1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = " "; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* 30 * Catch too early calls to dmi_check_system(): 31 */ 32 static int dmi_initialized; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u16 handle; 41 } *dmi_memdev; 42 static int dmi_memdev_nr; 43 44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 45 { 46 const u8 *bp = ((u8 *) dm) + dm->length; 47 48 if (s) { 49 s--; 50 while (s > 0 && *bp) { 51 bp += strlen(bp) + 1; 52 s--; 53 } 54 55 if (*bp != 0) { 56 size_t len = strlen(bp)+1; 57 size_t cmp_len = len > 8 ? 8 : len; 58 59 if (!memcmp(bp, dmi_empty_string, cmp_len)) 60 return dmi_empty_string; 61 return bp; 62 } 63 } 64 65 return ""; 66 } 67 68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 69 { 70 const char *bp = dmi_string_nosave(dm, s); 71 char *str; 72 size_t len; 73 74 if (bp == dmi_empty_string) 75 return dmi_empty_string; 76 77 len = strlen(bp) + 1; 78 str = dmi_alloc(len); 79 if (str != NULL) 80 strcpy(str, bp); 81 82 return str; 83 } 84 85 /* 86 * We have to be cautious here. We have seen BIOSes with DMI pointers 87 * pointing to completely the wrong place for example 88 */ 89 static void dmi_decode_table(u8 *buf, 90 void (*decode)(const struct dmi_header *, void *), 91 void *private_data) 92 { 93 u8 *data = buf; 94 int i = 0; 95 96 /* 97 * Stop when we have seen all the items the table claimed to have 98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 99 * >= 3.0 only) OR we run off the end of the table (should never 100 * happen but sometimes does on bogus implementations.) 101 */ 102 while ((!dmi_num || i < dmi_num) && 103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 104 const struct dmi_header *dm = (const struct dmi_header *)data; 105 106 /* 107 * We want to know the total length (formatted area and 108 * strings) before decoding to make sure we won't run off the 109 * table in dmi_decode or dmi_string 110 */ 111 data += dm->length; 112 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 113 data++; 114 if (data - buf < dmi_len - 1) 115 decode(dm, private_data); 116 117 data += 2; 118 i++; 119 120 /* 121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 122 * For tables behind a 64-bit entry point, we have no item 123 * count and no exact table length, so stop on end-of-table 124 * marker. For tables behind a 32-bit entry point, we have 125 * seen OEM structures behind the end-of-table marker on 126 * some systems, so don't trust it. 127 */ 128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 129 break; 130 } 131 132 /* Trim DMI table length if needed */ 133 if (dmi_len > data - buf) 134 dmi_len = data - buf; 135 } 136 137 static phys_addr_t dmi_base; 138 139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 140 void *)) 141 { 142 u8 *buf; 143 u32 orig_dmi_len = dmi_len; 144 145 buf = dmi_early_remap(dmi_base, orig_dmi_len); 146 if (buf == NULL) 147 return -1; 148 149 dmi_decode_table(buf, decode, NULL); 150 151 add_device_randomness(buf, dmi_len); 152 153 dmi_early_unmap(buf, orig_dmi_len); 154 return 0; 155 } 156 157 static int __init dmi_checksum(const u8 *buf, u8 len) 158 { 159 u8 sum = 0; 160 int a; 161 162 for (a = 0; a < len; a++) 163 sum += buf[a]; 164 165 return sum == 0; 166 } 167 168 static const char *dmi_ident[DMI_STRING_MAX]; 169 static LIST_HEAD(dmi_devices); 170 int dmi_available; 171 172 /* 173 * Save a DMI string 174 */ 175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 176 int string) 177 { 178 const char *d = (const char *) dm; 179 const char *p; 180 181 if (dmi_ident[slot]) 182 return; 183 184 p = dmi_string(dm, d[string]); 185 if (p == NULL) 186 return; 187 188 dmi_ident[slot] = p; 189 } 190 191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 192 int index) 193 { 194 const u8 *d = (u8 *) dm + index; 195 char *s; 196 int is_ff = 1, is_00 = 1, i; 197 198 if (dmi_ident[slot]) 199 return; 200 201 for (i = 0; i < 16 && (is_ff || is_00); i++) { 202 if (d[i] != 0x00) 203 is_00 = 0; 204 if (d[i] != 0xFF) 205 is_ff = 0; 206 } 207 208 if (is_ff || is_00) 209 return; 210 211 s = dmi_alloc(16*2+4+1); 212 if (!s) 213 return; 214 215 /* 216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 217 * the UUID are supposed to be little-endian encoded. The specification 218 * says that this is the defacto standard. 