1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 /* 14 * DMI stands for "Desktop Management Interface". It is part 15 * of and an antecedent to, SMBIOS, which stands for System 16 * Management BIOS. See further: http://www.dmtf.org/standards 17 */ 18 static const char dmi_empty_string[] = " "; 19 20 static u16 __initdata dmi_ver; 21 /* 22 * Catch too early calls to dmi_check_system(): 23 */ 24 static int dmi_initialized; 25 26 /* DMI system identification string used during boot */ 27 static char dmi_ids_string[128] __initdata; 28 29 static struct dmi_memdev_info { 30 const char *device; 31 const char *bank; 32 u16 handle; 33 } *dmi_memdev; 34 static int dmi_memdev_nr; 35 36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 37 { 38 const u8 *bp = ((u8 *) dm) + dm->length; 39 40 if (s) { 41 s--; 42 while (s > 0 && *bp) { 43 bp += strlen(bp) + 1; 44 s--; 45 } 46 47 if (*bp != 0) { 48 size_t len = strlen(bp)+1; 49 size_t cmp_len = len > 8 ? 8 : len; 50 51 if (!memcmp(bp, dmi_empty_string, cmp_len)) 52 return dmi_empty_string; 53 return bp; 54 } 55 } 56 57 return ""; 58 } 59 60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 61 { 62 const char *bp = dmi_string_nosave(dm, s); 63 char *str; 64 size_t len; 65 66 if (bp == dmi_empty_string) 67 return dmi_empty_string; 68 69 len = strlen(bp) + 1; 70 str = dmi_alloc(len); 71 if (str != NULL) 72 strcpy(str, bp); 73 74 return str; 75 } 76 77 /* 78 * We have to be cautious here. We have seen BIOSes with DMI pointers 79 * pointing to completely the wrong place for example 80 */ 81 static void dmi_table(u8 *buf, u32 len, int num, 82 void (*decode)(const struct dmi_header *, void *), 83 void *private_data) 84 { 85 u8 *data = buf; 86 int i = 0; 87 88 /* 89 * Stop when we see all the items the table claimed to have 90 * OR we run off the end of the table (also happens) 91 */ 92 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 93 const struct dmi_header *dm = (const struct dmi_header *)data; 94 95 /* 96 * We want to know the total length (formatted area and 97 * strings) before decoding to make sure we won't run off the 98 * table in dmi_decode or dmi_string 99 */ 100 data += dm->length; 101 while ((data - buf < len - 1) && (data[0] || data[1])) 102 data++; 103 if (data - buf < len - 1) 104 decode(dm, private_data); 105 106 /* 107 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 108 */ 109 if (dm->type == DMI_ENTRY_END_OF_TABLE) 110 break; 111 112 data += 2; 113 i++; 114 } 115 } 116 117 static phys_addr_t dmi_base; 118 static u32 dmi_len; 119 static u16 dmi_num; 120 121 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 122 void *)) 123 { 124 u8 *buf; 125 126 buf = dmi_early_remap(dmi_base, dmi_len); 127 if (buf == NULL) 128 return -1; 129 130 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 131 132 add_device_randomness(buf, dmi_len); 133 134 dmi_early_unmap(buf, dmi_len); 135 return 0; 136 } 137 138 static int __init dmi_checksum(const u8 *buf, u8 len) 139 { 140 u8 sum = 0; 141 int a; 142 143 for (a = 0; a < len; a++) 144 sum += buf[a]; 145 146 return sum == 0; 147 } 148 149 static const char *dmi_ident[DMI_STRING_MAX]; 150 static LIST_HEAD(dmi_devices); 151 int dmi_available; 152 153 /* 154 * Save a DMI string 155 */ 156 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 157 int string) 158 { 159 const char *d = (const char *) dm; 160 const char *p; 161 162 if (dmi_ident[slot]) 163 return; 164 165 p = dmi_string(dm, d[string]); 166 if (p == NULL) 167 return; 168 169 dmi_ident[slot] = p; 170 } 171 172 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 173 int index) 174 { 175 const u8 *d = (u8 *) dm + index; 176 char *s; 177 int is_ff = 1, is_00 = 1, i; 178 179 if (dmi_ident[slot]) 180 return; 181 182 for (i = 0; i < 16 && (is_ff || is_00); i++) { 183 if (d[i] != 0x00) 184 is_00 = 0; 185 if (d[i] != 0xFF) 186 is_ff = 0; 187 } 188 189 if (is_ff || is_00) 190 return; 191 192 s = dmi_alloc(16*2+4+1); 193 if (!s) 194 return; 195 196 /* 197 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 198 * the UUID are supposed to be little-endian encoded. The specification 199 * says that this is the defacto standard. 