xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision a5907065)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
13 
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16 #endif
17 
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
20 
21 /*
22  * DMI stands for "Desktop Management Interface".  It is part
23  * of and an antecedent to, SMBIOS, which stands for System
24  * Management BIOS.  See further: https://www.dmtf.org/standards
25  */
26 static const char dmi_empty_string[] = "";
27 
28 static u32 dmi_ver __initdata;
29 static u32 dmi_len;
30 static u16 dmi_num;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u64 size;		/* bytes */
41 	u16 handle;
42 	u8 type;		/* DDR2, DDR3, DDR4 etc */
43 } *dmi_memdev;
44 static int dmi_memdev_nr;
45 
46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47 {
48 	const u8 *bp = ((u8 *) dm) + dm->length;
49 	const u8 *nsp;
50 
51 	if (s) {
52 		while (--s > 0 && *bp)
53 			bp += strlen(bp) + 1;
54 
55 		/* Strings containing only spaces are considered empty */
56 		nsp = bp;
57 		while (*nsp == ' ')
58 			nsp++;
59 		if (*nsp != '\0')
60 			return bp;
61 	}
62 
63 	return dmi_empty_string;
64 }
65 
66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67 {
68 	const char *bp = dmi_string_nosave(dm, s);
69 	char *str;
70 	size_t len;
71 
72 	if (bp == dmi_empty_string)
73 		return dmi_empty_string;
74 
75 	len = strlen(bp) + 1;
76 	str = dmi_alloc(len);
77 	if (str != NULL)
78 		strcpy(str, bp);
79 
80 	return str;
81 }
82 
83 /*
84  *	We have to be cautious here. We have seen BIOSes with DMI pointers
85  *	pointing to completely the wrong place for example
86  */
87 static void dmi_decode_table(u8 *buf,
88 			     void (*decode)(const struct dmi_header *, void *),
89 			     void *private_data)
90 {
91 	u8 *data = buf;
92 	int i = 0;
93 
94 	/*
95 	 * Stop when we have seen all the items the table claimed to have
96 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 	 * >= 3.0 only) OR we run off the end of the table (should never
98 	 * happen but sometimes does on bogus implementations.)
99 	 */
100 	while ((!dmi_num || i < dmi_num) &&
101 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 		const struct dmi_header *dm = (const struct dmi_header *)data;
103 
104 		/*
105 		 *  We want to know the total length (formatted area and
106 		 *  strings) before decoding to make sure we won't run off the
107 		 *  table in dmi_decode or dmi_string
108 		 */
109 		data += dm->length;
110 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111 			data++;
112 		if (data - buf < dmi_len - 1)
113 			decode(dm, private_data);
114 
115 		data += 2;
116 		i++;
117 
118 		/*
119 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 		 * For tables behind a 64-bit entry point, we have no item
121 		 * count and no exact table length, so stop on end-of-table
122 		 * marker. For tables behind a 32-bit entry point, we have
123 		 * seen OEM structures behind the end-of-table marker on
124 		 * some systems, so don't trust it.
125 		 */
126 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127 			break;
128 	}
129 
130 	/* Trim DMI table length if needed */
131 	if (dmi_len > data - buf)
132 		dmi_len = data - buf;
133 }
134 
135 static phys_addr_t dmi_base;
136 
137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138 		void *))
139 {
140 	u8 *buf;
141 	u32 orig_dmi_len = dmi_len;
142 
143 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
144 	if (buf == NULL)
145 		return -ENOMEM;
146 
147 	dmi_decode_table(buf, decode, NULL);
148 
149 	add_device_randomness(buf, dmi_len);
150 
151 	dmi_early_unmap(buf, orig_dmi_len);
152 	return 0;
153 }
154 
155 static int __init dmi_checksum(const u8 *buf, u8 len)
