1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = ""; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* DMI system identification string used during boot */ 30 static char dmi_ids_string[128] __initdata; 31 32 static struct dmi_memdev_info { 33 const char *device; 34 const char *bank; 35 u64 size; /* bytes */ 36 u16 handle; 37 } *dmi_memdev; 38 static int dmi_memdev_nr; 39 40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 41 { 42 const u8 *bp = ((u8 *) dm) + dm->length; 43 const u8 *nsp; 44 45 if (s) { 46 while (--s > 0 && *bp) 47 bp += strlen(bp) + 1; 48 49 /* Strings containing only spaces are considered empty */ 50 nsp = bp; 51 while (*nsp == ' ') 52 nsp++; 53 if (*nsp != '\0') 54 return bp; 55 } 56 57 return dmi_empty_string; 58 } 59 60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 61 { 62 const char *bp = dmi_string_nosave(dm, s); 63 char *str; 64 size_t len; 65 66 if (bp == dmi_empty_string) 67 return dmi_empty_string; 68 69 len = strlen(bp) + 1; 70 str = dmi_alloc(len); 71 if (str != NULL) 72 strcpy(str, bp); 73 74 return str; 75 } 76 77 /* 78 * We have to be cautious here. We have seen BIOSes with DMI pointers 79 * pointing to completely the wrong place for example 80 */ 81 static void dmi_decode_table(u8 *buf, 82 void (*decode)(const struct dmi_header *, void *), 83 void *private_data) 84 { 85 u8 *data = buf; 86 int i = 0; 87 88 /* 89 * Stop when we have seen all the items the table claimed to have 90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 91 * >= 3.0 only) OR we run off the end of the table (should never 92 * happen but sometimes does on bogus implementations.) 93 */ 94 while ((!dmi_num || i < dmi_num) && 95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 96 const struct dmi_header *dm = (const struct dmi_header *)data; 97 98 /* 99 * We want to know the total length (formatted area and 100 * strings) before decoding to make sure we won't run off the 101 * table in dmi_decode or dmi_string 102 */ 103 data += dm->length; 104 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 105 data++; 106 if (data - buf < dmi_len - 1) 107 decode(dm, private_data); 108 109 data += 2; 110 i++; 111 112 /* 113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 114 * For tables behind a 64-bit entry point, we have no item 115 * count and no exact table length, so stop on end-of-table 116 * marker. For tables behind a 32-bit entry point, we have 117 * seen OEM structures behind the end-of-table marker on 118 * some systems, so don't trust it. 119 */ 120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 121 break; 122 } 123 124 /* Trim DMI table length if needed */ 125 if (dmi_len > data - buf) 126 dmi_len = data - buf; 127 } 128 129 static phys_addr_t dmi_base; 130 131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 132 void *)) 133 { 134 u8 *buf; 135 u32 orig_dmi_len = dmi_len; 136 137 buf = dmi_early_remap(dmi_base, orig_dmi_len); 138 if (buf == NULL) 139 return -ENOMEM; 140 141 dmi_decode_table(buf, decode, NULL); 142 143 add_device_randomness(buf, dmi_len); 144 145 dmi_early_unmap(buf, orig_dmi_len); 146 return 0; 147 } 148 149 static int __init dmi_checksum(const u8 *buf, u8 len) 150 { 151 u8 sum = 0; 152 int a; 153 154 for (a = 0; a < len; a++) 155 sum += buf[a]; 156 157 return sum == 0; 158 } 159 160 static const char *dmi_ident[DMI_STRING_MAX]; 161 static LIST_HEAD(dmi_devices); 162 int dmi_available; 163 164 /* 165 * Save a DMI string 166 */ 167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 168 int string) 169 { 170 const char *d = (const char *) dm; 171 const char *p; 172 173 if (dmi_ident[slot] || dm->length <= string) 174 return; 175 176 p = dmi_string(dm, d[string]); 177 if (p == NULL) 178 return; 179 180 dmi_ident[slot] = p; 181 } 182 183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 184 int index) 185 { 186 const u8 *d; 187 char *s; 188 int is_ff = 1, is_00 = 1, i; 189 190 if (dmi_ident[slot] || dm->length < index + 16) 191 return; 192 193 d = (u8 *) dm + index; 194 for (i = 0; i < 16 && (is_ff || is_00); i++) { 195 if (d[i] != 0x00) 196 is_00 = 0; 197 if (d[i] != 0xFF) 198 is_ff = 0; 199 } 200 201 if (is_ff || is_00) 202 return; 203 204 s = dmi_alloc(16*2+4+1); 205 if (!s) 206 return; 207 208 /* 209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 210 * the UUID are supposed to be little-endian encoded. The specification 211 * says that this is the defacto standard. 