219 */ 220 if (dmi_ver >= 0x020600) 221 sprintf(s, "%pUL", d); 222 else 223 sprintf(s, "%pUB", d); 224 225 dmi_ident[slot] = s; 226 } 227 228 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 229 int index) 230 { 231 const u8 *d = (u8 *) dm + index; 232 char *s; 233 234 if (dmi_ident[slot]) 235 return; 236 237 s = dmi_alloc(4); 238 if (!s) 239 return; 240 241 sprintf(s, "%u", *d & 0x7F); 242 dmi_ident[slot] = s; 243 } 244 245 static void __init dmi_save_one_device(int type, const char *name) 246 { 247 struct dmi_device *dev; 248 249 /* No duplicate device */ 250 if (dmi_find_device(type, name, NULL)) 251 return; 252 253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 254 if (!dev) 255 return; 256 257 dev->type = type; 258 strcpy((char *)(dev + 1), name); 259 dev->name = (char *)(dev + 1); 260 dev->device_data = NULL; 261 list_add(&dev->list, &dmi_devices); 262 } 263 264 static void __init dmi_save_devices(const struct dmi_header *dm) 265 { 266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 267 268 for (i = 0; i < count; i++) { 269 const char *d = (char *)(dm + 1) + (i * 2); 270 271 /* Skip disabled device */ 272 if ((*d & 0x80) == 0) 273 continue; 274 275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 276 } 277 } 278 279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 280 { 281 int i, count = *(u8 *)(dm + 1); 282 struct dmi_device *dev; 283 284 for (i = 1; i <= count; i++) { 285 const char *devname = dmi_string(dm, i); 286 287 if (devname == dmi_empty_string) 288 continue; 289 290 dev = dmi_alloc(sizeof(*dev)); 291 if (!dev) 292 break; 293 294 dev->type = DMI_DEV_TYPE_OEM_STRING; 295 dev->name = devname; 296 dev->device_data = NULL; 297 298 list_add(&dev->list, &dmi_devices); 299 } 300 } 301 302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 303 { 304 struct dmi_device *dev; 305 void *data; 306 307 data = dmi_alloc(dm->length); 308 if (data == NULL) 309 return; 310 311 memcpy(data, dm, dm->length); 312 313 dev = dmi_alloc(sizeof(*dev)); 314 if (!dev) 315 return; 316 317 dev->type = DMI_DEV_TYPE_IPMI; 318 dev->name = "IPMI controller"; 319 dev->device_data = data; 320 321 list_add_tail(&dev->list, &dmi_devices); 322 } 323 324 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 325 int devfn, const char *name, int type) 326 { 327 struct dmi_dev_onboard *dev; 328 329 /* Ignore invalid values */ 330 if (type == DMI_DEV_TYPE_DEV_SLOT && 331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 332 return; 333 334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 335 if (!dev) 336 return; 337 338 dev->instance = instance; 339 dev->segment = segment; 340 dev->bus = bus; 341 dev->devfn = devfn; 342 343 strcpy((char *)&dev[1], name); 344 dev->dev.type = type; 345 dev->dev.name = (char *)&dev[1]; 346 dev->dev.device_data = dev; 347 348 list_add(&dev->dev.list, &dmi_devices); 349 } 350 351 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 352 { 353 const char *name; 354 const u8 *d = (u8 *)dm; 355 356 /* Skip disabled device */ 357 if ((d[0x5] & 0x80) == 0) 358 return; 359 360 name = dmi_string_nosave(dm, d[0x4]); 361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 362 DMI_DEV_TYPE_DEV_ONBOARD); 363 dmi_save_one_device(d[0x5] & 0x7f, name); 364 } 365 366 static void __init dmi_save_system_slot(const struct dmi_header *dm) 367 { 368 const u8 *d = (u8 *)dm; 369 370 /* Need SMBIOS 2.6+ structure */ 371 if (dm->length < 0x11) 372 return; 