200 */ 201 if (dmi_ver >= 0x0206) 202 sprintf(s, "%pUL", d); 203 else 204 sprintf(s, "%pUB", d); 205 206 dmi_ident[slot] = s; 207 } 208 209 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 210 int index) 211 { 212 const u8 *d = (u8 *) dm + index; 213 char *s; 214 215 if (dmi_ident[slot]) 216 return; 217 218 s = dmi_alloc(4); 219 if (!s) 220 return; 221 222 sprintf(s, "%u", *d & 0x7F); 223 dmi_ident[slot] = s; 224 } 225 226 static void __init dmi_save_one_device(int type, const char *name) 227 { 228 struct dmi_device *dev; 229 230 /* No duplicate device */ 231 if (dmi_find_device(type, name, NULL)) 232 return; 233 234 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 235 if (!dev) 236 return; 237 238 dev->type = type; 239 strcpy((char *)(dev + 1), name); 240 dev->name = (char *)(dev + 1); 241 dev->device_data = NULL; 242 list_add(&dev->list, &dmi_devices); 243 } 244 245 static void __init dmi_save_devices(const struct dmi_header *dm) 246 { 247 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 248 249 for (i = 0; i < count; i++) { 250 const char *d = (char *)(dm + 1) + (i * 2); 251 252 /* Skip disabled device */ 253 if ((*d & 0x80) == 0) 254 continue; 255 256 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 257 } 258 } 259 260 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 261 { 262 int i, count = *(u8 *)(dm + 1); 263 struct dmi_device *dev; 264 265 for (i = 1; i <= count; i++) { 266 const char *devname = dmi_string(dm, i); 267 268 if (devname == dmi_empty_string) 269 continue; 270 271 dev = dmi_alloc(sizeof(*dev)); 272 if (!dev) 273 break; 274 275 dev->type = DMI_DEV_TYPE_OEM_STRING; 276 dev->name = devname; 277 dev->device_data = NULL; 278 279 list_add(&dev->list, &dmi_devices); 280 } 281 } 282 283 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 284 { 285 struct dmi_device *dev; 286 void *data; 287 288 data = dmi_alloc(dm->length); 289 if (data == NULL) 290 return; 291 292 memcpy(data, dm, dm->length); 293 294 dev = dmi_alloc(sizeof(*dev)); 295 if (!dev) 296 return; 297 298 dev->type = DMI_DEV_TYPE_IPMI; 299 dev->name = "IPMI controller"; 300 dev->device_data = data; 301 302 list_add_tail(&dev->list, &dmi_devices); 303 } 304 305 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 306 int devfn, const char *name) 307 { 308 struct dmi_dev_onboard *onboard_dev; 309 310 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 311 if (!onboard_dev) 312 return; 313 314 onboard_dev->instance = instance; 315 onboard_dev->segment = segment; 316 onboard_dev->bus = bus; 317 onboard_dev->devfn = devfn; 318 319 strcpy((char *)&onboard_dev[1], name); 320 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 321 onboard_dev->dev.name = (char *)&onboard_dev[1]; 322 onboard_dev->dev.device_data = onboard_dev; 323 324 list_add(&onboard_dev->dev.list, &dmi_devices); 325 } 326 327 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 328 { 329 const u8 *d = (u8 *) dm + 5; 330 331 /* Skip disabled device */ 332 if ((*d & 0x80) == 0) 333 return; 334 335 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 336 dmi_string_nosave(dm, *(d-1))); 337 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 338 } 339 340 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 341 { 342 if (dm->type != DMI_ENTRY_MEM_DEVICE) 343 return; 344 dmi_memdev_nr++; 345 } 346 347 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 348 { 349 const char *d = (const char *)dm; 350 static int nr; 351 352 if (dm->type != DMI_ENTRY_MEM_DEVICE) 353 return; 354 if (nr >= dmi_memdev_nr) { 355 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 356 return; 357 } 358 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 359 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 360 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 361 nr++; 362 } 363 364 void __init dmi_memdev_walk(void) 365 { 366 if (!dmi_available) 367 return; 368 369 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 370 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 371 if (dmi_memdev) 372 dmi_walk_early(save_mem_devices); 373 } 374 } 375 376 /* 377 * Process a DMI table entry. Right now all we care about are the BIOS 378 * and machine entries. For 2.5 we should pull the smbus controller info 379 * out of here. 380 */ 381 