212 */ 213 if (dmi_ver >= 0x020600) 214 sprintf(s, "%pUl", d); 215 else 216 sprintf(s, "%pUb", d); 217 218 dmi_ident[slot] = s; 219 } 220 221 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 222 int index) 223 { 224 const u8 *d; 225 char *s; 226 227 if (dmi_ident[slot] || dm->length <= index) 228 return; 229 230 s = dmi_alloc(4); 231 if (!s) 232 return; 233 234 d = (u8 *) dm + index; 235 sprintf(s, "%u", *d & 0x7F); 236 dmi_ident[slot] = s; 237 } 238 239 static void __init dmi_save_one_device(int type, const char *name) 240 { 241 struct dmi_device *dev; 242 243 /* No duplicate device */ 244 if (dmi_find_device(type, name, NULL)) 245 return; 246 247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 248 if (!dev) 249 return; 250 251 dev->type = type; 252 strcpy((char *)(dev + 1), name); 253 dev->name = (char *)(dev + 1); 254 dev->device_data = NULL; 255 list_add(&dev->list, &dmi_devices); 256 } 257 258 static void __init dmi_save_devices(const struct dmi_header *dm) 259 { 260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 261 262 for (i = 0; i < count; i++) { 263 const char *d = (char *)(dm + 1) + (i * 2); 264 265 /* Skip disabled device */ 266 if ((*d & 0x80) == 0) 267 continue; 268 269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 270 } 271 } 272 273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 274 { 275 int i, count; 276 struct dmi_device *dev; 277 278 if (dm->length < 0x05) 279 return; 280 281 count = *(u8 *)(dm + 1); 282 for (i = 1; i <= count; i++) { 283 const char *devname = dmi_string(dm, i); 284 285 if (devname == dmi_empty_string) 286 continue; 287 288 dev = dmi_alloc(sizeof(*dev)); 289 if (!dev) 290 break; 291 292 dev->type = DMI_DEV_TYPE_OEM_STRING; 293 dev->name = devname; 294 dev->device_data = NULL; 295 296 list_add(&dev->list, &dmi_devices); 297 } 298 } 299 300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 301 { 302 struct dmi_device *dev; 303 void *data; 304 305 data = dmi_alloc(dm->length); 306 if (data == NULL) 307 return; 308 309 memcpy(data, dm, dm->length); 310 311 dev = dmi_alloc(sizeof(*dev)); 312 if (!dev) 313 return; 314 315 dev->type = DMI_DEV_TYPE_IPMI; 316 dev->name = "IPMI controller"; 317 dev->device_data = data; 318 319 list_add_tail(&dev->list, &dmi_devices); 320 } 321 322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 323 int devfn, const char *name, int type) 324 { 325 struct dmi_dev_onboard *dev; 326 327 /* Ignore invalid values */ 328 if (type == DMI_DEV_TYPE_DEV_SLOT && 329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 330 return; 331 332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 333 if (!dev) 334 return; 335 336 dev->instance = instance; 337 dev->segment = segment; 338 dev->bus = bus; 339 dev->devfn = devfn; 340 341 strcpy((char *)&dev[1], name); 342 dev->dev.type = type; 343 dev->dev.name = (char *)&dev[1]; 344 dev->dev.device_data = dev; 345 346 list_add(&dev->dev.list, &dmi_devices); 347 } 348 349 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 350 { 351 const char *name; 352 const u8 *d = (u8 *)dm; 353 354 if (dm->length < 0x0B) 355 return; 356 357 /* Skip disabled device */ 358 if ((d[0x5] & 0x80) == 0) 359 return; 360 361 name = dmi_string_nosave(dm, d[0x4]); 362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 363 DMI_DEV_TYPE_DEV_ONBOARD); 364 dmi_save_one_device(d[0x5] & 0x7f, name); 365 } 366 367 static void __init dmi_save_system_slot(const struct dmi_header *dm) 368 { 369 const u8 *d = (u8 *)dm; 370 371 /* Need SMBIOS 2.6+ structure */ 372 if (dm->length < 0x11) 373 return; 374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 375 d[0x10], dmi_string_nosave(dm, d[0x4]), 376 DMI_DEV_TYPE_DEV_SLOT); 377 } 378 379 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 380 { 381 if (dm->type != DMI_ENTRY_MEM_DEVICE) 382 return; 383 dmi_memdev_nr++; 384 } 385 386 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 387 { 388 const char *d = (const char *)dm; 389 static int nr; 