373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 374 d[0x10], dmi_string_nosave(dm, d[0x4]), 375 DMI_DEV_TYPE_DEV_SLOT); 376 } 377 378 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 379 { 380 if (dm->type != DMI_ENTRY_MEM_DEVICE) 381 return; 382 dmi_memdev_nr++; 383 } 384 385 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 386 { 387 const char *d = (const char *)dm; 388 static int nr; 389 390 if (dm->type != DMI_ENTRY_MEM_DEVICE) 391 return; 392 if (nr >= dmi_memdev_nr) { 393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 394 return; 395 } 396 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 399 nr++; 400 } 401 402 void __init dmi_memdev_walk(void) 403 { 404 if (!dmi_available) 405 return; 406 407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 409 if (dmi_memdev) 410 dmi_walk_early(save_mem_devices); 411 } 412 } 413 414 /* 415 * Process a DMI table entry. Right now all we care about are the BIOS 416 * and machine entries. For 2.5 we should pull the smbus controller info 417 * out of here. 418 */ 419 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 420 { 421 switch (dm->type) { 422 case 0: /* BIOS Information */ 423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 425 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 426 break; 427 case 1: /* System Information */ 428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 433 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 434 break; 435 case 2: /* Base Board Information */ 436 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 437 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 438 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 439 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 440 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 441 break; 442 case 3: /* Chassis Information */ 443 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 444 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 445 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 446 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 447 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 448 break; 449 case 9: /* System Slots */ 450 dmi_save_system_slot(dm); 451 break; 452 case 10: /* Onboard Devices Information */ 453 dmi_save_devices(dm); 454 break; 455 case 11: /* OEM Strings */ 456 dmi_save_oem_strings_devices(dm); 457 break; 458 case 38: /* IPMI Device Information */ 459 dmi_save_ipmi_device(dm); 460 break; 461 case 41: /* Onboard Devices Extended Information */ 462 dmi_save_extended_devices(dm); 463 } 464 } 465 466 static int __init print_filtered(char *buf, size_t len, const char *info) 467 { 468 int c = 0; 469 const char *p; 470 471 if (!info) 472 return c; 473 474 for (p = info; *p; p++) 475 if (isprint(*p)) 476 c += scnprintf(buf + c, len - c, "%c", *p); 477 else 478 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 479 return c; 480 } 481 482 static void __init dmi_format_ids(char *buf, size_t len) 483 { 484 int c = 0; 485 const char *board; /* Board Name is optional */ 486 487 c += print_filtered(buf + c, len - c, 488 dmi_get_system_info(DMI_SYS_VENDOR)); 489 c += scnprintf(buf + c, len - c, " "); 490 c += print_filtered(buf + c, len - c, 491 dmi_get_system_info(DMI_PRODUCT_NAME)); 492 493 board = dmi_get_system_info(DMI_BOARD_NAME); 494 if (board) { 495 c += scnprintf(buf + c, len - c, "/"); 496 c += print_filtered(buf + c, len - c, board); 497 } 498 c += scnprintf(buf + c, len - c, ", BIOS "); 499 c += print_filtered(buf + c, len - c, 500 dmi_get_system_info(DMI_BIOS_VERSION)); 501 c += scnprintf(buf + c, len - c, " "); 502 c += print_filtered(buf + c, len - c, 503 dmi_get_system_info(DMI_BIOS_DATE)); 504 } 505 506 /* 507 * Check for DMI/SMBIOS headers in the system firmware image. Any 508 * SMBIOS header must start 16 bytes before the DMI header, so take a 509 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 510 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 511 * takes precedence) and return 0. Otherwise return 1. 