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 382 { 383 switch (dm->type) { 384 case 0: /* BIOS Information */ 385 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 386 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 387 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 388 break; 389 case 1: /* System Information */ 390 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 391 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 392 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 393 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 394 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 395 break; 396 case 2: /* Base Board Information */ 397 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 398 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 399 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 400 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 401 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 402 break; 403 case 3: /* Chassis Information */ 404 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 405 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 406 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 407 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 408 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 409 break; 410 case 10: /* Onboard Devices Information */ 411 dmi_save_devices(dm); 412 break; 413 case 11: /* OEM Strings */ 414 dmi_save_oem_strings_devices(dm); 415 break; 416 case 38: /* IPMI Device Information */ 417 dmi_save_ipmi_device(dm); 418 break; 419 case 41: /* Onboard Devices Extended Information */ 420 dmi_save_extended_devices(dm); 421 } 422 } 423 424 static int __init print_filtered(char *buf, size_t len, const char *info) 425 { 426 int c = 0; 427 const char *p; 428 429 if (!info) 430 return c; 431 432 for (p = info; *p; p++) 433 if (isprint(*p)) 434 c += scnprintf(buf + c, len - c, "%c", *p); 435 else 436 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 437 return c; 438 } 439 440 static void __init dmi_format_ids(char *buf, size_t len) 441 { 442 int c = 0; 443 const char *board; /* Board Name is optional */ 444 445 c += print_filtered(buf + c, len - c, 446 dmi_get_system_info(DMI_SYS_VENDOR)); 447 c += scnprintf(buf + c, len - c, " "); 448 c += print_filtered(buf + c, len - c, 449 dmi_get_system_info(DMI_PRODUCT_NAME)); 450 451 board = dmi_get_system_info(DMI_BOARD_NAME); 452 if (board) { 453 c += scnprintf(buf + c, len - c, "/"); 454 c += print_filtered(buf + c, len - c, board); 455 } 456 c += scnprintf(buf + c, len - c, ", BIOS "); 457 c += print_filtered(buf + c, len - c, 458 dmi_get_system_info(DMI_BIOS_VERSION)); 459 c += scnprintf(buf + c, len - c, " "); 460 c += print_filtered(buf + c, len - c, 461 dmi_get_system_info(DMI_BIOS_DATE)); 462 } 463 464 /* 465 * Check for DMI/SMBIOS headers in the system firmware image. Any 466 * SMBIOS header must start 16 bytes before the DMI header, so take a 467 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 468 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 469 * takes precedence) and return 0. Otherwise return 1. 470 */ 471 static int __init dmi_present(const u8 *buf) 472 { 473 int smbios_ver; 474 475 if (memcmp(buf, "_SM_", 4) == 0 && 476 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 477 smbios_ver = get_unaligned_be16(buf + 6); 478 479 /* Some BIOS report weird SMBIOS version, fix that up */ 480 switch (smbios_ver) { 481 case 0x021F: 482 case 0x0221: 483 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 484 smbios_ver & 0xFF, 3); 485 smbios_ver = 0x0203; 486 break; 487 case 0x0233: 488 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); 489 smbios_ver = 0x0206; 490 break; 491 } 492 } else { 493 smbios_ver = 0; 494 } 495 496 buf += 16; 497 498 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 499 dmi_num = get_unaligned_le16(buf + 12); 500 dmi_len = get_unaligned_le16(buf + 6); 501 dmi_base = get_unaligned_le32(buf + 8); 502 503 if (dmi_walk_early(dmi_decode) == 0) { 504 if (smbios_ver) { 505 dmi_ver = smbios_ver; 506 pr_info("SMBIOS %d.%d present.\n", 507 dmi_ver >> 8, dmi_ver & 0xFF); 508 } else { 509 dmi_ver = (buf[14] & 0xF0) << 4 | 510 (buf[14] & 0x0F); 511 pr_info("Legacy DMI %d.