156 {
157 	u8 sum = 0;
158 	int a;
159 
160 	for (a = 0; a < len; a++)
161 		sum += buf[a];
162 
163 	return sum == 0;
164 }
165 
166 static const char *dmi_ident[DMI_STRING_MAX];
167 static LIST_HEAD(dmi_devices);
168 int dmi_available;
169 
170 /*
171  *	Save a DMI string
172  */
173 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174 		int string)
175 {
176 	const char *d = (const char *) dm;
177 	const char *p;
178 
179 	if (dmi_ident[slot] || dm->length <= string)
180 		return;
181 
182 	p = dmi_string(dm, d[string]);
183 	if (p == NULL)
184 		return;
185 
186 	dmi_ident[slot] = p;
187 }
188 
189 static void __init dmi_save_release(const struct dmi_header *dm, int slot,
190 		int index)
191 {
192 	const u8 *minor, *major;
193 	char *s;
194 
195 	/* If the table doesn't have the field, let's return */
196 	if (dmi_ident[slot] || dm->length < index)
197 		return;
198 
199 	minor = (u8 *) dm + index;
200 	major = (u8 *) dm + index - 1;
201 
202 	/* As per the spec, if the system doesn't support this field,
203 	 * the value is FF
204 	 */
205 	if (*major == 0xFF && *minor == 0xFF)
206 		return;
207 
208 	s = dmi_alloc(8);
209 	if (!s)
210 		return;
211 
212 	sprintf(s, "%u.%u", *major, *minor);
213 
214 	dmi_ident[slot] = s;
215 }
216 
217 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
218 		int index)
219 {
220 	const u8 *d;
221 	char *s;
222 	int is_ff = 1, is_00 = 1, i;
223 
224 	if (dmi_ident[slot] || dm->length < index + 16)
225 		return;
226 
227 	d = (u8 *) dm + index;
228 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
229 		if (d[i] != 0x00)
230 			is_00 = 0;
231 		if (d[i] != 0xFF)
232 			is_ff = 0;
233 	}
234 
235 	if (is_ff || is_00)
236 		return;
237 
238 	s = dmi_alloc(16*2+4+1);
239 	if (!s)
240 		return;
241 
242 	/*
243 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
244 	 * the UUID are supposed to be little-endian encoded.  The specification
245 	 * says that this is the defacto standard.
246 	 */
247 	if (dmi_ver >= 0x020600)
248 		sprintf(s, "%pUl", d);
249 	else
250 		sprintf(s, "%pUb", d);
251 
252 	dmi_ident[slot] = s;
253 }
254 
255 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
256 		int index)
257 {
258 	const u8 *d;
259 	char *s;
260 
261 	if (dmi_ident[slot] || dm->length <= index)
262 		return;
263 
264 	s = dmi_alloc(4);
265 	if (!s)
266 		return;
267 
268 	d = (u8 *) dm + index;
269 	sprintf(s, "%u", *d & 0x7F);
270 	dmi_ident[slot] = s;
271 }
272 
273 static void __init dmi_save_one_device(int type, const char *name)
274 {
275 	struct dmi_device *dev;
276 
277 	/* No duplicate device */
278 	if (dmi_find_device(type, name, NULL))
279 		return;
280 
281 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
282 	if (!dev)
283 		return;
284 
285 	dev->type = type;
286 	strcpy((char *)(dev + 1), name);
287 	dev->name = (char *)(dev + 1);
288 	dev->device_data = NULL;
289 	list_add(&dev->list, &dmi_devices);
290 }
291 
292 static void __init dmi_save_devices(const struct dmi_header *dm)
293 {
294 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
295 
296 	for (i = 0; i < count; i++) {
297 		const char *d = (char *)(dm + 1) + (i * 2);
298 
299 		/* Skip disabled device */
300 		if ((*d & 0x80) == 0)
301 			continue;
302 
303 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
304 	}
305 }
306 
307 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
308 {
309 	int i, count;
310 	struct dmi_device *dev;
311 
312 	if (dm->length < 0x05)
313 		return;
314 
315 	count = *(u8 *)(dm + 1);
316 	for (i = 1; i <= count; i++) {
317 		const char *devname = dmi_string(dm, i);
318 
319 		if (devname == dmi_empty_string)
320 			continue;
321 
322 		dev = dmi_alloc(sizeof(*dev));
323 		if (!dev)
324 			break;
