xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision b6bec26c)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 
12 /*
13  * DMI stands for "Desktop Management Interface".  It is part
14  * of and an antecedent to, SMBIOS, which stands for System
15  * Management BIOS.  See further: http://www.dmtf.org/standards
16  */
17 static char dmi_empty_string[] = "        ";
18 
19 static u16 __initdata dmi_ver;
20 /*
21  * Catch too early calls to dmi_check_system():
22  */
23 static int dmi_initialized;
24 
25 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
26 {
27 	const u8 *bp = ((u8 *) dm) + dm->length;
28 
29 	if (s) {
30 		s--;
31 		while (s > 0 && *bp) {
32 			bp += strlen(bp) + 1;
33 			s--;
34 		}
35 
36 		if (*bp != 0) {
37 			size_t len = strlen(bp)+1;
38 			size_t cmp_len = len > 8 ? 8 : len;
39 
40 			if (!memcmp(bp, dmi_empty_string, cmp_len))
41 				return dmi_empty_string;
42 			return bp;
43 		}
44 	}
45 
46 	return "";
47 }
48 
49 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
50 {
51 	const char *bp = dmi_string_nosave(dm, s);
52 	char *str;
53 	size_t len;
54 
55 	if (bp == dmi_empty_string)
56 		return dmi_empty_string;
57 
58 	len = strlen(bp) + 1;
59 	str = dmi_alloc(len);
60 	if (str != NULL)
61 		strcpy(str, bp);
62 	else
63 		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
64 
65 	return str;
66 }
67 
68 /*
69  *	We have to be cautious here. We have seen BIOSes with DMI pointers
70  *	pointing to completely the wrong place for example
71  */
72 static void dmi_table(u8 *buf, int len, int num,
73 		      void (*decode)(const struct dmi_header *, void *),
74 		      void *private_data)
75 {
76 	u8 *data = buf;
77 	int i = 0;
78 
79 	/*
80 	 *	Stop when we see all the items the table claimed to have
81 	 *	OR we run off the end of the table (also happens)
82 	 */
83 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
84 		const struct dmi_header *dm = (const struct dmi_header *)data;
85 
86 		/*
87 		 *  We want to know the total length (formatted area and
88 		 *  strings) before decoding to make sure we won't run off the
89 		 *  table in dmi_decode or dmi_string
90 		 */
91 		data += dm->length;
92 		while ((data - buf < len - 1) && (data[0] || data[1]))
93 			data++;
94 		if (data - buf < len - 1)
95 			decode(dm, private_data);
96 		data += 2;
97 		i++;
98 	}
99 }
100 
101 static u32 dmi_base;
102 static u16 dmi_len;
103 static u16 dmi_num;
104 
105 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
106 		void *))
107 {
108 	u8 *buf;
109 
110 	buf = dmi_ioremap(dmi_base, dmi_len);
111 	if (buf == NULL)
112 		return -1;
113 
114 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
115 
116 	add_device_randomness(buf, dmi_len);
117 
118 	dmi_iounmap(buf, dmi_len);
119 	return 0;
120 }
121 
122 static int __init dmi_checksum(const u8 *buf, u8 len)
123 {
124 	u8 sum = 0;
125 	int a;
126 
127 	for (a = 0; a < len; a++)
128 		sum += buf[a];
129 
130 	return sum == 0;
131 }
132 
133 static char *dmi_ident[DMI_STRING_MAX];
134 static LIST_HEAD(dmi_devices);
135 int dmi_available;
136 
137 /*
138  *	Save a DMI string
139  */
140 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
141 {
142 	const char *d = (const char*) dm;
143 	char *p;
144 
145 	if (dmi_ident[slot])
146 		return;
147 
148 	p = dmi_string(dm, d[string]);
149 	if (p == NULL)
150 		return;
151 
152 	dmi_ident[slot] = p;
153 }
154 
155 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
156 {
157 	const u8 *d = (u8*) dm + index;
158 	char *s;
159 	int is_ff = 1, is_00 = 1, i;
160 
161 	if (dmi_ident[slot])
162 		return;
163 
164 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
165 		if (d[i] != 0x00)
166 			is_00 = 0;
167 		if (d[i] != 0xFF)
168 			is_ff = 0;
169 	}
170 
171 	if (is_ff || is_00)
172 		return;
173 
174 	s = dmi_alloc(16*2+4+1);
175 	if (!s)
176 		return;
177 
178 	/*
179 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
180 	 * the UUID are supposed to be little-endian encoded.  The specification
181 	 * says that this is the defacto standard.