512 */ 513 static int __init dmi_present(const u8 *buf) 514 { 515 u32 smbios_ver; 516 517 if (memcmp(buf, "_SM_", 4) == 0 && 518 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 519 smbios_ver = get_unaligned_be16(buf + 6); 520 smbios_entry_point_size = buf[5]; 521 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 522 523 /* Some BIOS report weird SMBIOS version, fix that up */ 524 switch (smbios_ver) { 525 case 0x021F: 526 case 0x0221: 527 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 528 smbios_ver & 0xFF, 3); 529 smbios_ver = 0x0203; 530 break; 531 case 0x0233: 532 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 533 smbios_ver = 0x0206; 534 break; 535 } 536 } else { 537 smbios_ver = 0; 538 } 539 540 buf += 16; 541 542 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 543 if (smbios_ver) 544 dmi_ver = smbios_ver; 545 else 546 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 547 dmi_ver <<= 8; 548 dmi_num = get_unaligned_le16(buf + 12); 549 dmi_len = get_unaligned_le16(buf + 6); 550 dmi_base = get_unaligned_le32(buf + 8); 551 552 if (dmi_walk_early(dmi_decode) == 0) { 553 if (smbios_ver) { 554 pr_info("SMBIOS %d.%d present.\n", 555 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 556 } else { 557 smbios_entry_point_size = 15; 558 memcpy(smbios_entry_point, buf, 559 smbios_entry_point_size); 560 pr_info("Legacy DMI %d.%d present.\n", 561 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 562 } 563 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 564 pr_info("DMI: %s\n", dmi_ids_string); 565 return 0; 566 } 567 } 568 569 return 1; 570 } 571 572 /* 573 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 574 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 575 */ 576 static int __init dmi_smbios3_present(const u8 *buf) 577 { 578 if (memcmp(buf, "_SM3_", 5) == 0 && 579 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 580 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 581 dmi_num = 0; /* No longer specified */ 582 dmi_len = get_unaligned_le32(buf + 12); 583 dmi_base = get_unaligned_le64(buf + 16); 584 smbios_entry_point_size = buf[6]; 585 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 586 587 if (dmi_walk_early(dmi_decode) == 0) { 588 pr_info("SMBIOS %d.%d.%d present.\n", 589 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 590 dmi_ver & 0xFF); 591 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 592 pr_info("DMI: %s\n", dmi_ids_string); 593 return 0; 594 } 595 } 596 return 1; 597 } 598 599 void __init dmi_scan_machine(void) 600 { 601 char __iomem *p, *q; 602 char buf[32]; 603 604 if (efi_enabled(EFI_CONFIG_TABLES)) { 605 /* 606 * According to the DMTF SMBIOS reference spec v3.0.0, it is 607 * allowed to define both the 64-bit entry point (smbios3) and 608 * the 32-bit entry point (smbios), in which case they should 609 * either both point to the same SMBIOS structure table, or the 610 * table pointed to by the 64-bit entry point should contain a 611 * superset of the table contents pointed to by the 32-bit entry 612 * point (section 5.2) 613 * This implies that the 64-bit entry point should have 614 * precedence if it is defined and supported by the OS. If we 615 * have the 64-bit entry point, but fail to decode it, fall 616 * back to the legacy one (if available) 617 */ 618 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 619 p = dmi_early_remap(efi.smbios3, 32); 620 if (p == NULL) 621 goto error; 622 memcpy_fromio(buf, p, 32); 623 dmi_early_unmap(p, 32); 624 625 if (!dmi_smbios3_present(buf)) { 626 dmi_available = 1; 627 goto out; 628 } 629 } 630 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 631 goto error; 632 633 /* This is called as a core_initcall() because it isn't 634 * needed during early