xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 9c6d26df1fae6ad4718d51c48e6517913304ed27)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /* DMI system identification string used during boot */
30 static char dmi_ids_string[128] __initdata;
31 
32 static struct dmi_memdev_info {
33 	const char *device;
34 	const char *bank;
35 	u64 size;		/* bytes */
36 	u16 handle;
37 } *dmi_memdev;
38 static int dmi_memdev_nr;
39 
40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
41 {
42 	const u8 *bp = ((u8 *) dm) + dm->length;
43 	const u8 *nsp;
44 
45 	if (s) {
46 		while (--s > 0 && *bp)
47 			bp += strlen(bp) + 1;
48 
49 		/* Strings containing only spaces are considered empty */
50 		nsp = bp;
51 		while (*nsp == ' ')
52 			nsp++;
53 		if (*nsp != '\0')
54 			return bp;
55 	}
56 
57 	return dmi_empty_string;
58 }
59 
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 	const char *bp = dmi_string_nosave(dm, s);
63 	char *str;
64 	size_t len;
65 
66 	if (bp == dmi_empty_string)
67 		return dmi_empty_string;
68 
69 	len = strlen(bp) + 1;
70 	str = dmi_alloc(len);
71 	if (str != NULL)
72 		strcpy(str, bp);
73 
74 	return str;
75 }
76 
77 /*
78  *	We have to be cautious here. We have seen BIOSes with DMI pointers
79  *	pointing to completely the wrong place for example
80  */
81 static void dmi_decode_table(u8 *buf,
82 			     void (*decode)(const struct dmi_header *, void *),
83 			     void *private_data)
84 {
85 	u8 *data = buf;
86 	int i = 0;
87 
88 	/*
89 	 * Stop when we have seen all the items the table claimed to have
90 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
91 	 * >= 3.0 only) OR we run off the end of the table (should never
92 	 * happen but sometimes does on bogus implementations.)
93 	 */
94 	while ((!dmi_num || i < dmi_num) &&
95 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
96 		const struct dmi_header *dm = (const struct dmi_header *)data;
97 
98 		/*
99 		 *  We want to know the total length (formatted area and
100 		 *  strings) before decoding to make sure we won't run off the
101 		 *  table in dmi_decode or dmi_string
102 		 */
103 		data += dm->length;
104 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
105 			data++;
106 		if (data - buf < dmi_len - 1)
107 			decode(dm, private_data);
108 
109 		data += 2;
110 		i++;
111 
112 		/*
113 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
114 		 * For tables behind a 64-bit entry point, we have no item
115 		 * count and no exact table length, so stop on end-of-table
116 		 * marker. For tables behind a 32-bit entry point, we have
117 		 * seen OEM structures behind the end-of-table marker on
118 		 * some systems, so don't trust it.
119 		 */
120 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
121 			break;
122 	}
123 
124 	/* Trim DMI table length if needed */
125 	if (dmi_len > data - buf)
126 		dmi_len = data - buf;
127 }
128 
129 static phys_addr_t dmi_base;
130 
131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
132 		void *))
133 {
134 	u8 *buf;
135 	u32 orig_dmi_len = dmi_len;
136 
137 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
138 	if (buf == NULL)
139 		return -ENOMEM;
140 
141 	dmi_decode_table(buf, decode, NULL);
142 
143 	add_device_randomness(buf, dmi_len);
144 
145 	dmi_early_unmap(buf, orig_dmi_len);
146 	return 0;
147 }
148 
149 static int __init dmi_checksum(const u8 *buf, u8 len)
150 {
151 	u8 sum = 0;
152 	int a;
153 
154 	for (a = 0; a < len; a++)
155 		sum += buf[a];
156 
157 	return sum == 0;
158 }
159 
160 static const char *dmi_ident[DMI_STRING_MAX];
161 static LIST_HEAD(dmi_devices);
162 int dmi_available;
163 
164 /*
165  *	Save a DMI string
166  */
167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
168 		int string)
169 {
170 	const char *d = (const char *) dm;
171 	const char *p;
172 
173 	if (dmi_ident[slot] || dm->length <= string)
174 		return;
175 
176 	p = dmi_string(dm, d[string]);
177 	if (p == NULL)
178 		return;
179 
180 	dmi_ident[slot] = p;
181 }
182 
183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
184 		int index)
185 {
186 	const u8 *d;
187 	char *s;
188 	int is_ff = 1, is_00 = 1, i;
189 
190 	if (dmi_ident[slot] || dm->length < index + 16)
191 		return;
192 
193 	d = (u8 *) dm + index;
194 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
195 		if (d[i] != 0x00)
196 			is_00 = 0;
197 		if (d[i] != 0xFF)
198 			is_ff = 0;
199 	}
200 
201 	if (is_ff || is_00)
202 		return;
203 
204 	s = dmi_alloc(16*2+4+1);
205 	if (!s)
206 		return;
207 
208 	/*
209 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
210 	 * the UUID are supposed to be little-endian encoded.  The specification
211 	 * says that this is the defacto standard.
