1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <asm/dmi.h> 10 11 /* 12 * DMI stands for "Desktop Management Interface". It is part 13 * of and an antecedent to, SMBIOS, which stands for System 14 * Management BIOS. See further: http://www.dmtf.org/standards 15 */ 16 static char dmi_empty_string[] = " "; 17 18 /* 19 * Catch too early calls to dmi_check_system(): 20 */ 21 static int dmi_initialized; 22 23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 24 { 25 const u8 *bp = ((u8 *) dm) + dm->length; 26 27 if (s) { 28 s--; 29 while (s > 0 && *bp) { 30 bp += strlen(bp) + 1; 31 s--; 32 } 33 34 if (*bp != 0) { 35 size_t len = strlen(bp)+1; 36 size_t cmp_len = len > 8 ? 8 : len; 37 38 if (!memcmp(bp, dmi_empty_string, cmp_len)) 39 return dmi_empty_string; 40 return bp; 41 } 42 } 43 44 return ""; 45 } 46 47 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 48 { 49 const char *bp = dmi_string_nosave(dm, s); 50 char *str; 51 size_t len; 52 53 if (bp == dmi_empty_string) 54 return dmi_empty_string; 55 56 len = strlen(bp) + 1; 57 str = dmi_alloc(len); 58 if (str != NULL) 59 strcpy(str, bp); 60 else 61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 62 63 return str; 64 } 65 66 /* 67 * We have to be cautious here. We have seen BIOSes with DMI pointers 68 * pointing to completely the wrong place for example 69 */ 70 static void dmi_table(u8 *buf, int len, int num, 71 void (*decode)(const struct dmi_header *, void *), 72 void *private_data) 73 { 74 u8 *data = buf; 75 int i = 0; 76 77 /* 78 * Stop when we see all the items the table claimed to have 79 * OR we run off the end of the table (also happens) 80 */ 81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 82 const struct dmi_header *dm = (const struct dmi_header *)data; 83 84 /* 85 * We want to know the total length (formatted area and 86 * strings) before decoding to make sure we won't run off the 87 * table in dmi_decode or dmi_string 88 */ 89 data += dm->length; 90 while ((data - buf < len - 1) && (data[0] || data[1])) 91 data++; 92 if (data - buf < len - 1) 93 decode(dm, private_data); 94 data += 2; 95 i++; 96 } 97 } 98 99 static u32 dmi_base; 100 static u16 dmi_len; 101 static u16 dmi_num; 102 103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 104 void *)) 105 { 106 u8 *buf; 107 108 buf = dmi_ioremap(dmi_base, dmi_len); 109 if (buf == NULL) 110 return -1; 111 112 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 113 114 dmi_iounmap(buf, dmi_len); 115 return 0; 116 } 117 118 static int __init dmi_checksum(const u8 *buf) 119 { 120 u8 sum = 0; 121 int a; 122 123 for (a = 0; a < 15; a++) 124 sum += buf[a]; 125 126 return sum == 0; 127 } 128 129 static char *dmi_ident[DMI_STRING_MAX]; 130 static LIST_HEAD(dmi_devices); 131 int dmi_available; 132 133 /* 134 * Save a DMI string 135 */ 136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 137 { 138 const char *d = (const char*) dm; 139 char *p; 140 141 if (dmi_ident[slot]) 142 return; 143 144 p = dmi_string(dm, d[string]); 145 if (p == NULL) 146 return; 147 148 dmi_ident[slot] = p; 149 } 150 151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 152 { 153 const u8 *d = (u8*) dm + index; 154 char *s; 155 int is_ff = 1, is_00 = 1, i; 156 157 if (dmi_ident[slot]) 158 return; 159 160 for (i = 0; i < 16 && (is_ff || is_00); i++) { 161 if(d[i] != 0x00) is_ff = 0; 162 if(d[i] != 0xFF) is_00 = 0; 163 } 164 165 if (is_ff || is_00) 166 return; 167 168 s = dmi_alloc(16*2+4+1); 169 if (!s) 170 return; 171 172 sprintf(s, "%pUB", d); 173 174 dmi_ident[slot] = s; 175 } 176 177 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 178 { 179 const u8 *d = (u8*) dm + index; 180 char *s; 181 182 if (dmi_ident[slot]) 183 return; 184 185 s = dmi_alloc(4); 186 if (!s) 187 return; 188 189 sprintf(s, "%u", *d & 0x7F); 190 dmi_ident[slot] = s; 191 } 192 193 static void __init dmi_save_one_device(int