325 
326 		dev->type = DMI_DEV_TYPE_OEM_STRING;
327 		dev->name = devname;
328 		dev->device_data = NULL;
329 
330 		list_add(&dev->list, &dmi_devices);
331 	}
332 }
333 
334 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
335 {
336 	struct dmi_device *dev;
337 	void *data;
338 
339 	data = dmi_alloc(dm->length);
340 	if (data == NULL)
341 		return;
342 
343 	memcpy(data, dm, dm->length);
344 
345 	dev = dmi_alloc(sizeof(*dev));
346 	if (!dev)
347 		return;
348 
349 	dev->type = DMI_DEV_TYPE_IPMI;
350 	dev->name = "IPMI controller";
351 	dev->device_data = data;
352 
353 	list_add_tail(&dev->list, &dmi_devices);
354 }
355 
356 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
357 					int devfn, const char *name, int type)
358 {
359 	struct dmi_dev_onboard *dev;
360 
361 	/* Ignore invalid values */
362 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
363 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
364 		return;
365 
366 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
367 	if (!dev)
368 		return;
369 
370 	dev->instance = instance;
371 	dev->segment = segment;
372 	dev->bus = bus;
373 	dev->devfn = devfn;
374 
375 	strcpy((char *)&dev[1], name);
376 	dev->dev.type = type;
377 	dev->dev.name = (char *)&dev[1];
378 	dev->dev.device_data = dev;
379 
380 	list_add(&dev->dev.list, &dmi_devices);
381 }
382 
383 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
384 {
385 	const char *name;
386 	const u8 *d = (u8 *)dm;
387 
388 	if (dm->length < 0x0B)
389 		return;
390 
391 	/* Skip disabled device */
392 	if ((d[0x5] & 0x80) == 0)
393 		return;
394 
395 	name = dmi_string_nosave(dm, d[0x4]);
396 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
397 			     DMI_DEV_TYPE_DEV_ONBOARD);
398 	dmi_save_one_device(d[0x5] & 0x7f, name);
399 }
400 
401 static void __init dmi_save_system_slot(const struct dmi_header *dm)
402 {
403 	const u8 *d = (u8 *)dm;
404 
405 	/* Need SMBIOS 2.6+ structure */
406 	if (dm->length < 0x11)
407 		return;
408 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
409 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
410 			     DMI_DEV_TYPE_DEV_SLOT);
411 }
412 
413 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
414 {
415 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
416 		return;
417 	dmi_memdev_nr++;
418 }
419 
420 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
421 {
422 	const char *d = (const char *)dm;
423 	static int nr;
424 	u64 bytes;
425 	u16 size;
426 
427 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
428 		return;
429 	if (nr >= dmi_memdev_nr) {
430 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
431 		return;
432 	}
433 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
434 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
435 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
436 	dmi_memdev[nr].type = d[0x12];
437 
438 	size = get_unaligned((u16 *)&d[0xC]);
439 	if (size == 0)
440 		bytes = 0;
441 	else if (size == 0xffff)
442 		bytes = ~0ull;
443 	else if (size & 0x8000)
444 		bytes = (u64)(size & 0x7fff) << 10;
445 	else if (size != 0x7fff || dm->length < 0x20)
446 		bytes = (u64)size << 20;
447 	else
448 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
449 
450 	dmi_memdev[nr].size = bytes;
451 	nr++;
452 }
453 
454 static void __init dmi_memdev_walk(void)
455 {
456 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
457 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
458 		if (dmi_memdev)
459 			dmi_walk_early(save_mem_devices);
460 	}
461 }
462 
463 /*
464  *	Process a DMI table entry. Right now all we care about are the BIOS
465  *	and machine entries. For 2.5 we should pull the smbus controller info
466  *	out of here.
