xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision d5e7cafd)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 /*
14  * DMI stands for "Desktop Management Interface".  It is part
15  * of and an antecedent to, SMBIOS, which stands for System
16  * Management BIOS.  See further: http://www.dmtf.org/standards
17  */
18 static const char dmi_empty_string[] = "        ";
19 
20 static u16 __initdata dmi_ver;
21 /*
22  * Catch too early calls to dmi_check_system():
23  */
24 static int dmi_initialized;
25 
26 /* DMI system identification string used during boot */
27 static char dmi_ids_string[128] __initdata;
28 
29 static struct dmi_memdev_info {
30 	const char *device;
31 	const char *bank;
32 	u16 handle;
33 } *dmi_memdev;
34 static int dmi_memdev_nr;
35 
36 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
37 {
38 	const u8 *bp = ((u8 *) dm) + dm->length;
39 
40 	if (s) {
41 		s--;
42 		while (s > 0 && *bp) {
43 			bp += strlen(bp) + 1;
44 			s--;
45 		}
46 
47 		if (*bp != 0) {
48 			size_t len = strlen(bp)+1;
49 			size_t cmp_len = len > 8 ? 8 : len;
50 
51 			if (!memcmp(bp, dmi_empty_string, cmp_len))
52 				return dmi_empty_string;
53 			return bp;
54 		}
55 	}
56 
57 	return "";
58 }
59 
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 	const char *bp = dmi_string_nosave(dm, s);
63 	char *str;
64 	size_t len;
65 
66 	if (bp == dmi_empty_string)
67 		return dmi_empty_string;
68 
69 	len = strlen(bp) + 1;
70 	str = dmi_alloc(len);
71 	if (str != NULL)
72 		strcpy(str, bp);
73 
74 	return str;
75 }
76 
77 /*
78  *	We have to be cautious here. We have seen BIOSes with DMI pointers
79  *	pointing to completely the wrong place for example
80  */
81 static void dmi_table(u8 *buf, u32 len, int num,
82 		      void (*decode)(const struct dmi_header *, void *),
83 		      void *private_data)
84 {
85 	u8 *data = buf;
86 	int i = 0;
87 
88 	/*
89 	 *	Stop when we see all the items the table claimed to have
90 	 *	OR we run off the end of the table (also happens)
91 	 */
92 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
93 		const struct dmi_header *dm = (const struct dmi_header *)data;
94 
95 		/*
96 		 *  We want to know the total length (formatted area and
97 		 *  strings) before decoding to make sure we won't run off the
98 		 *  table in dmi_decode or dmi_string
99 		 */
100 		data += dm->length;
101 		while ((data - buf < len - 1) && (data[0] || data[1]))
102 			data++;
103 		if (data - buf < len - 1)
104 			decode(dm, private_data);
105 
106 		/*
107 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
108 		 */
109 		if (dm->type == DMI_ENTRY_END_OF_TABLE)
110 			break;
111 
112 		data += 2;
113 		i++;
114 	}
115 }
116 
117 static phys_addr_t dmi_base;
118 static u32 dmi_len;
119 static u16 dmi_num;
120 
121 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
122 		void *))
123 {
124 	u8 *buf;
125 
126 	buf = dmi_early_remap(dmi_base, dmi_len);
127 	if (buf == NULL)
128 		return -1;
129 
130 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
131 
132 	add_device_randomness(buf, dmi_len);
133 
134 	dmi_early_unmap(buf, dmi_len);
135 	return 0;
136 }
137 
138 static int __init dmi_checksum(const u8 *buf, u8 len)
139 {
140 	u8 sum = 0;
141 	int a;
142 
143 	for (a = 0; a < len; a++)
144 		sum += buf[a];
145 
146 	return sum == 0;
147 }
148 
149 static const char *dmi_ident[DMI_STRING_MAX];
150 static LIST_HEAD(dmi_devices);
151 int dmi_available;
152 
153 /*
154  *	Save a DMI string
155  */
156 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
157 		int string)
158 {
159 	const char *d = (const char *) dm;
160 	const char *p;
161 
162 	if (dmi_ident[slot])
163 		return;
164 
165 	p = dmi_string(dm, d[string]);
166 	if (p == NULL)
167 		return;
168 
169 	dmi_ident[slot] = p;
170 }
171 
172 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
173 		int index)
174 {
175 	const u8 *d = (u8 *) dm + index;
176 	char *s;
177 	int is_ff = 1, is_00 = 1, i;
178 
179 	if (dmi_ident[slot])
180 		return;
181 
182 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
183 		if (d[i] != 0x00)
184 			is_00 = 0;
185 		if (d[i] != 0xFF)
186 			is_ff = 0;
187 	}
188 
189 	if (is_ff || is_00)
190 		return;
191 
192 	s = dmi_alloc(16*2+4+1);
193 	if (!s)
194 		return;
195 
196 	/*
197 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
198 	 * the UUID are supposed to be little-endian encoded.  The specification
199 	 * says that this is the defacto standard.