390 u64 bytes; 391 u16 size; 392 393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 394 return; 395 if (nr >= dmi_memdev_nr) { 396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 397 return; 398 } 399 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 402 403 size = get_unaligned((u16 *)&d[0xC]); 404 if (size == 0) 405 bytes = 0; 406 else if (size == 0xffff) 407 bytes = ~0ull; 408 else if (size & 0x8000) 409 bytes = (u64)(size & 0x7fff) << 10; 410 else if (size != 0x7fff) 411 bytes = (u64)size << 20; 412 else 413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 414 415 dmi_memdev[nr].size = bytes; 416 nr++; 417 } 418 419 void __init dmi_memdev_walk(void) 420 { 421 if (!dmi_available) 422 return; 423 424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 426 if (dmi_memdev) 427 dmi_walk_early(save_mem_devices); 428 } 429 } 430 431 /* 432 * Process a DMI table entry. Right now all we care about are the BIOS 433 * and machine entries. For 2.5 we should pull the smbus controller info 434 * out of here. 435 */ 436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 437 { 438 switch (dm->type) { 439 case 0: /* BIOS Information */ 440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 442 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 443 break; 444 case 1: /* System Information */ 445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 450 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 451 break; 452 case 2: /* Base Board Information */ 453 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 454 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 455 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 456 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 457 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 458 break; 459 case 3: /* Chassis Information */ 460 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 461 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 462 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 463 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 464 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 465 break; 466 case 9: /* System Slots */ 467 dmi_save_system_slot(dm); 468 break; 469 case 10: /* Onboard Devices Information */ 470 dmi_save_devices(dm); 471 break; 472 case 11: /* OEM Strings */ 473 dmi_save_oem_strings_devices(dm); 474 break; 475 case 38: /* IPMI Device Information */ 476 dmi_save_ipmi_device(dm); 477 break; 478 case 41: /* Onboard Devices Extended Information */ 479 dmi_save_extended_devices(dm); 480 } 481 } 482 483 static int __init print_filtered(char *buf, size_t len, const char *info) 484 { 485 int c = 0; 486 const char *p; 487 488 if (!info) 489 return c; 490 491 for (p = info; *p; p++) 492 if (isprint(*p)) 493 c += scnprintf(buf + c, len - c, "%c", *p); 494 else 495 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 496 return c; 497 } 498 499 static void __init dmi_format_ids(char *buf, size_t len) 500 { 501 int c = 0; 502 const char *board; /* Board Name is optional */ 503 504 c += print_filtered(buf + c, len - c, 505 dmi_get_system_info(DMI_SYS_VENDOR)); 506 c += scnprintf(buf + c, len - c, " "); 507 c += print_filtered(buf + c, len - c, 508 dmi_get_system_info(DMI_PRODUCT_NAME)); 509 510 board = dmi_get_system_info(DMI_BOARD_NAME); 511 if (board) { 512 c += scnprintf(buf + c, len - c, "/"); 513 c += print_filtered(buf + c, len - c, board); 514 } 515 c += scnprintf(buf + c, len - c, ", BIOS "); 516 c += print_filtered(buf + c, len - c, 517 dmi_get_system_info(DMI_BIOS_VERSION)); 518 c += scnprintf(buf + c, len - c, " "); 519 c += print_filtered(buf + c, len - c, 520 dmi_get_system_info(DMI_BIOS_DATE)); 521 } 522 523 /* 524 * Check for DMI/SMBIOS headers in the system firmware image. Any 525 * SMBIOS header must start 16 bytes before the DMI header, so take a 526 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 527 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 528 * takes precedence) and return 0. Otherwise return 1. 