182 	 */
183 	if (dmi_ver >= 0x0206)
184 		sprintf(s, "%pUL", d);
185 	else
186 		sprintf(s, "%pUB", d);
187 
188         dmi_ident[slot] = s;
189 }
190 
191 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
192 {
193 	const u8 *d = (u8*) dm + index;
194 	char *s;
195 
196 	if (dmi_ident[slot])
197 		return;
198 
199 	s = dmi_alloc(4);
200 	if (!s)
201 		return;
202 
203 	sprintf(s, "%u", *d & 0x7F);
204 	dmi_ident[slot] = s;
205 }
206 
207 static void __init dmi_save_one_device(int type, const char *name)
208 {
209 	struct dmi_device *dev;
210 
211 	/* No duplicate device */
212 	if (dmi_find_device(type, name, NULL))
213 		return;
214 
215 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
216 	if (!dev) {
217 		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
218 		return;
219 	}
220 
221 	dev->type = type;
222 	strcpy((char *)(dev + 1), name);
223 	dev->name = (char *)(dev + 1);
224 	dev->device_data = NULL;
225 	list_add(&dev->list, &dmi_devices);
226 }
227 
228 static void __init dmi_save_devices(const struct dmi_header *dm)
229 {
230 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
231 
232 	for (i = 0; i < count; i++) {
233 		const char *d = (char *)(dm + 1) + (i * 2);
234 
235 		/* Skip disabled device */
236 		if ((*d & 0x80) == 0)
237 			continue;
238 
239 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
240 	}
241 }
242 
243 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
244 {
245 	int i, count = *(u8 *)(dm + 1);
246 	struct dmi_device *dev;
247 
248 	for (i = 1; i <= count; i++) {
249 		char *devname = dmi_string(dm, i);
250 
251 		if (devname == dmi_empty_string)
252 			continue;
253 
254 		dev = dmi_alloc(sizeof(*dev));
255 		if (!dev) {
256 			printk(KERN_ERR
257 			   "dmi_save_oem_strings_devices: out of memory.\n");
258 			break;
259 		}
260 
261 		dev->type = DMI_DEV_TYPE_OEM_STRING;
262 		dev->name = devname;
263 		dev->device_data = NULL;
264 
265 		list_add(&dev->list, &dmi_devices);
266 	}
267 }
268 
269 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
270 {
271 	struct dmi_device *dev;
272 	void * data;
273 
274 	data = dmi_alloc(dm->length);
275 	if (data == NULL) {
276 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
277 		return;
278 	}
279 
280 	memcpy(data, dm, dm->length);
281 
282 	dev = dmi_alloc(sizeof(*dev));
283 	if (!dev) {
284 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
285 		return;
286 	}
287 
288 	dev->type = DMI_DEV_TYPE_IPMI;
289 	dev->name = "IPMI controller";
290 	dev->device_data = data;
291 
292 	list_add_tail(&dev->list, &dmi_devices);
293 }
294 
295 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
296 					int devfn, const char *name)
297 {
298 	struct dmi_dev_onboard *onboard_dev;
299 
300 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
301 	if (!onboard_dev) {
302 		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
303 		return;
304 	}
305 	onboard_dev->instance = instance;
306 	onboard_dev->segment = segment;
307 	onboard_dev->bus = bus;
308 	onboard_dev->devfn = devfn;
309 
310 	strcpy((char *)&onboard_dev[1], name);
311 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
312 	onboard_dev->dev.name = (char *)&onboard_dev[1];
313 	onboard_dev->dev.device_data = onboard_dev;
314 
315 	list_add(&onboard_dev->dev.list, &dmi_devices);
316 }
317 
318 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
319 {
320 	const u8 *d = (u8*) dm + 5;
321 
322 	/* Skip disabled device */
323 	if ((*d & 0x80) == 0)
324 		return;
325 
326 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
327 			     dmi_string_nosave(dm, *(d-1)));
328 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
329 }
330 
331 /*
332  *	Process a DMI table entry. Right now all we care about are the BIOS
333  *	and machine entries. For 2.5 we should pull the smbus controller info
334  *	out of here.