200 	 */
201 	if (dmi_ver >= 0x0206)
202 		sprintf(s, "%pUL", d);
203 	else
204 		sprintf(s, "%pUB", d);
205 
206 	dmi_ident[slot] = s;
207 }
208 
209 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
210 		int index)
211 {
212 	const u8 *d = (u8 *) dm + index;
213 	char *s;
214 
215 	if (dmi_ident[slot])
216 		return;
217 
218 	s = dmi_alloc(4);
219 	if (!s)
220 		return;
221 
222 	sprintf(s, "%u", *d & 0x7F);
223 	dmi_ident[slot] = s;
224 }
225 
226 static void __init dmi_save_one_device(int type, const char *name)
227 {
228 	struct dmi_device *dev;
229 
230 	/* No duplicate device */
231 	if (dmi_find_device(type, name, NULL))
232 		return;
233 
234 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
235 	if (!dev)
236 		return;
237 
238 	dev->type = type;
239 	strcpy((char *)(dev + 1), name);
240 	dev->name = (char *)(dev + 1);
241 	dev->device_data = NULL;
242 	list_add(&dev->list, &dmi_devices);
243 }
244 
245 static void __init dmi_save_devices(const struct dmi_header *dm)
246 {
247 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
248 
249 	for (i = 0; i < count; i++) {
250 		const char *d = (char *)(dm + 1) + (i * 2);
251 
252 		/* Skip disabled device */
253 		if ((*d & 0x80) == 0)
254 			continue;
255 
256 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
257 	}
258 }
259 
260 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
261 {
262 	int i, count = *(u8 *)(dm + 1);
263 	struct dmi_device *dev;
264 
265 	for (i = 1; i <= count; i++) {
266 		const char *devname = dmi_string(dm, i);
267 
268 		if (devname == dmi_empty_string)
269 			continue;
270 
271 		dev = dmi_alloc(sizeof(*dev));
272 		if (!dev)
273 			break;
274 
275 		dev->type = DMI_DEV_TYPE_OEM_STRING;
276 		dev->name = devname;
277 		dev->device_data = NULL;
278 
279 		list_add(&dev->list, &dmi_devices);
280 	}
281 }
282 
283 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
284 {
285 	struct dmi_device *dev;
286 	void *data;
287 
288 	data = dmi_alloc(dm->length);
289 	if (data == NULL)
290 		return;
291 
292 	memcpy(data, dm, dm->length);
293 
294 	dev = dmi_alloc(sizeof(*dev));
295 	if (!dev)
296 		return;
297 
298 	dev->type = DMI_DEV_TYPE_IPMI;
299 	dev->name = "IPMI controller";
300 	dev->device_data = data;
301 
302 	list_add_tail(&dev->list, &dmi_devices);
303 }
304 
305 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
306 					int devfn, const char *name)
307 {
308 	struct dmi_dev_onboard *onboard_dev;
309 
310 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
311 	if (!onboard_dev)
312 		return;
313 
314 	onboard_dev->instance = instance;
315 	onboard_dev->segment = segment;
316 	onboard_dev->bus = bus;
317 	onboard_dev->devfn = devfn;
318 
319 	strcpy((char *)&onboard_dev[1], name);
320 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
321 	onboard_dev->dev.name = (char *)&onboard_dev[1];
322 	onboard_dev->dev.device_data = onboard_dev;
323 
324 	list_add(&onboard_dev->dev.list, &dmi_devices);
325 }
326 
327 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
328 {
329 	const u8 *d = (u8 *) dm + 5;
330 
331 	/* Skip disabled device */
332 	if ((*d & 0x80) == 0)
333 		return;
334 
335 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
336 			     dmi_string_nosave(dm, *(d-1)));
337 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
338 }
339 
340 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
341 {
342 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
343 		return;
344 	dmi_memdev_nr++;
345 }
346 
347 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
348 {
349 	const char *d = (const char *)dm;
350 	static int nr;
351 
352 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
353 		return;
354 	if (nr >= dmi_memdev_nr) {
355 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
356 		return;
357 	}
358 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