529 */ 530 static int __init dmi_present(const u8 *buf) 531 { 532 u32 smbios_ver; 533 534 if (memcmp(buf, "_SM_", 4) == 0 && 535 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 536 smbios_ver = get_unaligned_be16(buf + 6); 537 smbios_entry_point_size = buf[5]; 538 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 539 540 /* Some BIOS report weird SMBIOS version, fix that up */ 541 switch (smbios_ver) { 542 case 0x021F: 543 case 0x0221: 544 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 545 smbios_ver & 0xFF, 3); 546 smbios_ver = 0x0203; 547 break; 548 case 0x0233: 549 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 550 smbios_ver = 0x0206; 551 break; 552 } 553 } else { 554 smbios_ver = 0; 555 } 556 557 buf += 16; 558 559 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 560 if (smbios_ver) 561 dmi_ver = smbios_ver; 562 else 563 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 564 dmi_ver <<= 8; 565 dmi_num = get_unaligned_le16(buf + 12); 566 dmi_len = get_unaligned_le16(buf + 6); 567 dmi_base = get_unaligned_le32(buf + 8); 568 569 if (dmi_walk_early(dmi_decode) == 0) { 570 if (smbios_ver) { 571 pr_info("SMBIOS %d.%d present.\n", 572 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 573 } else { 574 smbios_entry_point_size = 15; 575 memcpy(smbios_entry_point, buf, 576 smbios_entry_point_size); 577 pr_info("Legacy DMI %d.%d present.\n", 578 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 579 } 580 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 581 pr_info("DMI: %s\n", dmi_ids_string); 582 return 0; 583 } 584 } 585 586 return 1; 587 } 588 589 /* 590 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 591 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 592 */ 593 static int __init dmi_smbios3_present(const u8 *buf) 594 { 595 if (memcmp(buf, "_SM3_", 5) == 0 && 596 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 597 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 598 dmi_num = 0; /* No longer specified */ 599 dmi_len = get_unaligned_le32(buf + 12); 600 dmi_base = get_unaligned_le64(buf + 16); 601 smbios_entry_point_size = buf[6]; 602 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 603 604 if (dmi_walk_early(dmi_decode) == 0) { 605 pr_info("SMBIOS %d.%d.%d present.\n", 606 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 607 dmi_ver & 0xFF); 608 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 609 pr_info("DMI: %s\n", dmi_ids_string); 610 return 0; 611 } 612 } 613 return 1; 614 } 615 616 void __init dmi_scan_machine(void) 617 { 618 char __iomem *p, *q; 619 char buf[32]; 620 621 if (efi_enabled(EFI_CONFIG_TABLES)) { 622 /* 623 * According to the DMTF SMBIOS reference spec v3.0.0, it is 624 * allowed to define both the 64-bit entry point (smbios3) and 625 * the 32-bit entry point (smbios), in which case they should 626 * either both point to the same SMBIOS structure table, or the 627 * table pointed to by the 64-bit entry point should contain a 628 * superset of the table contents pointed to by the 32-bit entry 629 * point (section 5.2) 630 * This implies that the 64-bit entry point should have 631 * precedence if it is defined and supported by the OS. If we 632 * have the 64-bit entry point, but fail to decode it, fall 633 * back to the legacy one (if available) 634 */ 635 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 636 p = dmi_early_remap(efi.smbios3, 32); 637 if (p == NULL) 638 goto error; 639 memcpy_fromio(buf, p, 32); 640 dmi_early_unmap(p, 32); 641 642 if (!dmi_smbios3_present(buf)) { 643 dmi_available = 1; 644 return; 645 } 646 } 647 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 648 goto error; 649 650 /* This is called as a core_initcall() because it isn't 651 * needed during early boot. This also means we can 652 * iounmap the space when we're done with it. 653 */ 654 p = dmi_early_remap(efi.smbios, 32); 655 if (p == NULL) 656 goto error; 657 memcpy_fromio(buf, p, 32); 658 dmi_early_unmap(p, 32); 659 660 if (!dmi_present(buf)) { 661 dmi_available = 1; 662 return; 663 } 664 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 665 p = dmi_early_remap(0xF0000, 0x10000); 666 if (p == NULL) 667 goto error; 668 669 /* 670 * Same logic as above, look for a 64-bit entry point 671 * first, and if not found, fall back to 32-bit entry point. 