212 	 */
213 	if (dmi_ver >= 0x020600)
214 		sprintf(s, "%pUl", d);
215 	else
216 		sprintf(s, "%pUb", d);
217 
218 	dmi_ident[slot] = s;
219 }
220 
221 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
222 		int index)
223 {
224 	const u8 *d;
225 	char *s;
226 
227 	if (dmi_ident[slot] || dm->length <= index)
228 		return;
229 
230 	s = dmi_alloc(4);
231 	if (!s)
232 		return;
233 
234 	d = (u8 *) dm + index;
235 	sprintf(s, "%u", *d & 0x7F);
236 	dmi_ident[slot] = s;
237 }
238 
239 static void __init dmi_save_one_device(int type, const char *name)
240 {
241 	struct dmi_device *dev;
242 
243 	/* No duplicate device */
244 	if (dmi_find_device(type, name, NULL))
245 		return;
246 
247 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
248 	if (!dev)
249 		return;
250 
251 	dev->type = type;
252 	strcpy((char *)(dev + 1), name);
253 	dev->name = (char *)(dev + 1);
254 	dev->device_data = NULL;
255 	list_add(&dev->list, &dmi_devices);
256 }
257 
258 static void __init dmi_save_devices(const struct dmi_header *dm)
259 {
260 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
261 
262 	for (i = 0; i < count; i++) {
263 		const char *d = (char *)(dm + 1) + (i * 2);
264 
265 		/* Skip disabled device */
266 		if ((*d & 0x80) == 0)
267 			continue;
268 
269 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
270 	}
271 }
272 
273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
274 {
275 	int i, count;
276 	struct dmi_device *dev;
277 
278 	if (dm->length < 0x05)
279 		return;
280 
281 	count = *(u8 *)(dm + 1);
282 	for (i = 1; i <= count; i++) {
283 		const char *devname = dmi_string(dm, i);
284 
285 		if (devname == dmi_empty_string)
286 			continue;
287 
288 		dev = dmi_alloc(sizeof(*dev));
289 		if (!dev)
290 			break;
291 
292 		dev->type = DMI_DEV_TYPE_OEM_STRING;
293 		dev->name = devname;
294 		dev->device_data = NULL;
295 
296 		list_add(&dev->list, &dmi_devices);
297 	}
298 }
299 
300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
301 {
302 	struct dmi_device *dev;
303 	void *data;
304 
305 	data = dmi_alloc(dm->length);
306 	if (data == NULL)
307 		return;
308 
309 	memcpy(data, dm, dm->length);
310 
311 	dev = dmi_alloc(sizeof(*dev));
312 	if (!dev)
313 		return;
314 
315 	dev->type = DMI_DEV_TYPE_IPMI;
316 	dev->name = "IPMI controller";
317 	dev->device_data = data;
318 
319 	list_add_tail(&dev->list, &dmi_devices);
320 }
321 
322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
323 					int devfn, const char *name, int type)
324 {
325 	struct dmi_dev_onboard *dev;
326 
327 	/* Ignore invalid values */
328 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
329 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
330 		return;
331 
332 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
333 	if (!dev)
334 		return;
335 
336 	dev->instance = instance;
337 	dev->segment = segment;
338 	dev->bus = bus;
339 	dev->devfn = devfn;
340 
341 	strcpy((char *)&dev[1], name);
342 	dev->dev.type = type;
343 	dev->dev.name = (char *)&dev[1];
344 	dev->dev.device_data = dev;
345 
346 	list_add(&dev->dev.list, &dmi_devices);
347 }
348 
349 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
350 {
351 	const char *name;
352 	const u8 *d = (u8 *)dm;
353 
354 	if (dm->length < 0x0B)
355 		return;
356 
357 	/* Skip disabled device */
358 	if ((d[0x5] & 0x80) == 0)
359 		return;
360 
361 	name = dmi_string_nosave(dm, d[0x4]);
362 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
363 			     DMI_DEV_TYPE_DEV_ONBOARD);
364 	dmi_save_one_device(d[0x5] & 0x7f, name);
365 }
366 
367 static void __init dmi_save_system_slot(const struct dmi_header *dm)
368 {
369 	const u8 *d = (u8 *)dm;
370 
371 	/* Need SMBIOS 2.6+ structure */
372 	if (dm->length < 0x11)
373 		return;