%d present.\n", 512 dmi_ver >> 8, dmi_ver & 0xFF); 513 } 514 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 515 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 516 return 0; 517 } 518 } 519 520 return 1; 521 } 522 523 /* 524 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 525 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 526 */ 527 static int __init dmi_smbios3_present(const u8 *buf) 528 { 529 if (memcmp(buf, "_SM3_", 5) == 0 && 530 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 531 dmi_ver = get_unaligned_be16(buf + 7); 532 dmi_len = get_unaligned_le32(buf + 12); 533 dmi_base = get_unaligned_le64(buf + 16); 534 535 /* 536 * The 64-bit SMBIOS 3.0 entry point no longer has a field 537 * containing the number of structures present in the table. 538 * Instead, it defines the table size as a maximum size, and 539 * relies on the end-of-table structure type (#127) to be used 540 * to signal the end of the table. 541 * So let's define dmi_num as an upper bound as well: each 542 * structure has a 4 byte header, so dmi_len / 4 is an upper 543 * bound for the number of structures in the table. 544 */ 545 dmi_num = dmi_len / 4; 546 547 if (dmi_walk_early(dmi_decode) == 0) { 548 pr_info("SMBIOS %d.%d present.\n", 549 dmi_ver >> 8, dmi_ver & 0xFF); 550 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 551 pr_debug("DMI: %s\n", dmi_ids_string); 552 return 0; 553 } 554 } 555 return 1; 556 } 557 558 void __init dmi_scan_machine(void) 559 { 560 char __iomem *p, *q; 561 char buf[32]; 562 563 if (efi_enabled(EFI_CONFIG_TABLES)) { 564 /* 565 * According to the DMTF SMBIOS reference spec v3.0.0, it is 566 * allowed to define both the 64-bit entry point (smbios3) and 567 * the 32-bit entry point (smbios), in which case they should 568 * either both point to the same SMBIOS structure table, or the 569 * table pointed to by the 64-bit entry point should contain a 570 * superset of the table contents pointed to by the 32-bit entry 571 * point (section 5.2) 572 * This implies that the 64-bit entry point should have 573 * precedence if it is defined and supported by the OS. If we 574 * have the 64-bit entry point, but fail to decode it, fall 575 * back to the legacy one (if available) 576 */ 577 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 578 p = dmi_early_remap(efi.smbios3, 32); 579 if (p == NULL) 580 goto error; 581 memcpy_fromio(buf, p, 32); 582 dmi_early_unmap(p, 32); 583 584 if (!dmi_smbios3_present(buf)) { 585 dmi_available = 1; 586 goto out; 587 } 588 } 589 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 590 goto error; 591 592 /* This is called as a core_initcall() because it isn't 593 * needed during early boot. This also means we can 594 * iounmap the space when we're done with it. 595 */ 596 p = dmi_early_remap(efi.smbios, 32); 597 if (p == NULL) 598 goto error; 599 memcpy_fromio(buf, p, 32); 600 dmi_early_unmap(p, 32); 601 602 if (!dmi_present(buf)) { 603 dmi_available = 1; 604 goto out; 605 } 606 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 607 p = dmi_early_remap(0xF0000, 0x10000); 608 if (p == NULL) 609 goto error; 610 611 /* 612 * Iterate over all possible DMI header addresses q. 613 * Maintain the 32 bytes around q in buf. On the 614 * first iteration, substitute zero for the 615 * out-of-range bytes so there is no chance of falsely 616 * detecting an SMBIOS header. 617 */ 618 memset(buf, 0, 16); 619 for (q = p; q < p + 0x10000; q += 16) { 620 memcpy_fromio(buf + 16, q, 16); 621 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 622 dmi_available = 1; 623 dmi_early_unmap(p, 0x10000); 624 goto out; 625 } 626 memcpy(buf, buf + 16, 16); 627 } 628 dmi_early_unmap(p, 0x10000); 629 } 630 error: 631 pr_info("DMI not present or invalid.\n"); 632 out: 633 dmi_initialized = 1; 634 } 635 636 /** 637 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 638 * 639 * Invoke dump_stack_set_arch_desc() with DMI system information so that 640 * DMI identifiers are printed out on task dumps. Arch boot code should 641 * call this function after dmi_scan_machine() if it wants to print out DMI 642 * identifiers on task dumps. 