467  */
468 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
469 {
470 	switch (dm->type) {
471 	case 0:		/* BIOS Information */
472 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
473 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
474 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
475 		dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
476 		dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
477 		break;
478 	case 1:		/* System Information */
479 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
480 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
481 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
482 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
483 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
484 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
485 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
486 		break;
487 	case 2:		/* Base Board Information */
488 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
489 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
490 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
491 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
492 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
493 		break;
494 	case 3:		/* Chassis Information */
495 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
496 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
497 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
498 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
499 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
500 		break;
501 	case 9:		/* System Slots */
502 		dmi_save_system_slot(dm);
503 		break;
504 	case 10:	/* Onboard Devices Information */
505 		dmi_save_devices(dm);
506 		break;
507 	case 11:	/* OEM Strings */
508 		dmi_save_oem_strings_devices(dm);
509 		break;
510 	case 38:	/* IPMI Device Information */
511 		dmi_save_ipmi_device(dm);
512 		break;
513 	case 41:	/* Onboard Devices Extended Information */
514 		dmi_save_extended_devices(dm);
515 	}
516 }
517 
518 static int __init print_filtered(char *buf, size_t len, const char *info)
519 {
520 	int c = 0;
521 	const char *p;
522 
523 	if (!info)
524 		return c;
525 
526 	for (p = info; *p; p++)
527 		if (isprint(*p))
528 			c += scnprintf(buf + c, len - c, "%c", *p);
529 		else
530 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
531 	return c;
532 }
533 
534 static void __init dmi_format_ids(char *buf, size_t len)
535 {
536 	int c = 0;
537 	const char *board;	/* Board Name is optional */
538 
539 	c += print_filtered(buf + c, len - c,
540 			    dmi_get_system_info(DMI_SYS_VENDOR));
541 	c += scnprintf(buf + c, len - c, " ");
542 	c += print_filtered(buf + c, len - c,
543 			    dmi_get_system_info(DMI_PRODUCT_NAME));
544 
545 	board = dmi_get_system_info(DMI_BOARD_NAME);
546 	if (board) {
547 		c += scnprintf(buf + c, len - c, "/");
548 		c += print_filtered(buf + c, len - c, board);
549 	}
550 	c += scnprintf(buf + c, len - c, ", BIOS ");
551 	c += print_filtered(buf + c, len - c,
552 			    dmi_get_system_info(DMI_BIOS_VERSION));
553 	c += scnprintf(buf + c, len - c, " ");
554 	c += print_filtered(buf + c, len - c,
555 			    dmi_get_system_info(DMI_BIOS_DATE));
556 }
557 
558 /*
559  * Check for DMI/SMBIOS headers in the system firmware image.  Any
560  * SMBIOS header must start 16 bytes before the DMI header, so take a
561  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
562  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
563  * takes precedence) and return 0.  Otherwise return 1.
564  */
565 static int __init dmi_present(const u8 *buf)
566 {
567 	u32 smbios_ver;
568 
569 	if (memcmp(buf, "_SM_", 4) == 0 &&
570 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
571 		smbios_ver = get_unaligned_be16(buf + 6);
572 		smbios_entry_point_size = buf[5];
573 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
574 
575 		/* Some BIOS report weird SMBIOS version, fix that up */
576 		switch (smbios_ver) {
577 		case 0x021F:
578 		case 0x0221:
579 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
580 				 smbios_ver & 0xFF, 3);
581 			smbios_ver = 0x0203;
582 			break;
583 		case 0x0233:
584 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
585 			smbios_ver = 0x0206;
586 			break;
587 		}
588 	} else {
589 		smbios_ver = 0;
590 	}
591 
592 	buf += 16;
593 
594 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
595 		if (smbios_ver)
596 			dmi_ver = smbios_ver;
597 		else
598 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
599 		dmi_ver <<= 8;
600 		dmi_num = get_unaligned_le16(buf + 12);
601 		dmi_len = get_unaligned_le16(buf + 6);
602 		dmi_base = get_unaligned_le32(buf + 8);
603 
604 		if (dmi_walk_early(dmi_decode) == 0) {
605 			if (smbios_ver) {
606 				pr_info("SMBIOS %d.%d present.\n",
607 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
608 			} else {
609 				smbios_entry_point_size = 15;