boot. This also means we can 635 * iounmap the space when we're done with it. 636 */ 637 p = dmi_early_remap(efi.smbios, 32); 638 if (p == NULL) 639 goto error; 640 memcpy_fromio(buf, p, 32); 641 dmi_early_unmap(p, 32); 642 643 if (!dmi_present(buf)) { 644 dmi_available = 1; 645 goto out; 646 } 647 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 648 p = dmi_early_remap(0xF0000, 0x10000); 649 if (p == NULL) 650 goto error; 651 652 /* 653 * Iterate over all possible DMI header addresses q. 654 * Maintain the 32 bytes around q in buf. On the 655 * first iteration, substitute zero for the 656 * out-of-range bytes so there is no chance of falsely 657 * detecting an SMBIOS header. 658 */ 659 memset(buf, 0, 16); 660 for (q = p; q < p + 0x10000; q += 16) { 661 memcpy_fromio(buf + 16, q, 16); 662 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 663 dmi_available = 1; 664 dmi_early_unmap(p, 0x10000); 665 goto out; 666 } 667 memcpy(buf, buf + 16, 16); 668 } 669 dmi_early_unmap(p, 0x10000); 670 } 671 error: 672 pr_info("DMI not present or invalid.\n"); 673 out: 674 dmi_initialized = 1; 675 } 676 677 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 678 struct bin_attribute *attr, char *buf, 679 loff_t pos, size_t count) 680 { 681 memcpy(buf, attr->private + pos, count); 682 return count; 683 } 684 685 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 686 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 687 688 static int __init dmi_init(void) 689 { 690 struct kobject *tables_kobj; 691 u8 *dmi_table; 692 int ret = -ENOMEM; 693 694 if (!dmi_available) { 695 ret = -ENODATA; 696 goto err; 697 } 698 699 /* 700 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 701 * even after farther error, as it can be used by other modules like 702 * dmi-sysfs. 703 */ 704 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 705 if (!dmi_kobj) 706 goto err; 707 708 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 709 if (!tables_kobj) 710 goto err; 711 712 dmi_table = dmi_remap(dmi_base, dmi_len); 713 if (!dmi_table) 714 goto err_tables; 715 716 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 717 bin_attr_smbios_entry_point.private = smbios_entry_point; 718 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 719 if (ret) 720 goto err_unmap; 721 722 bin_attr_DMI.size = dmi_len; 723 bin_attr_DMI.private = dmi_table; 724 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 725 if (!ret) 726 return 0; 727 728 sysfs_remove_bin_file(tables_kobj, 729 &bin_attr_smbios_entry_point); 730 err_unmap: 731 dmi_unmap(dmi_table); 732 err_tables: 733 kobject_del(tables_kobj); 734 kobject_put(tables_kobj); 735 err: 736 pr_err("dmi: Firmware registration failed.\n"); 737 738 return ret; 739 } 740 subsys_initcall(dmi_init); 741 742 /** 743 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 744 * 745 * Invoke dump_stack_set_arch_desc() with DMI system information so that 746 * DMI identifiers are printed out on task dumps. Arch boot code should 747 * call this function after dmi_scan_machine() if it wants to print out DMI 748 * identifiers on task dumps. 749 */ 750 void __init dmi_set_dump_stack_arch_desc(void) 751 { 752 dump_stack_set_arch_desc("%s", dmi_ids_string); 753 } 754 755 /** 756 * dmi_matches - check if dmi_system_id structure matches system DMI data 757 * @dmi: pointer to the dmi_system_id structure to check 758 */ 759 static bool dmi_matches(const struct dmi_system_id *dmi) 760 { 761 int i; 762 763 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 764 765 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 766 int s = dmi->matches[i].slot; 767 if (s == DMI_NONE) 768 break; 769 if (dmi_ident[s]) { 770 if (!dmi->matches[i].exact_match && 771 strstr(dmi_ident[s], dmi->matches[i].substr)) 772 continue; 773 else if (dmi->matches[i].exact_match && 774 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 775 continue; 