359 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
360 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
361 	nr++;
362 }
363 
364 void __init dmi_memdev_walk(void)
365 {
366 	if (!dmi_available)
367 		return;
368 
369 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
370 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
371 		if (dmi_memdev)
372 			dmi_walk_early(save_mem_devices);
373 	}
374 }
375 
376 /*
377  *	Process a DMI table entry. Right now all we care about are the BIOS
378  *	and machine entries. For 2.5 we should pull the smbus controller info
379  *	out of here.
380  */
381 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
382 {
383 	switch (dm->type) {
384 	case 0:		/* BIOS Information */
385 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
386 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
387 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
388 		break;
389 	case 1:		/* System Information */
390 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
391 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
392 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
393 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
394 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
395 		break;
396 	case 2:		/* Base Board Information */
397 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
398 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
399 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
400 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
401 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
402 		break;
403 	case 3:		/* Chassis Information */
404 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
405 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
406 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
407 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
408 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
409 		break;
410 	case 10:	/* Onboard Devices Information */
411 		dmi_save_devices(dm);
412 		break;
413 	case 11:	/* OEM Strings */
414 		dmi_save_oem_strings_devices(dm);
415 		break;
416 	case 38:	/* IPMI Device Information */
417 		dmi_save_ipmi_device(dm);
418 		break;
419 	case 41:	/* Onboard Devices Extended Information */
420 		dmi_save_extended_devices(dm);
421 	}
422 }
423 
424 static int __init print_filtered(char *buf, size_t len, const char *info)
425 {
426 	int c = 0;
427 	const char *p;
428 
429 	if (!info)
430 		return c;
431 
432 	for (p = info; *p; p++)
433 		if (isprint(*p))
434 			c += scnprintf(buf + c, len - c, "%c", *p);
435 		else
436 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
437 	return c;
438 }
439 
440 static void __init dmi_format_ids(char *buf, size_t len)
441 {
442 	int c = 0;
443 	const char *board;	/* Board Name is optional */
444 
445 	c += print_filtered(buf + c, len - c,
446 			    dmi_get_system_info(DMI_SYS_VENDOR));
447 	c += scnprintf(buf + c, len - c, " ");
448 	c += print_filtered(buf + c, len - c,
449 			    dmi_get_system_info(DMI_PRODUCT_NAME));
450 
451 	board = dmi_get_system_info(DMI_BOARD_NAME);
452 	if (board) {
453 		c += scnprintf(buf + c, len - c, "/");
454 		c += print_filtered(buf + c, len - c, board);
455 	}
456 	c += scnprintf(buf + c, len - c, ", BIOS ");
457 	c += print_filtered(buf + c, len - c,
458 			    dmi_get_system_info(DMI_BIOS_VERSION));
459 	c += scnprintf(buf + c, len - c, " ");
460 	c += print_filtered(buf + c, len - c,
461 			    dmi_get_system_info(DMI_BIOS_DATE));
462 }
463 
464 /*
465  * Check for DMI/SMBIOS headers in the system firmware image.  Any
466  * SMBIOS header must start 16 bytes before the DMI header, so take a
467  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
468  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
469  * takes precedence) and return 0.  Otherwise return 1.