610 				memcpy(smbios_entry_point, buf,
611 				       smbios_entry_point_size);
612 				pr_info("Legacy DMI %d.%d present.\n",
613 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
614 			}
615 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
616 			pr_info("DMI: %s\n", dmi_ids_string);
617 			return 0;
618 		}
619 	}
620 
621 	return 1;
622 }
623 
624 /*
625  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
626  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
627  */
628 static int __init dmi_smbios3_present(const u8 *buf)
629 {
630 	if (memcmp(buf, "_SM3_", 5) == 0 &&
631 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
632 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
633 		dmi_num = 0;			/* No longer specified */
634 		dmi_len = get_unaligned_le32(buf + 12);
635 		dmi_base = get_unaligned_le64(buf + 16);
636 		smbios_entry_point_size = buf[6];
637 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
638 
639 		if (dmi_walk_early(dmi_decode) == 0) {
640 			pr_info("SMBIOS %d.%d.%d present.\n",
641 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
642 				dmi_ver & 0xFF);
643 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
644 			pr_info("DMI: %s\n", dmi_ids_string);
645 			return 0;
646 		}
647 	}
648 	return 1;
649 }
650 
651 static void __init dmi_scan_machine(void)
652 {
653 	char __iomem *p, *q;
654 	char buf[32];
655 
656 	if (efi_enabled(EFI_CONFIG_TABLES)) {
657 		/*
658 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
659 		 * allowed to define both the 64-bit entry point (smbios3) and
660 		 * the 32-bit entry point (smbios), in which case they should
661 		 * either both point to the same SMBIOS structure table, or the
662 		 * table pointed to by the 64-bit entry point should contain a
663 		 * superset of the table contents pointed to by the 32-bit entry
664 		 * point (section 5.2)
665 		 * This implies that the 64-bit entry point should have
666 		 * precedence if it is defined and supported by the OS. If we
667 		 * have the 64-bit entry point, but fail to decode it, fall
668 		 * back to the legacy one (if available)
669 		 */
670 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
671 			p = dmi_early_remap(efi.smbios3, 32);
672 			if (p == NULL)
673 				goto error;
674 			memcpy_fromio(buf, p, 32);
675 			dmi_early_unmap(p, 32);
676 
677 			if (!dmi_smbios3_present(buf)) {
678 				dmi_available = 1;
679 				return;
680 			}
681 		}
682 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
683 			goto error;
684 
685 		/* This is called as a core_initcall() because it isn't
686 		 * needed during early boot.  This also means we can
687 		 * iounmap the space when we're done with it.
688 		 */
689 		p = dmi_early_remap(efi.smbios, 32);
690 		if (p == NULL)
691 			goto error;
692 		memcpy_fromio(buf, p, 32);
693 		dmi_early_unmap(p, 32);
694 
695 		if (!dmi_present(buf)) {
696 			dmi_available = 1;
697 			return;
698 		}
699 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
700 		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
701 		if (p == NULL)
702 			goto error;
703 
704 		/*
705 		 * Same logic as above, look for a 64-bit entry point
706 		 * first, and if not found, fall back to 32-bit entry point.
707 		 */
708 		memcpy_fromio(buf, p, 16);
709 		for (q = p + 16; q < p + 0x10000; q += 16) {
710 			memcpy_fromio(buf + 16, q, 16);
711 			if (!dmi_smbios3_present(buf)) {
712 				dmi_available = 1;
713 				dmi_early_unmap(p, 0x10000);
714 				return;
715 			}
716 			memcpy(buf, buf + 16, 16);
717 		}
718 
719 		/*
720 		 * Iterate over all possible DMI header addresses q.
721 		 * Maintain the 32 bytes around q in buf.  On the
722 		 * first iteration, substitute zero for the
723 		 * out-of-range bytes so there is no chance of falsely
724 		 * detecting an SMBIOS header.
725 		 */
726 		memset(buf, 0, 16);
727 		for (q = p; q < p + 0x10000; q += 16) {
728 			memcpy_fromio(buf + 16, q, 16);
729 			if (!dmi_present(buf)) {
730 				dmi_available = 1;
731 				dmi_early_unmap(p, 0x10000);
732 				return;
733 			}
734 			memcpy(buf, buf + 16, 16);
735 		}
736 		dmi_early_unmap(p, 0x10000);
737 	}
738  error:
739 	pr_info("DMI not present or invalid.\n");
740 }
741 
742 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
743 			      struct bin_attribute *attr, char *buf,
744 			      loff_t pos, size_t count)
745 {
746 	memcpy(buf, attr->private + pos, count);
747 	return count;
748 }
749 
750 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
751 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
752 
753 static int __init dmi_init(void)
754 {
755 	struct kobject *tables_kobj;
756 	u8 *dmi_table;
757 	int ret = -ENOMEM;
758 
759 	if (!dmi_available)
760 		return 0;
761 
762 	/*
763 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
764 	 * even after farther error, as it can be used by other modules like
765 	 * dmi-sysfs.