335  */
336 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
337 {
338 	switch(dm->type) {
339 	case 0:		/* BIOS Information */
340 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
341 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
342 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
343 		break;
344 	case 1:		/* System Information */
345 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
346 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
347 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
348 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
349 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
350 		break;
351 	case 2:		/* Base Board Information */
352 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
353 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
354 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
355 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
356 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
357 		break;
358 	case 3:		/* Chassis Information */
359 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
360 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
361 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
362 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
363 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
364 		break;
365 	case 10:	/* Onboard Devices Information */
366 		dmi_save_devices(dm);
367 		break;
368 	case 11:	/* OEM Strings */
369 		dmi_save_oem_strings_devices(dm);
370 		break;
371 	case 38:	/* IPMI Device Information */
372 		dmi_save_ipmi_device(dm);
373 		break;
374 	case 41:	/* Onboard Devices Extended Information */
375 		dmi_save_extended_devices(dm);
376 	}
377 }
378 
379 static void __init print_filtered(const char *info)
380 {
381 	const char *p;
382 
383 	if (!info)
384 		return;
385 
386 	for (p = info; *p; p++)
387 		if (isprint(*p))
388 			printk(KERN_CONT "%c", *p);
389 		else
390 			printk(KERN_CONT "\\x%02x", *p & 0xff);
391 }
392 
393 static void __init dmi_dump_ids(void)
394 {
395 	const char *board;	/* Board Name is optional */
396 
397 	printk(KERN_DEBUG "DMI: ");
398 	print_filtered(dmi_get_system_info(DMI_SYS_VENDOR));
399 	printk(KERN_CONT " ");
400 	print_filtered(dmi_get_system_info(DMI_PRODUCT_NAME));
401 	board = dmi_get_system_info(DMI_BOARD_NAME);
402 	if (board) {
403 		printk(KERN_CONT "/");
404 		print_filtered(board);
405 	}
406 	printk(KERN_CONT ", BIOS ");
407 	print_filtered(dmi_get_system_info(DMI_BIOS_VERSION));
408 	printk(KERN_CONT " ");
409 	print_filtered(dmi_get_system_info(DMI_BIOS_DATE));
410 	printk(KERN_CONT "\n");
411 }
412 
413 static int __init dmi_present(const char __iomem *p)
414 {
415 	u8 buf[15];
416 
417 	memcpy_fromio(buf, p, 15);
418 	if (dmi_checksum(buf, 15)) {
419 		dmi_num = (buf[13] << 8) | buf[12];
420 		dmi_len = (buf[7] << 8) | buf[6];
421 		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
422 			(buf[9] << 8) | buf[8];
423 
424 		if (dmi_walk_early(dmi_decode) == 0) {
425 			if (dmi_ver)
426 				pr_info("SMBIOS %d.%d present.\n",
427 				       dmi_ver >> 8, dmi_ver & 0xFF);
428 			else {
429 				dmi_ver = (buf[14] & 0xF0) << 4 |
430 					   (buf[14] & 0x0F);
431 				pr_info("Legacy DMI %d.%d present.\n",
432 				       dmi_ver >> 8, dmi_ver & 0xFF);
433 			}
434 			dmi_dump_ids();
435 			return 0;
436 		}
437 	}
438 	dmi_ver = 0;
439 	return 1;
440 }
441 
442 static int __init smbios_present(const char __iomem *p)
443 {
444 	u8 buf[32];
445 	int offset = 0;
446 
447 	memcpy_fromio(buf, p, 32);
448 	if ((buf[5] < 32) && dmi_checksum(buf, buf[5])) {
449 		dmi_ver = (buf[6] << 8) + buf[7];
450 
451 		/* Some BIOS report weird SMBIOS version, fix that up */
452 		switch (dmi_ver) {
453 		case 0x021F:
454 		case 0x0221:
455 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
456 			       dmi_ver & 0xFF, 3);
457 			dmi_ver = 0x0203;
458 			break;
459 		case 0x0233:
460 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
461 			dmi_ver = 0x0206;
462 			break;
463 		}
464 		offset = 16;
465 	}
466 	return dmi_present(buf + offset);
467 }
468 
469 void __init dmi_scan_machine(void)
470 {
471 	char __iomem *p, *q;
472 	int rc;
473 
474 	if (efi_enabled(EFI_CONFIG_TABLES)) {
475 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
476 			goto error;
477 
478 		/* This is called as a core_initcall() because it isn't
479 		 * needed during early boot.  This also means we can
480 		 * iounmap the space when we're done with it.
481 		 */
482 		p = dmi_ioremap(efi.smbios, 32);
483 		if (p == NULL)
484 			goto error;
485 
486 		rc = smbios_present(p);
487 		dmi_iounmap(p, 32);
488 		if (!rc) {
489 			dmi_available = 1;
490 			goto out;
491 		}
492 	}
493 	else {
494 		/*
495 		 * no iounmap() for that ioremap(); it would be a no-op, but
496 		 * it's so early in setup that sucker gets confused into doing
497 		 * what it shouldn't if we actually call it.