470  */
471 static int __init dmi_present(const u8 *buf)
472 {
473 	int smbios_ver;
474 
475 	if (memcmp(buf, "_SM_", 4) == 0 &&
476 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
477 		smbios_ver = get_unaligned_be16(buf + 6);
478 
479 		/* Some BIOS report weird SMBIOS version, fix that up */
480 		switch (smbios_ver) {
481 		case 0x021F:
482 		case 0x0221:
483 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
484 				 smbios_ver & 0xFF, 3);
485 			smbios_ver = 0x0203;
486 			break;
487 		case 0x0233:
488 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
489 			smbios_ver = 0x0206;
490 			break;
491 		}
492 	} else {
493 		smbios_ver = 0;
494 	}
495 
496 	buf += 16;
497 
498 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
499 		dmi_num = get_unaligned_le16(buf + 12);
500 		dmi_len = get_unaligned_le16(buf + 6);
501 		dmi_base = get_unaligned_le32(buf + 8);
502 
503 		if (dmi_walk_early(dmi_decode) == 0) {
504 			if (smbios_ver) {
505 				dmi_ver = smbios_ver;
506 				pr_info("SMBIOS %d.%d present.\n",
507 				       dmi_ver >> 8, dmi_ver & 0xFF);
508 			} else {
509 				dmi_ver = (buf[14] & 0xF0) << 4 |
510 					   (buf[14] & 0x0F);
511 				pr_info("Legacy DMI %d.%d present.\n",
512 				       dmi_ver >> 8, dmi_ver & 0xFF);
513 			}
514 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
515 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
516 			return 0;
517 		}
518 	}
519 
520 	return 1;
521 }
522 
523 /*
524  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
525  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
526  */
527 static int __init dmi_smbios3_present(const u8 *buf)
528 {
529 	if (memcmp(buf, "_SM3_", 5) == 0 &&
530 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
531 		dmi_ver = get_unaligned_be16(buf + 7);
532 		dmi_len = get_unaligned_le32(buf + 12);
533 		dmi_base = get_unaligned_le64(buf + 16);
534 
535 		/*
536 		 * The 64-bit SMBIOS 3.0 entry point no longer has a field
537 		 * containing the number of structures present in the table.
538 		 * Instead, it defines the table size as a maximum size, and
539 		 * relies on the end-of-table structure type (#127) to be used
540 		 * to signal the end of the table.
541 		 * So let's define dmi_num as an upper bound as well: each
542 		 * structure has a 4 byte header, so dmi_len / 4 is an upper
543 		 * bound for the number of structures in the table.