type, const char *name) 194 { 195 struct dmi_device *dev; 196 197 /* No duplicate device */ 198 if (dmi_find_device(type, name, NULL)) 199 return; 200 201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 202 if (!dev) { 203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 204 return; 205 } 206 207 dev->type = type; 208 strcpy((char *)(dev + 1), name); 209 dev->name = (char *)(dev + 1); 210 dev->device_data = NULL; 211 list_add(&dev->list, &dmi_devices); 212 } 213 214 static void __init dmi_save_devices(const struct dmi_header *dm) 215 { 216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 217 218 for (i = 0; i < count; i++) { 219 const char *d = (char *)(dm + 1) + (i * 2); 220 221 /* Skip disabled device */ 222 if ((*d & 0x80) == 0) 223 continue; 224 225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 226 } 227 } 228 229 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 230 { 231 int i, count = *(u8 *)(dm + 1); 232 struct dmi_device *dev; 233 234 for (i = 1; i <= count; i++) { 235 char *devname = dmi_string(dm, i); 236 237 if (devname == dmi_empty_string) 238 continue; 239 240 dev = dmi_alloc(sizeof(*dev)); 241 if (!dev) { 242 printk(KERN_ERR 243 "dmi_save_oem_strings_devices: out of memory.\n"); 244 break; 245 } 246 247 dev->type = DMI_DEV_TYPE_OEM_STRING; 248 dev->name = devname; 249 dev->device_data = NULL; 250 251 list_add(&dev->list, &dmi_devices); 252 } 253 } 254 255 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 256 { 257 struct dmi_device *dev; 258 void * data; 259 260 data = dmi_alloc(dm->length); 261 if (data == NULL) { 262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 263 return; 264 } 265 266 memcpy(data, dm, dm->length); 267 268 dev = dmi_alloc(sizeof(*dev)); 269 if (!dev) { 270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 271 return; 272 } 273 274 dev->type = DMI_DEV_TYPE_IPMI; 275 dev->name = "IPMI controller"; 276 dev->device_data = data; 277 278 list_add_tail(&dev->list, &dmi_devices); 279 } 280 281 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 282 int devfn, const char *name) 283 { 284 struct dmi_dev_onboard *onboard_dev; 285 286 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 287 if (!onboard_dev) { 288 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); 289 return; 290 } 291 onboard_dev->instance = instance; 292 onboard_dev->segment = segment; 293 onboard_dev->bus = bus; 294 onboard_dev->devfn = devfn; 295 296 strcpy((char *)&onboard_dev[1], name); 297 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 298 onboard_dev->dev.name = (char *)&onboard_dev[1]; 299 onboard_dev->dev.device_data = onboard_dev; 300 301 list_add(&onboard_dev->dev.list, &dmi_devices); 302 } 303 304 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 305 { 306 const u8 *d = (u8*) dm + 5; 307 308 /* Skip disabled device */ 309 if ((*d & 0x80) == 0) 310 return; 311 312 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 313 dmi_string_nosave(dm, *(d-1))); 314 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 315 } 316 317 /* 318 * Process a DMI table entry. Right now all we care about are the BIOS 319 * and machine entries. For 2.5 we should pull the smbus controller info 320 * out of here. 321 */ 322 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 323 { 324 switch(dm->type) { 325 case 0: /* BIOS Information */ 326 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 327 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 328 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 329 break; 330 case 1: /* System Information */ 331 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 332 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 333 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 334 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 335 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 336 break; 337 case 