776 } 777 778 /* No match */ 779 return false; 780 } 781 return true; 782 } 783 784 /** 785 * dmi_is_end_of_table - check for end-of-table marker 786 * @dmi: pointer to the dmi_system_id structure to check 787 */ 788 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 789 { 790 return dmi->matches[0].slot == DMI_NONE; 791 } 792 793 /** 794 * dmi_check_system - check system DMI data 795 * @list: array of dmi_system_id structures to match against 796 * All non-null elements of the list must match 797 * their slot's (field index's) data (i.e., each 798 * list string must be a substring of the specified 799 * DMI slot's string data) to be considered a 800 * successful match. 801 * 802 * Walk the blacklist table running matching functions until someone 803 * returns non zero or we hit the end. Callback function is called for 804 * each successful match. Returns the number of matches. 805 */ 806 int dmi_check_system(const struct dmi_system_id *list) 807 { 808 int count = 0; 809 const struct dmi_system_id *d; 810 811 for (d = list; !dmi_is_end_of_table(d); d++) 812 if (dmi_matches(d)) { 813 count++; 814 if (d->callback && d->callback(d)) 815 break; 816 } 817 818 return count; 819 } 820 EXPORT_SYMBOL(dmi_check_system); 821 822 /** 823 * dmi_first_match - find dmi_system_id structure matching system DMI data 824 * @list: array of dmi_system_id structures to match against 825 * All non-null elements of the list must match 826 * their slot's (field index's) data (i.e., each 827 * list string must be a substring of the specified 828 * DMI slot's string data) to be considered a 829 * successful match. 830 * 831 * Walk the blacklist table until the first match is found. Return the 832 * pointer to the matching entry or NULL if there's no match. 833 */ 834 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 835 { 836 const struct dmi_system_id *d; 837 838 for (d = list; !dmi_is_end_of_table(d); d++) 839 if (dmi_matches(d)) 840 return d; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dmi_first_match); 845 846 /** 847 * dmi_get_system_info - return DMI data value 848 * @field: data index (see enum dmi_field) 849 * 850 * Returns one DMI data value, can be used to perform 851 * complex DMI data checks. 852 */ 853 const char *dmi_get_system_info(int field) 854 { 855 return dmi_ident[field]; 856 } 857 EXPORT_SYMBOL(dmi_get_system_info); 858 859 /** 860 * dmi_name_in_serial - Check if string is in the DMI product serial information 861 * @str: string to check for 862 */ 863 int dmi_name_in_serial(const char *str) 864 { 865 int f = DMI_PRODUCT_SERIAL; 866 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 867 return 1; 868 return 0; 869 } 870 871 /** 872 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 873 * @str: Case sensitive Name 874 */ 875 int dmi_name_in_vendors(const char *str) 876 { 877 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 878 int i; 879 for (i = 0; fields[i] != DMI_NONE; i++) { 880 int f = fields[i]; 881 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 882 return 1; 883 } 884 return 0; 885 } 886 EXPORT_SYMBOL(dmi_name_in_vendors); 887 888 /** 889 * dmi_find_device - find onboard device by type/name 890 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 891 * @name: device name string or %NULL to match all 892 * @from: previous device found in search, or %NULL for new search. 893 * 894 * Iterates through the list of known onboard devices. If a device is 895 * found with a matching @type and @name, a pointer to its device 896 * structure is returned. Otherwise, %NULL is returned. 897 * A new search is initiated by passing %NULL as the @from argument. 898 * If @from is not %NULL, searches continue from next device. 