498 		 */
499 		p = dmi_ioremap(0xF0000, 0x10000);
500 		if (p == NULL)
501 			goto error;
502 
503 		for (q = p; q < p + 0x10000; q += 16) {
504 			if (memcmp(q, "_SM_", 4) == 0 && q - p <= 0xFFE0)
505 				rc = smbios_present(q);
506 			else if (memcmp(q, "_DMI_", 5) == 0)
507 				rc = dmi_present(q);
508 			else
509 				continue;
510 			if (!rc) {
511 				dmi_available = 1;
512 				dmi_iounmap(p, 0x10000);
513 				goto out;
514 			}
515 		}
516 		dmi_iounmap(p, 0x10000);
517 	}
518  error:
519 	printk(KERN_INFO "DMI not present or invalid.\n");
520  out:
521 	dmi_initialized = 1;
522 }
523 
524 /**
525  *	dmi_matches - check if dmi_system_id structure matches system DMI data
526  *	@dmi: pointer to the dmi_system_id structure to check
527  */
528 static bool dmi_matches(const struct dmi_system_id *dmi)
529 {
530 	int i;
531 
532 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
533 
534 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
535 		int s = dmi->matches[i].slot;
536 		if (s == DMI_NONE)
537 			break;
538 		if (dmi_ident[s]
539 		    && strstr(dmi_ident[s], dmi->matches[i].substr))
540 			continue;
541 		/* No match */
542 		return false;
543 	}
544 	return true;
545 }
546 
547 /**
548  *	dmi_is_end_of_table - check for end-of-table marker
549  *	@dmi: pointer to the dmi_system_id structure to check
550  */
551 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
552 {
553 	return dmi->matches[0].slot == DMI_NONE;
554 }
555 
556 /**
557  *	dmi_check_system - check system DMI data
558  *	@list: array of dmi_system_id structures to match against
559  *		All non-null elements of the list must match
560  *		their slot's (field index's) data (i.e., each
561  *		list string must be a substring of the specified
562  *		DMI slot's string data) to be considered a
563  *		successful match.
564  *
565  *	Walk the blacklist table running matching functions until someone
566  *	returns non zero or we hit the end. Callback function is called for
567  *	each successful match. Returns the number of matches.
568  */
569 int dmi_check_system(const struct dmi_system_id *list)
570 {
571 	int count = 0;
572 	const struct dmi_system_id *d;
573 
574 	for (d = list; !dmi_is_end_of_table(d); d++)
575 		if (dmi_matches(d)) {
576 			count++;
577 			if (d->callback && d->callback(d))
578 				break;
579 		}
580 
581 	return count;
582 }
583 EXPORT_SYMBOL(dmi_check_system);
584 
585 /**
586  *	dmi_first_match - find dmi_system_id structure matching system DMI data
587  *	@list: array of dmi_system_id structures to match against
588  *		All non-null elements of the list must match
589  *		their slot's (field index's) data (i.e., each
590  *		list string must be a substring of the specified
591  *		DMI slot's string data) to be considered a
592  *		successful match.
593  *
594  *	Walk the blacklist table until the first match is found.  Return the
595  *	pointer to the matching entry or NULL if there's no match.
596  */
597 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
598 {
599 	const struct dmi_system_id *d;
600 
601 	for (d = list; !dmi_is_end_of_table(d); d++)
602 		if (dmi_matches(d))
603 			return d;
604 
605 	return NULL;
606 }
607 EXPORT_SYMBOL(dmi_first_match);
608 
609 /**
610  *	dmi_get_system_info - return DMI data value
611  *	@field: data index (see enum dmi_field)
612  *
613  *	Returns one DMI data value, can be used to perform
614  *	complex DMI data checks.
615  */
616 const char *dmi_get_system_info(int field)
617 {
618 	return dmi_ident[field];
619 }
620 EXPORT_SYMBOL(dmi_get_system_info);
621 
622 /**
623  * dmi_name_in_serial - Check if string is in the DMI product serial information
624  * @str: string to check for
625  */
626 int dmi_name_in_serial(const char *str)
627 {
628 	int f = DMI_PRODUCT_SERIAL;
629 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
630 		return 1;
631 	return 0;
632 }
633 
634 /**
635  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
636  *	@str: 	Case sensitive Name
637  */
638 int dmi_name_in_vendors(const char *str)
639 {
640 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
641 	int i;
642 	for (i = 0; fields[i] != DMI_NONE; i++) {
643 		int f = fields[i];
644 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
645 			return 1;
646 	}
647 	return 0;
648 }
649 EXPORT_SYMBOL(dmi_name_in_vendors);
650 
651 /**
652  *	dmi_find_device - find onboard device by type/name
653  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
654  *	@name: device name string or %NULL to match all
655  *	@from: previous device found in search, or %NULL for new search.