544 		 */
545 		dmi_num = dmi_len / 4;
546 
547 		if (dmi_walk_early(dmi_decode) == 0) {
548 			pr_info("SMBIOS %d.%d present.\n",
549 				dmi_ver >> 8, dmi_ver & 0xFF);
550 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
551 			pr_debug("DMI: %s\n", dmi_ids_string);
552 			return 0;
553 		}
554 	}
555 	return 1;
556 }
557 
558 void __init dmi_scan_machine(void)
559 {
560 	char __iomem *p, *q;
561 	char buf[32];
562 
563 	if (efi_enabled(EFI_CONFIG_TABLES)) {
564 		/*
565 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
566 		 * allowed to define both the 64-bit entry point (smbios3) and
567 		 * the 32-bit entry point (smbios), in which case they should
568 		 * either both point to the same SMBIOS structure table, or the
569 		 * table pointed to by the 64-bit entry point should contain a
570 		 * superset of the table contents pointed to by the 32-bit entry
571 		 * point (section 5.2)
572 		 * This implies that the 64-bit entry point should have
573 		 * precedence if it is defined and supported by the OS. If we
574 		 * have the 64-bit entry point, but fail to decode it, fall
575 		 * back to the legacy one (if available)
576 		 */
577 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
578 			p = dmi_early_remap(efi.smbios3, 32);
579 			if (p == NULL)
580 				goto error;
581 			memcpy_fromio(buf, p, 32);
582 			dmi_early_unmap(p, 32);
583 
584 			if (!dmi_smbios3_present(buf)) {
585 				dmi_available = 1;
586 				goto out;
587 			}
588 		}
589 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
590 			goto error;
591 
592 		/* This is called as a core_initcall() because it isn't
593 		 * needed during early boot.  This also means we can
594 		 * iounmap the space when we're done with it.
595 		 */
596 		p = dmi_early_remap(efi.smbios, 32);
597 		if (p == NULL)
598 			goto error;
599 		memcpy_fromio(buf, p, 32);
600 		dmi_early_unmap(p, 32);
601 
602 		if (!dmi_present(buf)) {
603 			dmi_available = 1;
604 			goto out;
605 		}
606 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
607 		p = dmi_early_remap(0xF0000, 0x10000);
608 		if (p == NULL)
609 			goto error;
610 
611 		/*
612 		 * Iterate over all possible DMI header addresses q.
613 		 * Maintain the 32 bytes around q in buf.  On the
614 		 * first iteration, substitute zero for the
615 		 * out-of-range bytes so there is no chance of falsely
616 		 * detecting an SMBIOS header.
617 		 */
618 		memset(buf, 0, 16);
619 		for (q = p; q < p + 0x10000; q += 16) {
620 			memcpy_fromio(buf + 16, q, 16);
621 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
622 				dmi_available = 1;
623 				dmi_early_unmap(p, 0x10000);
624 				goto out;
625 			}
626 			memcpy(buf, buf + 16, 16);
627 		}
628 		dmi_early_unmap(p, 0x10000);
629 	}
630  error:
631 	pr_info("DMI not present or invalid.\n");
632  out:
633 	dmi_initialized = 1;
634 }
635 
636 /**
637  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
638  *
639  * Invoke dump_stack_set_arch_desc() with DMI system information so that
640  * DMI identifiers are printed out on task dumps.  Arch boot code should
641  * call this function after dmi_scan_machine() if it wants to print out DMI
642  * identifiers on task dumps.
643  */
644 void __init dmi_set_dump_stack_arch_desc(void)
645 {
646 	dump_stack_set_arch_desc("%s", dmi_ids_string);
647 }
648 
649 /**
650  *	dmi_matches - check if dmi_system_id structure matches system DMI data
651  *	@dmi: pointer to the dmi_system_id structure to check
652  */
653 static bool dmi_matches(const struct dmi_system_id *dmi)
654 {
655 	int i;
656 
657 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
658 
659 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
660 		int s = dmi->matches[i].slot;
661 		if (s == DMI_NONE)
662 			break;
663 		if (dmi_ident[s]) {
664 			if (!dmi->matches[i].exact_match &&
665 			    strstr(dmi_ident[s], dmi->matches[i].substr))
666 				continue;
667 			else if (dmi->matches[i].exact_match &&
668 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
669 				continue;
670 		}
671 
672 		/* No match */
673 		return false;
674 	}
675 	return true;
676 }
677 
678 /**
679  *	dmi_is_end_of_table - check for end-of-table marker
680  *	@dmi: pointer to the dmi_system_id structure to check
681  */
682 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
683 {
684 	return dmi->matches[0].slot == DMI_NONE;
685 }
686 
687 /**
688  *	dmi_check_system - check system DMI data
689  *	@list: array of dmi_system_id structures to match against
690  *		All non-null elements of the list must match
691  *		their slot's (field index's) data (i.e., each
692  *		list string must be a substring of the specified
693  *		DMI slot's string data) to be considered a
694  *		successful match.