766 	 */
767 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
768 	if (!dmi_kobj)
769 		goto err;
770 
771 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
772 	if (!tables_kobj)
773 		goto err;
774 
775 	dmi_table = dmi_remap(dmi_base, dmi_len);
776 	if (!dmi_table)
777 		goto err_tables;
778 
779 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
780 	bin_attr_smbios_entry_point.private = smbios_entry_point;
781 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
782 	if (ret)
783 		goto err_unmap;
784 
785 	bin_attr_DMI.size = dmi_len;
786 	bin_attr_DMI.private = dmi_table;
787 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
788 	if (!ret)
789 		return 0;
790 
791 	sysfs_remove_bin_file(tables_kobj,
792 			      &bin_attr_smbios_entry_point);
793  err_unmap:
794 	dmi_unmap(dmi_table);
795  err_tables:
796 	kobject_del(tables_kobj);
797 	kobject_put(tables_kobj);
798  err:
799 	pr_err("dmi: Firmware registration failed.\n");
800 
801 	return ret;
802 }
803 subsys_initcall(dmi_init);
804 
805 /**
806  *	dmi_setup - scan and setup DMI system information
807  *
808  *	Scan the DMI system information. This setups DMI identifiers
809  *	(dmi_system_id) for printing it out on task dumps and prepares
810  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
811  *	for using this when reporting memory errors.
812  */
813 void __init dmi_setup(void)
814 {
815 	dmi_scan_machine();
816 	if (!dmi_available)
817 		return;
818 
819 	dmi_memdev_walk();
820 	dump_stack_set_arch_desc("%s", dmi_ids_string);
821 }
822 
823 /**
824  *	dmi_matches - check if dmi_system_id structure matches system DMI data
825  *	@dmi: pointer to the dmi_system_id structure to check
826  */
827 static bool dmi_matches(const struct dmi_system_id *dmi)
828 {
829 	int i;
830 
831 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
832 		int s = dmi->matches[i].slot;
833 		if (s == DMI_NONE)
834 			break;
835 		if (s == DMI_OEM_STRING) {
836 			/* DMI_OEM_STRING must be exact match */
837 			const struct dmi_device *valid;
838 
839 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
840 						dmi->matches[i].substr, NULL);
841 			if (valid)
842 				continue;
843 		} else if (dmi_ident[s]) {
844 			if (dmi->matches[i].exact_match) {
845 				if (!strcmp(dmi_ident[s],
846 					    dmi->matches[i].substr))
847 					continue;
848 			} else {
849 				if (strstr(dmi_ident[s],
850 					   dmi->matches[i].substr))
851 					continue;
852 			}
853 		}
854 
855 		/* No match */
856 		return false;
857 	}
858 	return true;
859 }
860 
861 /**
862  *	dmi_is_end_of_table - check for end-of-table marker
863  *	@dmi: pointer to the dmi_system_id structure to check
864  */
865 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
866 {
867 	return dmi->matches[0].slot == DMI_NONE;
868 }
869 
870 /**
871  *	dmi_check_system - check system DMI data
872  *	@list: array of dmi_system_id structures to match against
873  *		All non-null elements of the list must match
874  *		their slot's (field index's) data (i.e., each
875  *		list string must be a substring of the specified
876  *		DMI slot's string data) to be considered a
877  *		successful match.
878  *
879  *	Walk the blacklist table running matching functions until someone
880  *	returns non zero or we hit the end. Callback function is called for
881  *	each successful match. Returns the number of matches.
882  *
883  *	dmi_setup must be called before this function is called.
884  */
885 int dmi_check_system(const struct dmi_system_id *list)
886 {
887 	int count = 0;
888 	const struct dmi_system_id *d;
889 
890 	for (d = list; !dmi_is_end_of_table(d); d++)
891 		if (dmi_matches(d)) {
892 			count++;
893 			if (d->callback && d->callback(d))
894 				break;
895 		}
896 
897 	return count;
898 }
899 EXPORT_SYMBOL(dmi_check_system);
900 
901 /**
902  *	dmi_first_match - find dmi_system_id structure matching system DMI data
903  *	@list: array of dmi_system_id structures to match against
904  *		All non-null elements of the list must match
905  *		their slot's (field index's) data (i.e., each
906  *		list string must be a substring of the specified
907  *		DMI slot's string data) to be considered a
908  *		successful match.
909  *
910  *	Walk the blacklist table until the first match is found.  Return the
911  *	pointer to the matching entry or NULL if there's no match.
912  *
913  *	dmi_setup must be called before this function is called.
914  */
915 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
916 {
917 	const struct dmi_system_id *d;
918 
919 	for (d = list; !dmi_is_end_of_table(d); d++)
920 		if (dmi_matches(d))
921 			return d;
922 
923 	return NULL;
924 }
925 EXPORT_SYMBOL(dmi_first_match);
926 
927 /**
928  *	dmi_get_system_info - return DMI data value
929  *	@field: data index (see enum dmi_field)
930  *
931  *	Returns one DMI data value, can be used to perform
932  *	complex DMI data checks.