656  *
657  *	Iterates through the list of known onboard devices. If a device is
658  *	found with a matching @vendor and @device, a pointer to its device
659  *	structure is returned.  Otherwise, %NULL is returned.
660  *	A new search is initiated by passing %NULL as the @from argument.
661  *	If @from is not %NULL, searches continue from next device.
662  */
663 const struct dmi_device * dmi_find_device(int type, const char *name,
664 				    const struct dmi_device *from)
665 {
666 	const struct list_head *head = from ? &from->list : &dmi_devices;
667 	struct list_head *d;
668 
669 	for(d = head->next; d != &dmi_devices; d = d->next) {
670 		const struct dmi_device *dev =
671 			list_entry(d, struct dmi_device, list);
672 
673 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
674 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
675 			return dev;
676 	}
677 
678 	return NULL;
679 }
680 EXPORT_SYMBOL(dmi_find_device);
681 
682 /**
683  *	dmi_get_date - parse a DMI date
684  *	@field:	data index (see enum dmi_field)
685  *	@yearp: optional out parameter for the year
686  *	@monthp: optional out parameter for the month
687  *	@dayp: optional out parameter for the day
688  *
689  *	The date field is assumed to be in the form resembling
690  *	[mm[/dd]]/yy[yy] and the result is stored in the out
691  *	parameters any or all of which can be omitted.
692  *
693  *	If the field doesn't exist, all out parameters are set to zero
694  *	and false is returned.  Otherwise, true is returned with any
695  *	invalid part of date set to zero.
696  *
697  *	On return, year, month and day are guaranteed to be in the
698  *	range of [0,9999], [0,12] and [0,31] respectively.
699  */
700 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
701 {
702 	int year = 0, month = 0, day = 0;
703 	bool exists;
704 	const char *s, *y;
705 	char *e;
706 
707 	s = dmi_get_system_info(field);
708 	exists = s;
709 	if (!exists)
710 		goto out;
711 
712 	/*
713 	 * Determine year first.  We assume the date string resembles
714 	 * mm/dd/yy[yy] but the original code extracted only the year
715 	 * from the end.  Keep the behavior in the spirit of no
716 	 * surprises.
717 	 */
718 	y = strrchr(s, '/');
719 	if (!y)
720 		goto out;
721 
722 	y++;
723 	year = simple_strtoul(y, &e, 10);
724 	if (y != e && year < 100) {	/* 2-digit year */
725 		year += 1900;
726 		if (year < 1996)	/* no dates < spec 1.0 */
727 			year += 100;
728 	}
729 	if (year > 9999)		/* year should fit in %04d */
730 		year = 0;
731 
732 	/* parse the mm and dd */
733 	month = simple_strtoul(s, &e, 10);
734 	if (s == e || *e != '/' || !month || month > 12) {
735 		month = 0;
736 		goto out;
737 	}
738 
739 	s = e + 1;
740 	day = simple_strtoul(s, &e, 10);
741 	if (s == y || s == e || *e != '/' || day > 31)
742 		day = 0;
743 out:
744 	if (yearp)
745 		*yearp = year;
746 	if (monthp)
747 		*monthp = month;
748 	if (dayp)
749 		*dayp = day;
750 	return exists;
751 }
752 EXPORT_SYMBOL(dmi_get_date);
753 
754 /**
755  *	dmi_walk - Walk the DMI table and get called back for every record
756  *	@decode: Callback function
757  *	@private_data: Private data to be passed to the callback function
758  *
759  *	Returns -1 when the DMI table can't be reached, 0 on success.
760  */
761 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
762 	     void *private_data)
763 {
764 	u8 *buf;
765 
766 	if (!dmi_available)
767 		return -1;
768 
769 	buf = ioremap(dmi_base, dmi_len);
770 	if (buf == NULL)
771 		return -1;
772 
773 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
774 
775 	iounmap(buf);
776 	return 0;
777 }
778 EXPORT_SYMBOL_GPL(dmi_walk);
779 
780 /**
781  * dmi_match - compare a string to the dmi field (if exists)
782  * @f: DMI field identifier
783  * @str: string to compare the DMI field to
784  *
785  * Returns true if the requested field equals to the str (including NULL).
786  */
787 bool dmi_match(enum dmi_field f, const char *str)
788 {
789 	const char *info = dmi_get_system_info(f);
790 
791 	if (info == NULL || str == NULL)
792 		return info == str;
793 
794 	return !strcmp(info, str);
795 }
796 EXPORT_SYMBOL_GPL(dmi_match);
797