672 */ 673 memcpy_fromio(buf, p, 16); 674 for (q = p + 16; q < p + 0x10000; q += 16) { 675 memcpy_fromio(buf + 16, q, 16); 676 if (!dmi_smbios3_present(buf)) { 677 dmi_available = 1; 678 dmi_early_unmap(p, 0x10000); 679 return; 680 } 681 memcpy(buf, buf + 16, 16); 682 } 683 684 /* 685 * Iterate over all possible DMI header addresses q. 686 * Maintain the 32 bytes around q in buf. On the 687 * first iteration, substitute zero for the 688 * out-of-range bytes so there is no chance of falsely 689 * detecting an SMBIOS header. 690 */ 691 memset(buf, 0, 16); 692 for (q = p; q < p + 0x10000; q += 16) { 693 memcpy_fromio(buf + 16, q, 16); 694 if (!dmi_present(buf)) { 695 dmi_available = 1; 696 dmi_early_unmap(p, 0x10000); 697 return; 698 } 699 memcpy(buf, buf + 16, 16); 700 } 701 dmi_early_unmap(p, 0x10000); 702 } 703 error: 704 pr_info("DMI not present or invalid.\n"); 705 } 706 707 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 708 struct bin_attribute *attr, char *buf, 709 loff_t pos, size_t count) 710 { 711 memcpy(buf, attr->private + pos, count); 712 return count; 713 } 714 715 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 716 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 717 718 static int __init dmi_init(void) 719 { 720 struct kobject *tables_kobj; 721 u8 *dmi_table; 722 int ret = -ENOMEM; 723 724 if (!dmi_available) 725 return 0; 726 727 /* 728 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 729 * even after farther error, as it can be used by other modules like 730 * dmi-sysfs. 731 */ 732 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 733 if (!dmi_kobj) 734 goto err; 735 736 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 737 if (!tables_kobj) 738 goto err; 739 740 dmi_table = dmi_remap(dmi_base, dmi_len); 741 if (!dmi_table) 742 goto err_tables; 743 744 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 745 bin_attr_smbios_entry_point.private = smbios_entry_point; 746 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 747 if (ret) 748 goto err_unmap; 749 750 bin_attr_DMI.size = dmi_len; 751 bin_attr_DMI.private = dmi_table; 752 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 753 if (!ret) 754 return 0; 755 756 sysfs_remove_bin_file(tables_kobj, 757 &bin_attr_smbios_entry_point); 758 err_unmap: 759 dmi_unmap(dmi_table); 760 err_tables: 761 kobject_del(tables_kobj); 762 kobject_put(tables_kobj); 763 err: 764 pr_err("dmi: Firmware registration failed.\n"); 765 766 return ret; 767 } 768 subsys_initcall(dmi_init); 769 770 /** 771 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 772 * 773 * Invoke dump_stack_set_arch_desc() with DMI system information so that 774 * DMI identifiers are printed out on task dumps. Arch boot code should 775 * call this function after dmi_scan_machine() if it wants to print out DMI 776 * identifiers on task dumps. 777 */ 778 void __init dmi_set_dump_stack_arch_desc(void) 779 { 780 dump_stack_set_arch_desc("%s", dmi_ids_string); 781 } 782 783 /** 784 * dmi_matches - check if dmi_system_id structure matches system DMI data 785 * @dmi: pointer to the dmi_system_id structure to check 786 */ 787 static bool dmi_matches(const struct dmi_system_id *dmi) 788 { 789 int i; 790 791 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 792 int s = dmi->matches[i].slot; 793 if (s == DMI_NONE) 794 break; 795 if (s == DMI_OEM_STRING) { 796 /* DMI_OEM_STRING must be exact match */ 797 const struct dmi_device *valid; 798 799 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 800 dmi->matches[i].substr, NULL); 801 if (valid) 802 continue; 803 } else if (dmi_ident[s]) { 804 if (dmi->matches[i].exact_match) { 805 if (!strcmp(dmi_ident[s], 806 dmi->matches[i].substr)) 807 continue; 808 } else { 809 if (strstr(dmi_ident[s], 810 dmi->matches[i].substr)) 811 continue; 812 } 813 } 814 815 /* No match */ 816 return false; 817 } 818 return true; 819 } 820 821 /** 822 * dmi_is_end_of_table - check for end-of-table marker 823 * @dmi: pointer to the dmi_system_id structure to check 824 */ 825 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 826 { 827 return dmi->matches[0].slot == DMI_NONE; 828 } 829 830 /** 831 * dmi_check_system - check system DMI data 832 * @list: array of dmi_system_id structures to match against 833 * All non-null elements of the list must match 834 * their slot's (field index's) data (i.e., each 835 * list string must be a substring of the specified 836 * DMI slot's string data) to be considered a 837 * successful match. 