374 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
375 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
376 			     DMI_DEV_TYPE_DEV_SLOT);
377 }
378 
379 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
380 {
381 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
382 		return;
383 	dmi_memdev_nr++;
384 }
385 
386 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
387 {
388 	const char *d = (const char *)dm;
389 	static int nr;
390 	u64 bytes;
391 	u16 size;
392 
393 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
394 		return;
395 	if (nr >= dmi_memdev_nr) {
396 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
397 		return;
398 	}
399 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
400 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
401 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
402 
403 	size = get_unaligned((u16 *)&d[0xC]);
404 	if (size == 0)
405 		bytes = 0;
406 	else if (size == 0xffff)
407 		bytes = ~0ull;
408 	else if (size & 0x8000)
409 		bytes = (u64)(size & 0x7fff) << 10;
410 	else if (size != 0x7fff)
411 		bytes = (u64)size << 20;
412 	else
413 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
414 
415 	dmi_memdev[nr].size = bytes;
416 	nr++;
417 }
418 
419 void __init dmi_memdev_walk(void)
420 {
421 	if (!dmi_available)
422 		return;
423 
424 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
425 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
426 		if (dmi_memdev)
427 			dmi_walk_early(save_mem_devices);
428 	}
429 }
430 
431 /*
432  *	Process a DMI table entry. Right now all we care about are the BIOS
433  *	and machine entries. For 2.5 we should pull the smbus controller info
434  *	out of here.
435  */
436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
437 {
438 	switch (dm->type) {
439 	case 0:		/* BIOS Information */
440 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
441 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
442 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
443 		break;
444 	case 1:		/* System Information */
445 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
446 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
447 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
448 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
449 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
450 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
451 		break;
452 	case 2:		/* Base Board Information */
453 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
454 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
455 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
456 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
457 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
458 		break;
459 	case 3:		/* Chassis Information */
460 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
461 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
462 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
463 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
464 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
465 		break;
466 	case 9:		/* System Slots */
467 		dmi_save_system_slot(dm);
468 		break;
469 	case 10:	/* Onboard Devices Information */
470 		dmi_save_devices(dm);
471 		break;
472 	case 11:	/* OEM Strings */
473 		dmi_save_oem_strings_devices(dm);
474 		break;
475 	case 38:	/* IPMI Device Information */
476 		dmi_save_ipmi_device(dm);
477 		break;
478 	case 41:	/* Onboard Devices Extended Information */
479 		dmi_save_extended_devices(dm);
480 	}
481 }
482 
483 static int __init print_filtered(char *buf, size_t len, const char *info)
484 {
485 	int c = 0;
486 	const char *p;
487 
488 	if (!info)
489 		return c;
490 
491 	for (p = info; *p; p++)
492 		if (isprint(*p))