2: /* Base Board Information */ 338 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 339 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 340 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 341 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 342 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 343 break; 344 case 3: /* Chassis Information */ 345 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 346 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 347 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 348 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 349 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 350 break; 351 case 10: /* Onboard Devices Information */ 352 dmi_save_devices(dm); 353 break; 354 case 11: /* OEM Strings */ 355 dmi_save_oem_strings_devices(dm); 356 break; 357 case 38: /* IPMI Device Information */ 358 dmi_save_ipmi_device(dm); 359 break; 360 case 41: /* Onboard Devices Extended Information */ 361 dmi_save_extended_devices(dm); 362 } 363 } 364 365 static void __init print_filtered(const char *info) 366 { 367 const char *p; 368 369 if (!info) 370 return; 371 372 for (p = info; *p; p++) 373 if (isprint(*p)) 374 printk(KERN_CONT "%c", *p); 375 else 376 printk(KERN_CONT "\\x%02x", *p & 0xff); 377 } 378 379 static void __init dmi_dump_ids(void) 380 { 381 printk(KERN_DEBUG "DMI: "); 382 print_filtered(dmi_get_system_info(DMI_BOARD_NAME)); 383 printk(KERN_CONT "/"); 384 print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME)); 385 printk(KERN_CONT ", BIOS "); 386 print_filtered(dmi_get_system_info(DMI_BIOS_VERSION)); 387 printk(KERN_CONT " "); 388 print_filtered(dmi_get_system_info(DMI_BIOS_DATE)); 389 printk(KERN_CONT "\n"); 390 } 391 392 static int __init dmi_present(const char __iomem *p) 393 { 394 u8 buf[15]; 395 396 memcpy_fromio(buf, p, 15); 397 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 398 dmi_num = (buf[13] << 8) | buf[12]; 399 dmi_len = (buf[7] << 8) | buf[6]; 400 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 401 (buf[9] << 8) | buf[8]; 402 403 /* 404 * DMI version 0.0 means that the real version is taken from 405 * the SMBIOS version, which we don't know at this point. 406 */ 407 if (buf[14] != 0) 408 printk(KERN_INFO "DMI %d.%d present.\n", 409 buf[14] >> 4, buf[14] & 0xF); 410 else 411 printk(KERN_INFO "DMI present.\n"); 412 if (dmi_walk_early(dmi_decode) == 0) { 413 dmi_dump_ids(); 414 return 0; 415 } 416 } 417 return 1; 418 } 419 420 void __init dmi_scan_machine(void) 421 { 422 char __iomem *p, *q; 423 int rc; 424 425 if (efi_enabled) { 426 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 427 goto error; 428 429 /* This is called as a core_initcall() because it isn't 430 * needed during early boot. This also means we can 431 * iounmap the space when we're done with it. 432 */ 433 p = dmi_ioremap(efi.smbios, 32); 434 if (p == NULL) 435 goto error; 436 437 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 438 dmi_iounmap(p, 32); 439 if (!rc) { 440 dmi_available = 1; 441 goto out; 442 } 443 } 444 else { 445 /* 446 * no iounmap() for that ioremap(); it would be a no-op, but 447 * it's so early in setup that sucker gets confused into doing 448 * what it shouldn't if we actually call it. 449 */ 450 p = dmi_ioremap(0xF0000, 0x10000); 451 if (p == NULL) 452 goto error; 453 454 for (q = p; q < p + 0x10000; q += 16) { 455 rc = dmi_present(q); 456 if (!rc) { 457 dmi_available = 1; 458 dmi_iounmap(p, 0x10000); 459 goto out; 460 } 461 } 462 dmi_iounmap(p, 0x10000); 463 } 464 error: 465 printk(KERN_INFO "DMI not present or invalid.