838 * 839 * Walk the blacklist table running matching functions until someone 840 * returns non zero or we hit the end. Callback function is called for 841 * each successful match. Returns the number of matches. 842 * 843 * dmi_scan_machine must be called before this function is called. 844 */ 845 int dmi_check_system(const struct dmi_system_id *list) 846 { 847 int count = 0; 848 const struct dmi_system_id *d; 849 850 for (d = list; !dmi_is_end_of_table(d); d++) 851 if (dmi_matches(d)) { 852 count++; 853 if (d->callback && d->callback(d)) 854 break; 855 } 856 857 return count; 858 } 859 EXPORT_SYMBOL(dmi_check_system); 860 861 /** 862 * dmi_first_match - find dmi_system_id structure matching system DMI data 863 * @list: array of dmi_system_id structures to match against 864 * All non-null elements of the list must match 865 * their slot's (field index's) data (i.e., each 866 * list string must be a substring of the specified 867 * DMI slot's string data) to be considered a 868 * successful match. 869 * 870 * Walk the blacklist table until the first match is found. Return the 871 * pointer to the matching entry or NULL if there's no match. 872 * 873 * dmi_scan_machine must be called before this function is called. 874 */ 875 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 876 { 877 const struct dmi_system_id *d; 878 879 for (d = list; !dmi_is_end_of_table(d); d++) 880 if (dmi_matches(d)) 881 return d; 882 883 return NULL; 884 } 885 EXPORT_SYMBOL(dmi_first_match); 886 887 /** 888 * dmi_get_system_info - return DMI data value 889 * @field: data index (see enum dmi_field) 890 * 891 * Returns one DMI data value, can be used to perform 892 * complex DMI data checks. 893 */ 894 const char *dmi_get_system_info(int field) 895 { 896 return dmi_ident[field]; 897 } 898 EXPORT_SYMBOL(dmi_get_system_info); 899 900 /** 901 * dmi_name_in_serial - Check if string is in the DMI product serial information 902 * @str: string to check for 903 */ 904 int dmi_name_in_serial(const char *str) 905 { 906 int f = DMI_PRODUCT_SERIAL; 907 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 908 return 1; 909 return 0; 910 } 911 912 /** 913 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 914 * @str: Case sensitive Name 915 */ 916 int dmi_name_in_vendors(const char *str) 917 { 918 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 919 int i; 920 for (i = 0; fields[i] != DMI_NONE; i++) { 921 int f = fields[i]; 922 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 923 return 1; 924 } 925 return 0; 926 } 927 EXPORT_SYMBOL(dmi_name_in_vendors); 928 929 /** 930 * dmi_find_device - find onboard device by type/name 931 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 932 * @name: device name string or %NULL to match all 933 * @from: previous device found in search, or %NULL for new search. 934 * 935 * Iterates through the list of known onboard devices. If a device is 936 * found with a matching @type and @name, a pointer to its device 937 * structure is returned. Otherwise, %NULL is returned. 938 * A new search is initiated by passing %NULL as the @from argument. 939 * If @from is not %NULL, searches continue from next device. 940 */ 941 const struct dmi_device *dmi_find_device(int type, const char *name, 942 const struct dmi_device *from) 943 { 944 const struct list_head *head = from ? &from->list : &dmi_devices; 945 struct list_head *d; 946 947 for (d = head->next; d != &dmi_devices; d = d->next) { 948 const struct dmi_device *dev = 949 list_entry(d, struct dmi_device, list); 950 951 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 952 ((name == NULL) || (strcmp(dev->name, name) == 0))) 953 return dev; 954 } 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dmi_find_device); 959 960 /** 961 * dmi_get_date - parse a DMI date 962 * @field: data index (see enum dmi_field) 963 * @yearp: optional out parameter for the year 964 * @monthp: optional out parameter for the month 965 * @dayp: optional out parameter for the day 966 * 967 * The date field is assumed to be in the form resembling 968 * [mm[/dd]]/yy[yy] and the result is stored in the out 969 * parameters any or all of which can be omitted. 