933  */
934 const char *dmi_get_system_info(int field)
935 {
936 	return dmi_ident[field];
937 }
938 EXPORT_SYMBOL(dmi_get_system_info);
939 
940 /**
941  * dmi_name_in_serial - Check if string is in the DMI product serial information
942  * @str: string to check for
943  */
944 int dmi_name_in_serial(const char *str)
945 {
946 	int f = DMI_PRODUCT_SERIAL;
947 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
948 		return 1;
949 	return 0;
950 }
951 
952 /**
953  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
954  *	@str: Case sensitive Name
955  */
956 int dmi_name_in_vendors(const char *str)
957 {
958 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
959 	int i;
960 	for (i = 0; fields[i] != DMI_NONE; i++) {
961 		int f = fields[i];
962 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
963 			return 1;
964 	}
965 	return 0;
966 }
967 EXPORT_SYMBOL(dmi_name_in_vendors);
968 
969 /**
970  *	dmi_find_device - find onboard device by type/name
971  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
972  *	@name: device name string or %NULL to match all
973  *	@from: previous device found in search, or %NULL for new search.
974  *
975  *	Iterates through the list of known onboard devices. If a device is
976  *	found with a matching @type and @name, a pointer to its device
977  *	structure is returned.  Otherwise, %NULL is returned.
978  *	A new search is initiated by passing %NULL as the @from argument.
979  *	If @from is not %NULL, searches continue from next device.
980  */
981 const struct dmi_device *dmi_find_device(int type, const char *name,
982 				    const struct dmi_device *from)
983 {
984 	const struct list_head *head = from ? &from->list : &dmi_devices;
985 	struct list_head *d;
986 
987 	for (d = head->next; d != &dmi_devices; d = d->next) {
988 		const struct dmi_device *dev =
989 			list_entry(d, struct dmi_device, list);
990 
991 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
992 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
993 			return dev;
994 	}
995 
996 	return NULL;
997 }
998 EXPORT_SYMBOL(dmi_find_device);
999 
1000 /**
1001  *	dmi_get_date - parse a DMI date
1002  *	@field:	data index (see enum dmi_field)
1003  *	@yearp: optional out parameter for the year
1004  *	@monthp: optional out parameter for the month
1005  *	@dayp: optional out parameter for the day
1006  *
1007  *	The date field is assumed to be in the form resembling
1008  *	[mm[/dd]]/yy[yy] and the result is stored in the out
1009  *	parameters any or all of which can be omitted.
1010  *
1011  *	If the field doesn't exist, all out parameters are set to zero
1012  *	and false is returned.  Otherwise, true is returned with any
1013  *	invalid part of date set to zero.
1014  *
1015  *	On return, year, month and day are guaranteed to be in the
1016  *	range of [0,9999], [0,12] and [0,31] respectively.
1017  */
1018 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
1019 {
1020 	int year = 0, month = 0, day = 0;
1021 	bool exists;
1022 	const char *s, *y;
1023 	char *e;
1024 
1025 	s = dmi_get_system_info(field);
1026 	exists = s;
1027 	if (!exists)
1028 		goto out;
1029 
1030 	/*
1031 	 * Determine year first.  We assume the date string resembles
1032 	 * mm/dd/yy[yy] but the original code extracted only the year
1033 	 * from the end.  Keep the behavior in the spirit of no
1034 	 * surprises.
1035 	 */
1036 	y = strrchr(s, '/');
1037 	if (!y)
1038 		goto out;
1039 
1040 	y++;
1041 	year = simple_strtoul(y, &e, 10);
1042 	if (y != e && year < 100) {	/* 2-digit year */
1043 		year += 1900;
1044 		if (year < 1996)	/* no dates < spec 1.0 */
1045 			year += 100;
1046 	}
1047 	if (year > 9999)		/* year should fit in %04d */
1048 		year = 0;
1049 
1050 	/* parse the mm and dd */
1051 	month = simple_strtoul(s, &e, 10);
1052 	if (s == e || *e != '/' || !month || month > 12) {
1053 		month = 0;
1054 		goto out;
1055 	}
1056 
1057 	s = e + 1;
1058 	day = simple_strtoul(s, &e, 10);
1059 	if (s == y || s == e || *e != '/' || day > 31)
1060 		day = 0;
1061 out:
1062 	if (yearp)
1063 		*yearp = year;
1064 	if (monthp)
1065 		*monthp = month;
1066 	if (dayp)
1067 		*dayp = day;
1068 	return exists;
1069 }
1070 EXPORT_SYMBOL(dmi_get_date);
1071 
1072 /**
1073  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1074  *
1075  *	Returns year on success, -ENXIO if DMI is not selected,
1076  *	or a different negative error code if DMI field is not present
1077  *	or not parseable.