493 			c += scnprintf(buf + c, len - c, "%c", *p);
494 		else
495 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
496 	return c;
497 }
498 
499 static void __init dmi_format_ids(char *buf, size_t len)
500 {
501 	int c = 0;
502 	const char *board;	/* Board Name is optional */
503 
504 	c += print_filtered(buf + c, len - c,
505 			    dmi_get_system_info(DMI_SYS_VENDOR));
506 	c += scnprintf(buf + c, len - c, " ");
507 	c += print_filtered(buf + c, len - c,
508 			    dmi_get_system_info(DMI_PRODUCT_NAME));
509 
510 	board = dmi_get_system_info(DMI_BOARD_NAME);
511 	if (board) {
512 		c += scnprintf(buf + c, len - c, "/");
513 		c += print_filtered(buf + c, len - c, board);
514 	}
515 	c += scnprintf(buf + c, len - c, ", BIOS ");
516 	c += print_filtered(buf + c, len - c,
517 			    dmi_get_system_info(DMI_BIOS_VERSION));
518 	c += scnprintf(buf + c, len - c, " ");
519 	c += print_filtered(buf + c, len - c,
520 			    dmi_get_system_info(DMI_BIOS_DATE));
521 }
522 
523 /*
524  * Check for DMI/SMBIOS headers in the system firmware image.  Any
525  * SMBIOS header must start 16 bytes before the DMI header, so take a
526  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
527  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
528  * takes precedence) and return 0.  Otherwise return 1.
529  */
530 static int __init dmi_present(const u8 *buf)
531 {
532 	u32 smbios_ver;
533 
534 	if (memcmp(buf, "_SM_", 4) == 0 &&
535 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
536 		smbios_ver = get_unaligned_be16(buf + 6);
537 		smbios_entry_point_size = buf[5];
538 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
539 
540 		/* Some BIOS report weird SMBIOS version, fix that up */
541 		switch (smbios_ver) {
542 		case 0x021F:
543 		case 0x0221:
544 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
545 				 smbios_ver & 0xFF, 3);
546 			smbios_ver = 0x0203;
547 			break;
548 		case 0x0233:
549 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
550 			smbios_ver = 0x0206;
551 			break;
552 		}
553 	} else {
554 		smbios_ver = 0;
555 	}
556 
557 	buf += 16;
558 
559 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
560 		if (smbios_ver)
561 			dmi_ver = smbios_ver;
562 		else
563 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
564 		dmi_ver <<= 8;
565 		dmi_num = get_unaligned_le16(buf + 12);
566 		dmi_len = get_unaligned_le16(buf + 6);
567 		dmi_base = get_unaligned_le32(buf + 8);
568 
569 		if (dmi_walk_early(dmi_decode) == 0) {
570 			if (smbios_ver) {
571 				pr_info("SMBIOS %d.%d present.\n",
572 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
573 			} else {
574 				smbios_entry_point_size = 15;
575 				memcpy(smbios_entry_point, buf,
576 				       smbios_entry_point_size);
577 				pr_info("Legacy DMI %d.%d present.\n",
578 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
579 			}
580 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
581 			pr_info("DMI: %s\n", dmi_ids_string);
582 			return 0;
583 		}
584 	}
585 
586 	return 1;
587 }
588 
589 /*
590  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
591  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
592  */
593 static int __init dmi_smbios3_present(const u8 *buf)
594 {
595 	if (memcmp(buf, "_SM3_", 5) == 0 &&
596 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
597 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
598 		dmi_num = 0;			/* No longer specified */
599 		dmi_len = get_unaligned_le32(buf + 12);
600 		dmi_base = get_unaligned_le64(buf + 16);
601 		smbios_entry_point_size = buf[6];
602 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
603 
604 		if (dmi_walk_early(dmi_decode) == 0) {
605 			pr_info("SMBIOS %d.%d.%d present.\n",
606 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