970 * 971 * If the field doesn't exist, all out parameters are set to zero 972 * and false is returned. Otherwise, true is returned with any 973 * invalid part of date set to zero. 974 * 975 * On return, year, month and day are guaranteed to be in the 976 * range of [0,9999], [0,12] and [0,31] respectively. 977 */ 978 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 979 { 980 int year = 0, month = 0, day = 0; 981 bool exists; 982 const char *s, *y; 983 char *e; 984 985 s = dmi_get_system_info(field); 986 exists = s; 987 if (!exists) 988 goto out; 989 990 /* 991 * Determine year first. We assume the date string resembles 992 * mm/dd/yy[yy] but the original code extracted only the year 993 * from the end. Keep the behavior in the spirit of no 994 * surprises. 995 */ 996 y = strrchr(s, '/'); 997 if (!y) 998 goto out; 999 1000 y++; 1001 year = simple_strtoul(y, &e, 10); 1002 if (y != e && year < 100) { /* 2-digit year */ 1003 year += 1900; 1004 if (year < 1996) /* no dates < spec 1.0 */ 1005 year += 100; 1006 } 1007 if (year > 9999) /* year should fit in %04d */ 1008 year = 0; 1009 1010 /* parse the mm and dd */ 1011 month = simple_strtoul(s, &e, 10); 1012 if (s == e || *e != '/' || !month || month > 12) { 1013 month = 0; 1014 goto out; 1015 } 1016 1017 s = e + 1; 1018 day = simple_strtoul(s, &e, 10); 1019 if (s == y || s == e || *e != '/' || day > 31) 1020 day = 0; 1021 out: 1022 if (yearp) 1023 *yearp = year; 1024 if (monthp) 1025 *monthp = month; 1026 if (dayp) 1027 *dayp = day; 1028 return exists; 1029 } 1030 EXPORT_SYMBOL(dmi_get_date); 1031 1032 /** 1033 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1034 * 1035 * Returns year on success, -ENXIO if DMI is not selected, 1036 * or a different negative error code if DMI field is not present 1037 * or not parseable. 1038 */ 1039 int dmi_get_bios_year(void) 1040 { 1041 bool exists; 1042 int year; 1043 1044 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1045 if (!exists) 1046 return -ENODATA; 1047 1048 return year ? year : -ERANGE; 1049 } 1050 EXPORT_SYMBOL(dmi_get_bios_year); 1051 1052 /** 1053 * dmi_walk - Walk the DMI table and get called back for every record 1054 * @decode: Callback function 1055 * @private_data: Private data to be passed to the callback function 1056 * 1057 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1058 * or a different negative error code if DMI walking fails. 1059 */ 1060 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1061 void *private_data) 1062 { 1063 u8 *buf; 1064 1065 if (!dmi_available) 1066 return -ENXIO; 1067 1068 buf = dmi_remap(dmi_base, dmi_len); 1069 if (buf == NULL) 1070 return -ENOMEM; 1071 1072 dmi_decode_table(buf, decode, private_data); 1073 1074 dmi_unmap(buf); 1075 return 0; 1076 } 1077 EXPORT_SYMBOL_GPL(dmi_walk); 1078 1079 /** 1080 * dmi_match - compare a string to the dmi field (if exists) 1081 * @f: DMI field identifier 1082 * @str: string to compare the DMI field to 1083 * 1084 * Returns true if the requested field equals to the str (including NULL). 1085 */ 1086 bool dmi_match(enum dmi_field f, const char *str) 1087 { 1088 const char *info = dmi_get_system_info(f); 1089 1090 if (info == NULL || str == NULL) 1091 return info == str; 1092 1093 return !strcmp(info, str); 1094 } 1095 EXPORT_SYMBOL_GPL(dmi_match); 1096 1097 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1098 { 1099 int n; 1100 1101 if (dmi_memdev == NULL) 1102 return; 1103 1104 for (n = 0; n < dmi_memdev_nr; n++) { 1105 if (handle == dmi_memdev[n].handle) { 1106 *bank = dmi_memdev[n].bank; 1107 *device = dmi_memdev[n].device; 1108 break; 1109 } 1110 } 1111 } 1112 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1113 1114 u64 dmi_memdev_size(u16 handle) 1115 { 1116 int n; 1117 1118 if (dmi_memdev) { 1119 for (n = 0; n < dmi_memdev_nr; n++) { 1120 if (handle == dmi_memdev[n].handle) 1121 return dmi_memdev[n].size; 1122 } 1123 } 1124 return ~0ull; 1125 } 1126 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1127