643 */ 644 void __init dmi_set_dump_stack_arch_desc(void) 645 { 646 dump_stack_set_arch_desc("%s", dmi_ids_string); 647 } 648 649 /** 650 * dmi_matches - check if dmi_system_id structure matches system DMI data 651 * @dmi: pointer to the dmi_system_id structure to check 652 */ 653 static bool dmi_matches(const struct dmi_system_id *dmi) 654 { 655 int i; 656 657 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 658 659 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 660 int s = dmi->matches[i].slot; 661 if (s == DMI_NONE) 662 break; 663 if (dmi_ident[s]) { 664 if (!dmi->matches[i].exact_match && 665 strstr(dmi_ident[s], dmi->matches[i].substr)) 666 continue; 667 else if (dmi->matches[i].exact_match && 668 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 669 continue; 670 } 671 672 /* No match */ 673 return false; 674 } 675 return true; 676 } 677 678 /** 679 * dmi_is_end_of_table - check for end-of-table marker 680 * @dmi: pointer to the dmi_system_id structure to check 681 */ 682 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 683 { 684 return dmi->matches[0].slot == DMI_NONE; 685 } 686 687 /** 688 * dmi_check_system - check system DMI data 689 * @list: array of dmi_system_id structures to match against 690 * All non-null elements of the list must match 691 * their slot's (field index's) data (i.e., each 692 * list string must be a substring of the specified 693 * DMI slot's string data) to be considered a 694 * successful match. 695 * 696 * Walk the blacklist table running matching functions until someone 697 * returns non zero or we hit the end. Callback function is called for 698 * each successful match. Returns the number of matches. 699 */ 700 int dmi_check_system(const struct dmi_system_id *list) 701 { 702 int count = 0; 703 const struct dmi_system_id *d; 704 705 for (d = list; !dmi_is_end_of_table(d); d++) 706 if (dmi_matches(d)) { 707 count++; 708 if (d->callback && d->callback(d)) 709 break; 710 } 711 712 return count; 713 } 714 EXPORT_SYMBOL(dmi_check_system); 715 716 /** 717 * dmi_first_match - find dmi_system_id structure matching system DMI data 718 * @list: array of dmi_system_id structures to match against 719 * All non-null elements of the list must match 720 * their slot's (field index's) data (i.e., each 721 * list string must be a substring of the specified 722 * DMI slot's string data) to be considered a 723 * successful match. 724 * 725 * Walk the blacklist table until the first match is found. Return the 726 * pointer to the matching entry or NULL if there's no match. 727 */ 728 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 729 { 730 const struct dmi_system_id *d; 731 732 for (d = list; !dmi_is_end_of_table(d); d++) 733 if (dmi_matches(d)) 734 return d; 735 736 return NULL; 737 } 738 EXPORT_SYMBOL(dmi_first_match); 739 740 /** 741 * dmi_get_system_info - return DMI data value 742 * @field: data index (see enum dmi_field) 743 * 744 * Returns one DMI data value, can be used to perform 745 * complex DMI data checks. 746 */ 747 const char *dmi_get_system_info(int field) 748 { 749 return dmi_ident[field]; 750 } 751 EXPORT_SYMBOL(dmi_get_system_info); 752 753 /** 754 * dmi_name_in_serial - Check if string is in the DMI product serial information 755 * @str: string to check for 756 */ 757 int dmi_name_in_serial(const char *str) 758 { 759 int f = DMI_PRODUCT_SERIAL; 760 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 761 return 1; 762 return 0; 763 } 764 765 /** 766 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 767 * @str: Case sensitive Name 768 */ 769 int dmi_name_in_vendors(const char *str) 770 { 771 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 772 int i; 773 for (i = 0; fields[i] != DMI_NONE; i++) { 774 int f = fields[i]; 775 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 776 return 1; 777 } 778 return 0; 779 } 780 EXPORT_SYMBOL(dmi_name_in_vendors); 781 782 /** 783 * dmi_find_device - find onboard device by type/name 784 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 785 * @name: device name string or %NULL to match all 786 * @from: previous device found in search, or %NULL for new search. 787 * 788 * Iterates through the list of known onboard devices. If a device is 789 * found with a matching @vendor and @device, a pointer to its device 790 * structure is returned. Otherwise, %NULL is returned. 