607 				dmi_ver & 0xFF);
608 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
609 			pr_info("DMI: %s\n", dmi_ids_string);
610 			return 0;
611 		}
612 	}
613 	return 1;
614 }
615 
616 void __init dmi_scan_machine(void)
617 {
618 	char __iomem *p, *q;
619 	char buf[32];
620 
621 	if (efi_enabled(EFI_CONFIG_TABLES)) {
622 		/*
623 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
624 		 * allowed to define both the 64-bit entry point (smbios3) and
625 		 * the 32-bit entry point (smbios), in which case they should
626 		 * either both point to the same SMBIOS structure table, or the
627 		 * table pointed to by the 64-bit entry point should contain a
628 		 * superset of the table contents pointed to by the 32-bit entry
629 		 * point (section 5.2)
630 		 * This implies that the 64-bit entry point should have
631 		 * precedence if it is defined and supported by the OS. If we
632 		 * have the 64-bit entry point, but fail to decode it, fall
633 		 * back to the legacy one (if available)
634 		 */
635 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
636 			p = dmi_early_remap(efi.smbios3, 32);
637 			if (p == NULL)
638 				goto error;
639 			memcpy_fromio(buf, p, 32);
640 			dmi_early_unmap(p, 32);
641 
642 			if (!dmi_smbios3_present(buf)) {
643 				dmi_available = 1;
644 				return;
645 			}
646 		}
647 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
648 			goto error;
649 
650 		/* This is called as a core_initcall() because it isn't
651 		 * needed during early boot.  This also means we can
652 		 * iounmap the space when we're done with it.
653 		 */
654 		p = dmi_early_remap(efi.smbios, 32);
655 		if (p == NULL)
656 			goto error;
657 		memcpy_fromio(buf, p, 32);
658 		dmi_early_unmap(p, 32);
659 
660 		if (!dmi_present(buf)) {
661 			dmi_available = 1;
662 			return;
663 		}
664 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
665 		p = dmi_early_remap(0xF0000, 0x10000);
666 		if (p == NULL)
667 			goto error;
668 
669 		/*
670 		 * Same logic as above, look for a 64-bit entry point
671 		 * first, and if not found, fall back to 32-bit entry point.
672 		 */
673 		memcpy_fromio(buf, p, 16);
674 		for (q = p + 16; q < p + 0x10000; q += 16) {
675 			memcpy_fromio(buf + 16, q, 16);
676 			if (!dmi_smbios3_present(buf)) {
677 				dmi_available = 1;
678 				dmi_early_unmap(p, 0x10000);
679 				return;
680 			}
681 			memcpy(buf, buf + 16, 16);
682 		}
683 
684 		/*
685 		 * Iterate over all possible DMI header addresses q.
686 		 * Maintain the 32 bytes around q in buf.  On the
687 		 * first iteration, substitute zero for the
688 		 * out-of-range bytes so there is no chance of falsely
689 		 * detecting an SMBIOS header.
690 		 */
691 		memset(buf, 0, 16);
692 		for (q = p; q < p + 0x10000; q += 16) {
693 			memcpy_fromio(buf + 16, q, 16);
694 			if (!dmi_present(buf)) {
695 				dmi_available = 1;
696 				dmi_early_unmap(p, 0x10000);
697 				return;
698 			}
699 			memcpy(buf, buf + 16, 16);
700 		}
701 		dmi_early_unmap(p, 0x10000);
702 	}
703  error:
704 	pr_info("DMI not present or invalid.\n");
705 }
706 
707 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
708 			      struct bin_attribute *attr, char *buf,
709 			      loff_t pos, size_t count)
710 {
711 	memcpy(buf, attr->private + pos, count);
712 	return count;
713 }
714 
715 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
716 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
717 
718 static int __init dmi_init(void)
719 {
720 	struct kobject *tables_kobj;
721 	u8 *dmi_table;
722 	int ret = -ENOMEM;
723 
724 	if (!dmi_available)
725 		return 0;
726 
727 	/*
728 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
729 	 * even after farther error, as it can be used by other modules like
730 	 * dmi-sysfs.
