @decode: Callback function 1095 * @private_data: Private data to be passed to the callback function 1096 * 1097 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1098 * or a different negative error code if DMI walking fails. 1099 */ 1100 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1101 void *private_data) 1102 { 1103 u8 *buf; 1104 1105 if (!dmi_available) 1106 return -ENXIO; 1107 1108 buf = dmi_remap(dmi_base, dmi_len); 1109 if (buf == NULL) 1110 return -ENOMEM; 1111 1112 dmi_decode_table(buf, decode, private_data); 1113 1114 dmi_unmap(buf); 1115 return 0; 1116 } 1117 EXPORT_SYMBOL_GPL(dmi_walk); 1118 1119 /** 1120 * dmi_match - compare a string to the dmi field (if exists) 1121 * @f: DMI field identifier 1122 * @str: string to compare the DMI field to 1123 * 1124 * Returns true if the requested field equals to the str (including NULL). 1125 */ 1126 bool dmi_match(enum dmi_field f, const char *str) 1127 { 1128 const char *info = dmi_get_system_info(f); 1129 1130 if (info == NULL || str == NULL) 1131 return info == str; 1132 1133 return !strcmp(info, str); 1134 } 1135 EXPORT_SYMBOL_GPL(dmi_match); 1136 1137 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1138 { 1139 int n; 1140 1141 if (dmi_memdev == NULL) 1142 return; 1143 1144 for (n = 0; n < dmi_memdev_nr; n++) { 1145 if (handle == dmi_memdev[n].handle) { 1146 *bank = dmi_memdev[n].bank; 1147 *device = dmi_memdev[n].device; 1148 break; 1149 } 1150 } 1151 } 1152 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1153 1154 u64 dmi_memdev_size(u16 handle) 1155 { 1156 int n; 1157 1158 if (dmi_memdev) { 1159 for (n = 0; n < dmi_memdev_nr; n++) { 1160 if (handle == dmi_memdev[n].handle) 1161 return dmi_memdev[n].size; 1162 } 1163 } 1164 return ~0ull; 1165 } 1166 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1167 1168 /** 1169 * dmi_memdev_type - get the memory type 1170 * @handle: DMI structure handle 1171 * 1172 * Return the DMI memory type of the module in the slot associated with the 1173 * given DMI handle, or 0x0 if no such DMI handle exists. 1174 */ 1175 u8 dmi_memdev_type(u16 handle) 1176 { 1177 int n; 1178 1179 if (dmi_memdev) { 1180 for (n = 0; n < dmi_memdev_nr; n++) { 1181 if (handle == dmi_memdev[n].handle) 1182 return dmi_memdev[n].type; 1183 } 1184 } 1185 return 0x0; /* Not a valid value */ 1186 } 1187 EXPORT_SYMBOL_GPL(dmi_memdev_type); 1188 1189 /** 1190 * dmi_memdev_handle - get the DMI handle of a memory slot 1191 * @slot: slot number 1192 * 1193 * Return the DMI handle associated with a given memory slot, or %0xFFFF 1194 * if there is no such slot. 1195 */ 1196 u16 dmi_memdev_handle(int slot) 1197 { 1198 if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) 1199 return dmi_memdev[slot].handle; 1200 1201 return 0xffff; /* Not a valid value */ 1202 } 1203 EXPORT_SYMBOL_GPL(dmi_memdev_handle); 1204