1078  */
1079 int dmi_get_bios_year(void)
1080 {
1081 	bool exists;
1082 	int year;
1083 
1084 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1085 	if (!exists)
1086 		return -ENODATA;
1087 
1088 	return year ? year : -ERANGE;
1089 }
1090 EXPORT_SYMBOL(dmi_get_bios_year);
1091 
1092 /**
1093  *	dmi_walk - Walk the DMI table and get called back for every record
1094  *	@decode: Callback function
1095  *	@private_data: Private data to be passed to the callback function
1096  *
1097  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1098  *	or a different negative error code if DMI walking fails.
1099  */
1100 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1101 	     void *private_data)
1102 {
1103 	u8 *buf;
1104 
1105 	if (!dmi_available)
1106 		return -ENXIO;
1107 
1108 	buf = dmi_remap(dmi_base, dmi_len);
1109 	if (buf == NULL)
1110 		return -ENOMEM;
1111 
1112 	dmi_decode_table(buf, decode, private_data);
1113 
1114 	dmi_unmap(buf);
1115 	return 0;
1116 }
1117 EXPORT_SYMBOL_GPL(dmi_walk);
1118 
1119 /**
1120  * dmi_match - compare a string to the dmi field (if exists)
1121  * @f: DMI field identifier
1122  * @str: string to compare the DMI field to
1123  *
1124  * Returns true if the requested field equals to the str (including NULL).
1125  */
1126 bool dmi_match(enum dmi_field f, const char *str)
1127 {
1128 	const char *info = dmi_get_system_info(f);
1129 
1130 	if (info == NULL || str == NULL)
1131 		return info == str;
1132 
1133 	return !strcmp(info, str);
1134 }
1135 EXPORT_SYMBOL_GPL(dmi_match);
1136 
1137 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1138 {
1139 	int n;
1140 
1141 	if (dmi_memdev == NULL)
1142 		return;
1143 
1144 	for (n = 0; n < dmi_memdev_nr; n++) {
1145 		if (handle == dmi_memdev[n].handle) {
1146 			*bank = dmi_memdev[n].bank;
1147 			*device = dmi_memdev[n].device;
1148 			break;
1149 		}
1150 	}
1151 }
1152 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1153 
1154 u64 dmi_memdev_size(u16 handle)
1155 {
1156 	int n;
1157 
1158 	if (dmi_memdev) {
1159 		for (n = 0; n < dmi_memdev_nr; n++) {
1160 			if (handle == dmi_memdev[n].handle)
1161 				return dmi_memdev[n].size;
1162 		}
1163 	}
1164 	return ~0ull;
1165 }
1166 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1167 
1168 /**
1169  * dmi_memdev_type - get the memory type
1170  * @handle: DMI structure handle
1171  *
1172  * Return the DMI memory type of the module in the slot associated with the
1173  * given DMI handle, or 0x0 if no such DMI handle exists.
1174  */
1175 u8 dmi_memdev_type(u16 handle)
1176 {
1177 	int n;
1178 
1179 	if (dmi_memdev) {
1180 		for (n = 0; n < dmi_memdev_nr; n++) {
1181 			if (handle == dmi_memdev[n].handle)
1182 				return dmi_memdev[n].type;
1183 		}
1184 	}
1185 	return 0x0;	/* Not a valid value */
1186 }
1187 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1188 
1189 /**
1190  *	dmi_memdev_handle - get the DMI handle of a memory slot
1191  *	@slot: slot number
1192  *
1193  *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1194  *      if there is no such slot.
1195  */
1196 u16 dmi_memdev_handle(int slot)
1197 {
1198 	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1199 		return dmi_memdev[slot].handle;
1200 
1201 	return 0xffff;	/* Not a valid value */
1202 }
1203 EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1204