899 */ 900 const struct dmi_device *dmi_find_device(int type, const char *name, 901 const struct dmi_device *from) 902 { 903 const struct list_head *head = from ? &from->list : &dmi_devices; 904 struct list_head *d; 905 906 for (d = head->next; d != &dmi_devices; d = d->next) { 907 const struct dmi_device *dev = 908 list_entry(d, struct dmi_device, list); 909 910 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 911 ((name == NULL) || (strcmp(dev->name, name) == 0))) 912 return dev; 913 } 914 915 return NULL; 916 } 917 EXPORT_SYMBOL(dmi_find_device); 918 919 /** 920 * dmi_get_date - parse a DMI date 921 * @field: data index (see enum dmi_field) 922 * @yearp: optional out parameter for the year 923 * @monthp: optional out parameter for the month 924 * @dayp: optional out parameter for the day 925 * 926 * The date field is assumed to be in the form resembling 927 * [mm[/dd]]/yy[yy] and the result is stored in the out 928 * parameters any or all of which can be omitted. 929 * 930 * If the field doesn't exist, all out parameters are set to zero 931 * and false is returned. Otherwise, true is returned with any 932 * invalid part of date set to zero. 933 * 934 * On return, year, month and day are guaranteed to be in the 935 * range of [0,9999], [0,12] and [0,31] respectively. 936 */ 937 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 938 { 939 int year = 0, month = 0, day = 0; 940 bool exists; 941 const char *s, *y; 942 char *e; 943 944 s = dmi_get_system_info(field); 945 exists = s; 946 if (!exists) 947 goto out; 948 949 /* 950 * Determine year first. We assume the date string resembles 951 * mm/dd/yy[yy] but the original code extracted only the year 952 * from the end. Keep the behavior in the spirit of no 953 * surprises. 954 */ 955 y = strrchr(s, '/'); 956 if (!y) 957 goto out; 958 959 y++; 960 year = simple_strtoul(y, &e, 10); 961 if (y != e && year < 100) { /* 2-digit year */ 962 year += 1900; 963 if (year < 1996) /* no dates < spec 1.0 */ 964 year += 100; 965 } 966 if (year > 9999) /* year should fit in %04d */ 967 year = 0; 968 969 /* parse the mm and dd */ 970 month = simple_strtoul(s, &e, 10); 971 if (s == e || *e != '/' || !month || month > 12) { 972 month = 0; 973 goto out; 974 } 975 976 s = e + 1; 977 day = simple_strtoul(s, &e, 10); 978 if (s == y || s == e || *e != '/' || day > 31) 979 day = 0; 980 out: 981 if (yearp) 982 *yearp = year; 983 if (monthp) 984 *monthp = month; 985 if (dayp) 986 *dayp = day; 987 return exists; 988 } 989 EXPORT_SYMBOL(dmi_get_date); 990 991 /** 992 * dmi_walk - Walk the DMI table and get called back for every record 993 * @decode: Callback function 994 * @private_data: Private data to be passed to the callback function 995 * 996 * Returns -1 when the DMI table can't be reached, 0 on success. 997 */ 998 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 999 void *private_data) 1000 { 1001 u8 *buf; 1002 1003 if (!dmi_available) 1004 return -1; 1005 1006 buf = dmi_remap(dmi_base, dmi_len); 1007 if (buf == NULL) 1008 return -1; 1009 1010 dmi_decode_table(buf, decode, private_data); 1011 1012 dmi_unmap(buf); 1013 return 0; 1014 } 1015 EXPORT_SYMBOL_GPL(dmi_walk); 1016 1017 /** 1018 * dmi_match - compare a string to the dmi field (if exists) 1019 * @f: DMI field identifier 1020 * @str: string to compare the DMI field to 1021 * 1022 * Returns true if the requested field equals to the str (including NULL). 1023 */ 1024 bool dmi_match(enum dmi_field f, const char *str) 1025 { 1026 const char *info = dmi_get_system_info(f); 1027 1028 if (info == NULL || str == NULL) 1029 return info == str; 1030 1031 return !strcmp(info, str); 1032 } 1033 EXPORT_SYMBOL_GPL(dmi_match); 1034 1035 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1036 { 1037 int n; 1038 1039 if (dmi_memdev == NULL) 1040 return; 1041 1042 for (n = 0; n < dmi_memdev_nr; n++) { 1043 if (handle == dmi_memdev[n].handle) { 1044 *bank = dmi_memdev[n].bank; 1045 *device = dmi_memdev[n].device; 1046 break; 1047 } 1048 } 1049 } 1050 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1051