731 	 */
732 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
733 	if (!dmi_kobj)
734 		goto err;
735 
736 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
737 	if (!tables_kobj)
738 		goto err;
739 
740 	dmi_table = dmi_remap(dmi_base, dmi_len);
741 	if (!dmi_table)
742 		goto err_tables;
743 
744 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
745 	bin_attr_smbios_entry_point.private = smbios_entry_point;
746 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
747 	if (ret)
748 		goto err_unmap;
749 
750 	bin_attr_DMI.size = dmi_len;
751 	bin_attr_DMI.private = dmi_table;
752 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
753 	if (!ret)
754 		return 0;
755 
756 	sysfs_remove_bin_file(tables_kobj,
757 			      &bin_attr_smbios_entry_point);
758  err_unmap:
759 	dmi_unmap(dmi_table);
760  err_tables:
761 	kobject_del(tables_kobj);
762 	kobject_put(tables_kobj);
763  err:
764 	pr_err("dmi: Firmware registration failed.\n");
765 
766 	return ret;
767 }
768 subsys_initcall(dmi_init);
769 
770 /**
771  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
772  *
773  * Invoke dump_stack_set_arch_desc() with DMI system information so that
774  * DMI identifiers are printed out on task dumps.  Arch boot code should
775  * call this function after dmi_scan_machine() if it wants to print out DMI
776  * identifiers on task dumps.
777  */
778 void __init dmi_set_dump_stack_arch_desc(void)
779 {
780 	dump_stack_set_arch_desc("%s", dmi_ids_string);
781 }
782 
783 /**
784  *	dmi_matches - check if dmi_system_id structure matches system DMI data
785  *	@dmi: pointer to the dmi_system_id structure to check
786  */
787 static bool dmi_matches(const struct dmi_system_id *dmi)
788 {
789 	int i;
790 
791 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
792 		int s = dmi->matches[i].slot;
793 		if (s == DMI_NONE)
794 			break;
795 		if (s == DMI_OEM_STRING) {
796 			/* DMI_OEM_STRING must be exact match */
797 			const struct dmi_device *valid;
798 
799 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
800 						dmi->matches[i].substr, NULL);
801 			if (valid)
802 				continue;
803 		} else if (dmi_ident[s]) {
804 			if (dmi->matches[i].exact_match) {
805 				if (!strcmp(dmi_ident[s],
806 					    dmi->matches[i].substr))
807 					continue;
808 			} else {
809 				if (strstr(dmi_ident[s],
810 					   dmi->matches[i].substr))
811 					continue;
812 			}
813 		}
814 
815 		/* No match */
816 		return false;
817 	}
818 	return true;
819 }
820 
821 /**
822  *	dmi_is_end_of_table - check for end-of-table marker
823  *	@dmi: pointer to the dmi_system_id structure to check
824  */
825 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
826 {
827 	return dmi->matches[0].slot == DMI_NONE;
828 }
829 
830 /**
831  *	dmi_check_system - check system DMI data
832  *	@list: array of dmi_system_id structures to match against
833  *		All non-null elements of the list must match
834  *		their slot's (field index's) data (i.e., each
835  *		list string must be a substring of the specified
836  *		DMI slot's string data) to be considered a
837  *		successful match.
838  *
839  *	Walk the blacklist table running matching functions until someone
840  *	returns non zero or we hit the end. Callback function is called for
841  *	each successful match. Returns the number of matches.
842  *
843  *	dmi_scan_machine must be called before this function is called.
844  */
845 int dmi_check_system(const struct dmi_system_id *list)
846 {
847 	int count = 0;
848 	const struct dmi_system_id *d;
849 
850 	for (d = list; !dmi_is_end_of_table(d); d++)
851 		if (dmi_matches(d)) {
852 			count++;
853 			if (d->callback && d->callback(d))
854 				break;
855 		}
856 
857 	return count;
858 }
859 EXPORT_SYMBOL(dmi_check_system);
860 
861 /**
862  *	dmi_first_match - find dmi_system_id structure matching system DMI data
863  *	@list: array of dmi_system_id structures to match against
864  *		All non-null elements of the list must match
865  *		their slot's (field index's) data (i.e., each
866  *		list string must be a substring of the specified
867  *		DMI slot's string data) to be considered a
868  *		successful match.