\n"); 466 out: 467 dmi_initialized = 1; 468 } 469 470 /** 471 * dmi_matches - check if dmi_system_id structure matches system DMI data 472 * @dmi: pointer to the dmi_system_id structure to check 473 */ 474 static bool dmi_matches(const struct dmi_system_id *dmi) 475 { 476 int i; 477 478 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 479 480 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 481 int s = dmi->matches[i].slot; 482 if (s == DMI_NONE) 483 break; 484 if (dmi_ident[s] 485 && strstr(dmi_ident[s], dmi->matches[i].substr)) 486 continue; 487 /* No match */ 488 return false; 489 } 490 return true; 491 } 492 493 /** 494 * dmi_is_end_of_table - check for end-of-table marker 495 * @dmi: pointer to the dmi_system_id structure to check 496 */ 497 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 498 { 499 return dmi->matches[0].slot == DMI_NONE; 500 } 501 502 /** 503 * dmi_check_system - check system DMI data 504 * @list: array of dmi_system_id structures to match against 505 * All non-null elements of the list must match 506 * their slot's (field index's) data (i.e., each 507 * list string must be a substring of the specified 508 * DMI slot's string data) to be considered a 509 * successful match. 510 * 511 * Walk the blacklist table running matching functions until someone 512 * returns non zero or we hit the end. Callback function is called for 513 * each successful match. Returns the number of matches. 514 */ 515 int dmi_check_system(const struct dmi_system_id *list) 516 { 517 int count = 0; 518 const struct dmi_system_id *d; 519 520 for (d = list; !dmi_is_end_of_table(d); d++) 521 if (dmi_matches(d)) { 522 count++; 523 if (d->callback && d->callback(d)) 524 break; 525 } 526 527 return count; 528 } 529 EXPORT_SYMBOL(dmi_check_system); 530 531 /** 532 * dmi_first_match - find dmi_system_id structure matching system DMI data 533 * @list: array of dmi_system_id structures to match against 534 * All non-null elements of the list must match 535 * their slot's (field index's) data (i.e., each 536 * list string must be a substring of the specified 537 * DMI slot's string data) to be considered a 538 * successful match. 539 * 540 * Walk the blacklist table until the first match is found. Return the 541 * pointer to the matching entry or NULL if there's no match. 542 */ 543 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 544 { 545 const struct dmi_system_id *d; 546 547 for (d = list; !dmi_is_end_of_table(d); d++) 548 if (dmi_matches(d)) 549 return d; 550 551 return NULL; 552 } 553 EXPORT_SYMBOL(dmi_first_match); 554 555 /** 556 * dmi_get_system_info - return DMI data value 557 * @field: data index (see enum dmi_field) 558 * 559 * Returns one DMI data value, can be used to perform 560 * complex DMI data checks. 561 */ 562 const char *dmi_get_system_info(int field) 563 { 564 return dmi_ident[field]; 565 } 566 EXPORT_SYMBOL(dmi_get_system_info); 567 568 /** 569 * dmi_name_in_serial - Check if string is in the DMI product serial information 570 * @str: string to check for 571 */ 572 int dmi_name_in_serial(const char *str) 573 { 574 int f = DMI_PRODUCT_SERIAL; 575 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 576 return 1; 577 return 0; 578 } 579 580 /** 581 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 582 * @str: Case sensitive Name 583 */ 584 int dmi_name_in_vendors(const char *str) 585 { 586 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 587 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 588 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 589 int i; 590 for (i = 0; fields[i] != DMI_NONE; i++) { 591 int f = fields[i]; 592 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 593 return 1; 594 } 595 return 0; 596 } 597 EXPORT_SYMBOL(dmi_name_in_vendors); 598 599 /** 600 * dmi_find_device - find onboard device by type/name 601 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 602 * @name: device name string or %NULL to match all 603 * @from: previous device found in search, or %NULL for new search. 604 * 605 * Iterates through the list of known onboard devices. If a device is 606 * found with a matching @vendor and @device, a pointer to its device 607 * structure is returned. Otherwise, %NULL is returned. 