695  *
696  *	Walk the blacklist table running matching functions until someone
697  *	returns non zero or we hit the end. Callback function is called for
698  *	each successful match. Returns the number of matches.
699  */
700 int dmi_check_system(const struct dmi_system_id *list)
701 {
702 	int count = 0;
703 	const struct dmi_system_id *d;
704 
705 	for (d = list; !dmi_is_end_of_table(d); d++)
706 		if (dmi_matches(d)) {
707 			count++;
708 			if (d->callback && d->callback(d))
709 				break;
710 		}
711 
712 	return count;
713 }
714 EXPORT_SYMBOL(dmi_check_system);
715 
716 /**
717  *	dmi_first_match - find dmi_system_id structure matching system DMI data
718  *	@list: array of dmi_system_id structures to match against
719  *		All non-null elements of the list must match
720  *		their slot's (field index's) data (i.e., each
721  *		list string must be a substring of the specified
722  *		DMI slot's string data) to be considered a
723  *		successful match.
724  *
725  *	Walk the blacklist table until the first match is found.  Return the
726  *	pointer to the matching entry or NULL if there's no match.
727  */
728 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
729 {
730 	const struct dmi_system_id *d;
731 
732 	for (d = list; !dmi_is_end_of_table(d); d++)
733 		if (dmi_matches(d))
734 			return d;
735 
736 	return NULL;
737 }
738 EXPORT_SYMBOL(dmi_first_match);
739 
740 /**
741  *	dmi_get_system_info - return DMI data value
742  *	@field: data index (see enum dmi_field)
743  *
744  *	Returns one DMI data value, can be used to perform
745  *	complex DMI data checks.
746  */
747 const char *dmi_get_system_info(int field)
748 {
749 	return dmi_ident[field];
750 }
751 EXPORT_SYMBOL(dmi_get_system_info);
752 
753 /**
754  * dmi_name_in_serial - Check if string is in the DMI product serial information
755  * @str: string to check for
756  */
757 int dmi_name_in_serial(const char *str)
758 {
759 	int f = DMI_PRODUCT_SERIAL;
760 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
761 		return 1;
762 	return 0;
763 }
764 
765 /**
766  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
767  *	@str: Case sensitive Name
768  */
769 int dmi_name_in_vendors(const char *str)
770 {
771 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
772 	int i;
773 	for (i = 0; fields[i] != DMI_NONE; i++) {
774 		int f = fields[i];
775 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
776 			return 1;
777 	}
778 	return 0;
779 }
780 EXPORT_SYMBOL(dmi_name_in_vendors);
781 
782 /**
783  *	dmi_find_device - find onboard device by type/name
784  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
785  *	@name: device name string or %NULL to match all
786  *	@from: previous device found in search, or %NULL for new search.
787  *
788  *	Iterates through the list of known onboard devices. If a device is
789  *	found with a matching @vendor and @device, a pointer to its device
790  *	structure is returned.  Otherwise, %NULL is returned.
791  *	A new search is initiated by passing %NULL as the @from argument.
792  *	If @from is not %NULL, searches continue from next device.
793  */
794 const struct dmi_device *dmi_find_device(int type, const char *name,
795 				    const struct dmi_device *from)
796 {
797 	const struct list_head *head = from ? &from->list : &dmi_devices;
798 	struct list_head *d;
799 
800 	for (d = head->next; d != &dmi_devices; d = d->next) {
801 		const struct dmi_device *dev =
802 			list_entry(d, struct dmi_device, list);
803 
804 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
805 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
806 			return dev;
807 	}
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(dmi_find_device);
812 
813 /**
814  *	dmi_get_date - parse a DMI date
815  *	@field:	data index (see enum dmi_field)
816  *	@yearp: optional out parameter for the year
817  *	@monthp: optional out parameter for the month
818  *	@dayp: optional out parameter for the day
819  *
820  *	The date field is assumed to be in the form resembling
821  *	[mm[/dd]]/yy[yy] and the result is stored in the out
822  *	parameters any or all of which can be omitted.