869  *
870  *	Walk the blacklist table until the first match is found.  Return the
871  *	pointer to the matching entry or NULL if there's no match.
872  *
873  *	dmi_scan_machine must be called before this function is called.
874  */
875 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
876 {
877 	const struct dmi_system_id *d;
878 
879 	for (d = list; !dmi_is_end_of_table(d); d++)
880 		if (dmi_matches(d))
881 			return d;
882 
883 	return NULL;
884 }
885 EXPORT_SYMBOL(dmi_first_match);
886 
887 /**
888  *	dmi_get_system_info - return DMI data value
889  *	@field: data index (see enum dmi_field)
890  *
891  *	Returns one DMI data value, can be used to perform
892  *	complex DMI data checks.
893  */
894 const char *dmi_get_system_info(int field)
895 {
896 	return dmi_ident[field];
897 }
898 EXPORT_SYMBOL(dmi_get_system_info);
899 
900 /**
901  * dmi_name_in_serial - Check if string is in the DMI product serial information
902  * @str: string to check for
903  */
904 int dmi_name_in_serial(const char *str)
905 {
906 	int f = DMI_PRODUCT_SERIAL;
907 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
908 		return 1;
909 	return 0;
910 }
911 
912 /**
913  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
914  *	@str: Case sensitive Name
915  */
916 int dmi_name_in_vendors(const char *str)
917 {
918 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
919 	int i;
920 	for (i = 0; fields[i] != DMI_NONE; i++) {
921 		int f = fields[i];
922 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
923 			return 1;
924 	}
925 	return 0;
926 }
927 EXPORT_SYMBOL(dmi_name_in_vendors);
928 
929 /**
930  *	dmi_find_device - find onboard device by type/name
931  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
932  *	@name: device name string or %NULL to match all
933  *	@from: previous device found in search, or %NULL for new search.
934  *
935  *	Iterates through the list of known onboard devices. If a device is
936  *	found with a matching @type and @name, a pointer to its device
937  *	structure is returned.  Otherwise, %NULL is returned.
938  *	A new search is initiated by passing %NULL as the @from argument.
939  *	If @from is not %NULL, searches continue from next device.
940  */
941 const struct dmi_device *dmi_find_device(int type, const char *name,
942 				    const struct dmi_device *from)
943 {
944 	const struct list_head *head = from ? &from->list : &dmi_devices;
945 	struct list_head *d;
946 
947 	for (d = head->next; d != &dmi_devices; d = d->next) {
948 		const struct dmi_device *dev =
949 			list_entry(d, struct dmi_device, list);
950 
951 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
952 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
953 			return dev;
954 	}
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dmi_find_device);
959 
960 /**
961  *	dmi_get_date - parse a DMI date
962  *	@field:	data index (see enum dmi_field)
963  *	@yearp: optional out parameter for the year
964  *	@monthp: optional out parameter for the month
965  *	@dayp: optional out parameter for the day
966  *
967  *	The date field is assumed to be in the form resembling
968  *	[mm[/dd]]/yy[yy] and the result is stored in the out
969  *	parameters any or all of which can be omitted.
970  *
971  *	If the field doesn't exist, all out parameters are set to zero
972  *	and false is returned.  Otherwise, true is returned with any
973  *	invalid part of date set to zero.
974  *
975  *	On return, year, month and day are guaranteed to be in the
976  *	range of [0,9999], [0,12] and [0,31] respectively.
977  */
978 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
979 {
980 	int year = 0, month = 0, day = 0;
981 	bool exists;
982 	const char *s, *y;
983 	char *e;
984 
985 	s = dmi_get_system_info(field);
986 	exists = s;
987 	if (!exists)
988 		goto out;
989 
990 	/*
991 	 * Determine year first.  We assume the date string resembles
992 	 * mm/dd/yy[yy] but the original code extracted only the year
993 	 * from the end.  Keep the behavior in the spirit of no
994 	 * surprises.