608 * A new search is initiated by passing %NULL as the @from argument. 609 * If @from is not %NULL, searches continue from next device. 610 */ 611 const struct dmi_device * dmi_find_device(int type, const char *name, 612 const struct dmi_device *from) 613 { 614 const struct list_head *head = from ? &from->list : &dmi_devices; 615 struct list_head *d; 616 617 for(d = head->next; d != &dmi_devices; d = d->next) { 618 const struct dmi_device *dev = 619 list_entry(d, struct dmi_device, list); 620 621 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 622 ((name == NULL) || (strcmp(dev->name, name) == 0))) 623 return dev; 624 } 625 626 return NULL; 627 } 628 EXPORT_SYMBOL(dmi_find_device); 629 630 /** 631 * dmi_get_date - parse a DMI date 632 * @field: data index (see enum dmi_field) 633 * @yearp: optional out parameter for the year 634 * @monthp: optional out parameter for the month 635 * @dayp: optional out parameter for the day 636 * 637 * The date field is assumed to be in the form resembling 638 * [mm[/dd]]/yy[yy] and the result is stored in the out 639 * parameters any or all of which can be omitted. 640 * 641 * If the field doesn't exist, all out parameters are set to zero 642 * and false is returned. Otherwise, true is returned with any 643 * invalid part of date set to zero. 644 * 645 * On return, year, month and day are guaranteed to be in the 646 * range of [0,9999], [0,12] and [0,31] respectively. 647 */ 648 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 649 { 650 int year = 0, month = 0, day = 0; 651 bool exists; 652 const char *s, *y; 653 char *e; 654 655 s = dmi_get_system_info(field); 656 exists = s; 657 if (!exists) 658 goto out; 659 660 /* 661 * Determine year first. We assume the date string resembles 662 * mm/dd/yy[yy] but the original code extracted only the year 663 * from the end. Keep the behavior in the spirit of no 664 * surprises. 665 */ 666 y = strrchr(s, '/'); 667 if (!y) 668 goto out; 669 670 y++; 671 year = simple_strtoul(y, &e, 10); 672 if (y != e && year < 100) { /* 2-digit year */ 673 year += 1900; 674 if (year < 1996) /* no dates < spec 1.0 */ 675 year += 100; 676 } 677 if (year > 9999) /* year should fit in %04d */ 678 year = 0; 679 680 /* parse the mm and dd */ 681 month = simple_strtoul(s, &e, 10); 682 if (s == e || *e != '/' || !month || month > 12) { 683 month = 0; 684 goto out; 685 } 686 687 s = e + 1; 688 day = simple_strtoul(s, &e, 10); 689 if (s == y || s == e || *e != '/' || day > 31) 690 day = 0; 691 out: 692 if (yearp) 693 *yearp = year; 694 if (monthp) 695 *monthp = month; 696 if (dayp) 697 *dayp = day; 698 return exists; 699 } 700 EXPORT_SYMBOL(dmi_get_date); 701 702 /** 703 * dmi_walk - Walk the DMI table and get called back for every record 704 * @decode: Callback function 705 * @private_data: Private data to be passed to the callback function 706 * 707 * Returns -1 when the DMI table can't be reached, 0 on success. 708 */ 709 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 710 void *private_data) 711 { 712 u8 *buf; 713 714 if (!dmi_available) 715 return -1; 716 717 buf = ioremap(dmi_base, dmi_len); 718 if (buf == NULL) 719 return -1; 720 721 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 722 723 iounmap(buf); 724 return 0; 725 } 726 EXPORT_SYMBOL_GPL(dmi_walk); 727 728 /** 729 * dmi_match - compare a string to the dmi field (if exists) 730 * @f: DMI field identifier 731 * @str: string to compare the DMI field to 732 * 733 * Returns true if the requested field equals to the str (including NULL). 734 */ 735 bool dmi_match(enum dmi_field f, const char *str) 736 { 737 const char *info = dmi_get_system_info(f); 738 739 if (info == NULL || str == NULL) 740 return info == str; 741 742 return !strcmp(info, str); 743 } 744 EXPORT_SYMBOL_GPL(dmi_match); 745