791 * A new search is initiated by passing %NULL as the @from argument. 792 * If @from is not %NULL, searches continue from next device. 793 */ 794 const struct dmi_device *dmi_find_device(int type, const char *name, 795 const struct dmi_device *from) 796 { 797 const struct list_head *head = from ? &from->list : &dmi_devices; 798 struct list_head *d; 799 800 for (d = head->next; d != &dmi_devices; d = d->next) { 801 const struct dmi_device *dev = 802 list_entry(d, struct dmi_device, list); 803 804 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 805 ((name == NULL) || (strcmp(dev->name, name) == 0))) 806 return dev; 807 } 808 809 return NULL; 810 } 811 EXPORT_SYMBOL(dmi_find_device); 812 813 /** 814 * dmi_get_date - parse a DMI date 815 * @field: data index (see enum dmi_field) 816 * @yearp: optional out parameter for the year 817 * @monthp: optional out parameter for the month 818 * @dayp: optional out parameter for the day 819 * 820 * The date field is assumed to be in the form resembling 821 * [mm[/dd]]/yy[yy] and the result is stored in the out 822 * parameters any or all of which can be omitted. 823 * 824 * If the field doesn't exist, all out parameters are set to zero 825 * and false is returned. Otherwise, true is returned with any 826 * invalid part of date set to zero. 827 * 828 * On return, year, month and day are guaranteed to be in the 829 * range of [0,9999], [0,12] and [0,31] respectively. 830 */ 831 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 832 { 833 int year = 0, month = 0, day = 0; 834 bool exists; 835 const char *s, *y; 836 char *e; 837 838 s = dmi_get_system_info(field); 839 exists = s; 840 if (!exists) 841 goto out; 842 843 /* 844 * Determine year first. We assume the date string resembles 845 * mm/dd/yy[yy] but the original code extracted only the year 846 * from the end. Keep the behavior in the spirit of no 847 * surprises. 848 */ 849 y = strrchr(s, '/'); 850 if (!y) 851 goto out; 852 853 y++; 854 year = simple_strtoul(y, &e, 10); 855 if (y != e && year < 100) { /* 2-digit year */ 856 year += 1900; 857 if (year < 1996) /* no dates < spec 1.0 */ 858 year += 100; 859 } 860 if (year > 9999) /* year should fit in %04d */ 861 year = 0; 862 863 /* parse the mm and dd */ 864 month = simple_strtoul(s, &e, 10); 865 if (s == e || *e != '/' || !month || month > 12) { 866 month = 0; 867 goto out; 868 } 869 870 s = e + 1; 871 day = simple_strtoul(s, &e, 10); 872 if (s == y || s == e || *e != '/' || day > 31) 873 day = 0; 874 out: 875 if (yearp) 876 *yearp = year; 877 if (monthp) 878 *monthp = month; 879 if (dayp) 880 *dayp = day; 881 return exists; 882 } 883 EXPORT_SYMBOL(dmi_get_date); 884 885 /** 886 * dmi_walk - Walk the DMI table and get called back for every record 887 * @decode: Callback function 888 * @private_data: Private data to be passed to the callback function 889 * 890 * Returns -1 when the DMI table can't be reached, 0 on success. 891 */ 892 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 893 void *private_data) 894 { 895 u8 *buf; 896 897 if (!dmi_available) 898 return -1; 899 900 buf = dmi_remap(dmi_base, dmi_len); 901 if (buf == NULL) 902 return -1; 903 904 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 905 906 dmi_unmap(buf); 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(dmi_walk); 910 911 /** 912 * dmi_match - compare a string to the dmi field (if exists) 913 * @f: DMI field identifier 914 * @str: string to compare the DMI field to 915 * 916 * Returns true if the requested field equals to the str (including NULL). 917 */ 918 bool dmi_match(enum dmi_field f, const char *str) 919 { 920 const char *info = dmi_get_system_info(f); 921 922 if (info == NULL || str == NULL) 923 return info == str; 924 925 return !strcmp(info, str); 926 } 927 EXPORT_SYMBOL_GPL(dmi_match); 928 929 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 930 { 931 int n; 932 933 if (dmi_memdev == NULL) 934 return; 935 936 for (n = 0; n < dmi_memdev_nr; n++) { 937 if (handle == dmi_memdev[n].handle) { 938 *bank = dmi_memdev[n].bank; 939 *device = dmi_memdev[n].device; 940 break; 941 } 942 } 943 } 944 EXPORT_SYMBOL_GPL(dmi_memdev_name); 945