995 	 */
996 	y = strrchr(s, '/');
997 	if (!y)
998 		goto out;
999 
1000 	y++;
1001 	year = simple_strtoul(y, &e, 10);
1002 	if (y != e && year < 100) {	/* 2-digit year */
1003 		year += 1900;
1004 		if (year < 1996)	/* no dates < spec 1.0 */
1005 			year += 100;
1006 	}
1007 	if (year > 9999)		/* year should fit in %04d */
1008 		year = 0;
1009 
1010 	/* parse the mm and dd */
1011 	month = simple_strtoul(s, &e, 10);
1012 	if (s == e || *e != '/' || !month || month > 12) {
1013 		month = 0;
1014 		goto out;
1015 	}
1016 
1017 	s = e + 1;
1018 	day = simple_strtoul(s, &e, 10);
1019 	if (s == y || s == e || *e != '/' || day > 31)
1020 		day = 0;
1021 out:
1022 	if (yearp)
1023 		*yearp = year;
1024 	if (monthp)
1025 		*monthp = month;
1026 	if (dayp)
1027 		*dayp = day;
1028 	return exists;
1029 }
1030 EXPORT_SYMBOL(dmi_get_date);
1031 
1032 /**
1033  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1034  *
1035  *	Returns year on success, -ENXIO if DMI is not selected,
1036  *	or a different negative error code if DMI field is not present
1037  *	or not parseable.
1038  */
1039 int dmi_get_bios_year(void)
1040 {
1041 	bool exists;
1042 	int year;
1043 
1044 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1045 	if (!exists)
1046 		return -ENODATA;
1047 
1048 	return year ? year : -ERANGE;
1049 }
1050 EXPORT_SYMBOL(dmi_get_bios_year);
1051 
1052 /**
1053  *	dmi_walk - Walk the DMI table and get called back for every record
1054  *	@decode: Callback function
1055  *	@private_data: Private data to be passed to the callback function
1056  *
1057  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1058  *	or a different negative error code if DMI walking fails.
1059  */
1060 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1061 	     void *private_data)
1062 {
1063 	u8 *buf;
1064 
1065 	if (!dmi_available)
1066 		return -ENXIO;
1067 
1068 	buf = dmi_remap(dmi_base, dmi_len);
1069 	if (buf == NULL)
1070 		return -ENOMEM;
1071 
1072 	dmi_decode_table(buf, decode, private_data);
1073 
1074 	dmi_unmap(buf);
1075 	return 0;
1076 }
1077 EXPORT_SYMBOL_GPL(dmi_walk);
1078 
1079 /**
1080  * dmi_match - compare a string to the dmi field (if exists)
1081  * @f: DMI field identifier
1082  * @str: string to compare the DMI field to
1083  *
1084  * Returns true if the requested field equals to the str (including NULL).
1085  */
1086 bool dmi_match(enum dmi_field f, const char *str)
1087 {
1088 	const char *info = dmi_get_system_info(f);
1089 
1090 	if (info == NULL || str == NULL)
1091 		return info == str;
1092 
1093 	return !strcmp(info, str);
1094 }
1095 EXPORT_SYMBOL_GPL(dmi_match);
1096 
1097 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1098 {
1099 	int n;
1100 
1101 	if (dmi_memdev == NULL)
1102 		return;
1103 
1104 	for (n = 0; n < dmi_memdev_nr; n++) {
1105 		if (handle == dmi_memdev[n].handle) {
1106 			*bank = dmi_memdev[n].bank;
1107 			*device = dmi_memdev[n].device;
1108 			break;
1109 		}
1110 	}
1111 }
1112 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1113 
1114 u64 dmi_memdev_size(u16 handle)
1115 {
1116 	int n;
1117 
1118 	if (dmi_memdev) {
1119 		for (n = 0; n < dmi_memdev_nr; n++) {
1120 			if (handle == dmi_memdev[n].handle)
1121 				return dmi_memdev[n].size;
1122 		}
1123 	}
1124 	return ~0ull;
1125 }
1126 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1127