823  *
824  *	If the field doesn't exist, all out parameters are set to zero
825  *	and false is returned.  Otherwise, true is returned with any
826  *	invalid part of date set to zero.
827  *
828  *	On return, year, month and day are guaranteed to be in the
829  *	range of [0,9999], [0,12] and [0,31] respectively.
830  */
831 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
832 {
833 	int year = 0, month = 0, day = 0;
834 	bool exists;
835 	const char *s, *y;
836 	char *e;
837 
838 	s = dmi_get_system_info(field);
839 	exists = s;
840 	if (!exists)
841 		goto out;
842 
843 	/*
844 	 * Determine year first.  We assume the date string resembles
845 	 * mm/dd/yy[yy] but the original code extracted only the year
846 	 * from the end.  Keep the behavior in the spirit of no
847 	 * surprises.
848 	 */
849 	y = strrchr(s, '/');
850 	if (!y)
851 		goto out;
852 
853 	y++;
854 	year = simple_strtoul(y, &e, 10);
855 	if (y != e && year < 100) {	/* 2-digit year */
856 		year += 1900;
857 		if (year < 1996)	/* no dates < spec 1.0 */
858 			year += 100;
859 	}
860 	if (year > 9999)		/* year should fit in %04d */
861 		year = 0;
862 
863 	/* parse the mm and dd */
864 	month = simple_strtoul(s, &e, 10);
865 	if (s == e || *e != '/' || !month || month > 12) {
866 		month = 0;
867 		goto out;
868 	}
869 
870 	s = e + 1;
871 	day = simple_strtoul(s, &e, 10);
872 	if (s == y || s == e || *e != '/' || day > 31)
873 		day = 0;
874 out:
875 	if (yearp)
876 		*yearp = year;
877 	if (monthp)
878 		*monthp = month;
879 	if (dayp)
880 		*dayp = day;
881 	return exists;
882 }
883 EXPORT_SYMBOL(dmi_get_date);
884 
885 /**
886  *	dmi_walk - Walk the DMI table and get called back for every record
887  *	@decode: Callback function
888  *	@private_data: Private data to be passed to the callback function
889  *
890  *	Returns -1 when the DMI table can't be reached, 0 on success.
891  */
892 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
893 	     void *private_data)
894 {
895 	u8 *buf;
896 
897 	if (!dmi_available)
898 		return -1;
899 
900 	buf = dmi_remap(dmi_base, dmi_len);
901 	if (buf == NULL)
902 		return -1;
903 
904 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
905 
906 	dmi_unmap(buf);
907 	return 0;
908 }
909 EXPORT_SYMBOL_GPL(dmi_walk);
910 
911 /**
912  * dmi_match - compare a string to the dmi field (if exists)
913  * @f: DMI field identifier
914  * @str: string to compare the DMI field to
915  *
916  * Returns true if the requested field equals to the str (including NULL).
917  */
918 bool dmi_match(enum dmi_field f, const char *str)
919 {
920 	const char *info = dmi_get_system_info(f);
921 
922 	if (info == NULL || str == NULL)
923 		return info == str;
924 
925 	return !strcmp(info, str);
926 }
927 EXPORT_SYMBOL_GPL(dmi_match);
928 
929 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
930 {
931 	int n;
932 
933 	if (dmi_memdev == NULL)
934 		return;
935 
936 	for (n = 0; n < dmi_memdev_nr; n++) {
937 		if (handle == dmi_memdev[n].handle) {
938 			*bank = dmi_memdev[n].bank;
939 			*device = dmi_memdev[n].device;
940 			break;
941 		}
942 	}
943 }
944 EXPORT_SYMBOL_GPL(dmi_memdev_name);
945