1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = " "; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* 30 * Catch too early calls to dmi_check_system(): 31 */ 32 static int dmi_initialized; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u16 handle; 41 } *dmi_memdev; 42 static int dmi_memdev_nr; 43 44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 45 { 46 const u8 *bp = ((u8 *) dm) + dm->length; 47 48 if (s) { 49 s--; 50 while (s > 0 && *bp) { 51 bp += strlen(bp) + 1; 52 s--; 53 } 54 55 if (*bp != 0) { 56 size_t len = strlen(bp)+1; 57 size_t cmp_len = len > 8 ? 8 : len; 58 59 if (!memcmp(bp, dmi_empty_string, cmp_len)) 60 return dmi_empty_string; 61 return bp; 62 } 63 } 64 65 return ""; 66 } 67 68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 69 { 70 const char *bp = dmi_string_nosave(dm, s); 71 char *str; 72 size_t len; 73 74 if (bp == dmi_empty_string) 75 return dmi_empty_string; 76 77 len = strlen(bp) + 1; 78 str = dmi_alloc(len); 79 if (str != NULL) 80 strcpy(str, bp); 81 82 return str; 83 } 84 85 /* 86 * We have to be cautious here. We have seen BIOSes with DMI pointers 87 * pointing to completely the wrong place for example 88 */ 89 static void dmi_decode_table(u8 *buf, 90 void (*decode)(const struct dmi_header *, void *), 91 void *private_data) 92 { 93 u8 *data = buf; 94 int i = 0; 95 96 /* 97 * Stop when we have seen all the items the table claimed to have 98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 99 * >= 3.0 only) OR we run off the end of the table (should never 100 * happen but sometimes does on bogus implementations.) 101 */ 102 while ((!dmi_num || i < dmi_num) && 103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 104 const struct dmi_header *dm = (const struct dmi_header *)data; 105 106 /* 107 * We want to know the total length (formatted area and 108 * strings) before decoding to make sure we won't run off the 109 * table in dmi_decode or dmi_string 110 */ 111 data += dm->length; 112 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 113 data++; 114 if (data - buf < dmi_len - 1) 115 decode(dm, private_data); 116 117 data += 2; 118 i++; 119 120 /* 121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 122 * For tables behind a 64-bit entry point, we have no item 123 * count and no exact table length, so stop on end-of-table 124 * marker. For tables behind a 32-bit entry point, we have 125 * seen OEM structures behind the end-of-table marker on 126 * some systems, so don't trust it. 127 */ 128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 129 break; 130 } 131 132 /* Trim DMI table length if needed */ 133 if (dmi_len > data - buf) 134 dmi_len = data - buf; 135 } 136 137 static phys_addr_t dmi_base; 138 139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 140 void *)) 141 { 142 u8 *buf; 143 u32 orig_dmi_len = dmi_len; 144 145 buf = dmi_early_remap(dmi_base, orig_dmi_len); 146 if (buf == NULL) 147 return -1; 148 149 dmi_decode_table(buf, decode, NULL); 150 151 add_device_randomness(buf, dmi_len); 152 153 dmi_early_unmap(buf, orig_dmi_len); 154 return 0; 155 } 156 157 static int __init dmi_checksum(const u8 *buf, u8 len) 158 { 159 u8 sum = 0; 160 int a; 161 162 for (a = 0; a < len; a++) 163 sum += buf[a]; 164 165 return sum == 0; 166 } 167 168 static const char *dmi_ident[DMI_STRING_MAX]; 169 static LIST_HEAD(dmi_devices); 170 int dmi_available; 171 172 /* 173 * Save a DMI string 174 */ 175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 176 int string) 177 { 178 const char *d = (const char *) dm; 179 const char *p; 180 181 if (dmi_ident[slot]) 182 return; 183 184 p = dmi_string(dm, d[string]); 185 if (p == NULL) 186 return; 187 188 dmi_ident[slot] = p; 189 } 190 191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 192 int index) 193 { 194 const u8 *d = (u8 *) dm + index; 195 char *s; 196 int is_ff = 1, is_00 = 1, i; 197 198 if (dmi_ident[slot]) 199 return; 200 201 for (i = 0; i < 16 && (is_ff || is_00); i++) { 202 if (d[i] != 0x00) 203 is_00 = 0; 204 if (d[i] != 0xFF) 205 is_ff = 0; 206 } 207 208 if (is_ff || is_00) 209 return; 210 211 s = dmi_alloc(16*2+4+1); 212 if (!s) 213 return; 214 215 /* 216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 217 * the UUID are supposed to be little-endian encoded. The specification 218 * says that this is the defacto standard. 219 */ 220 if (dmi_ver >= 0x020600) 221 sprintf(s, "%pUL", d); 222 else 223 sprintf(s, "%pUB", d); 224 225 dmi_ident[slot] = s; 226 } 227 228 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 229 int index) 230 { 231 const u8 *d = (u8 *) dm + index; 232 char *s; 233 234 if (dmi_ident[slot]) 235 return; 236 237 s = dmi_alloc(4); 238 if (!s) 239 return; 240 241 sprintf(s, "%u", *d & 0x7F); 242 dmi_ident[slot] = s; 243 } 244 245 static void __init dmi_save_one_device(int type, const char *name) 246 { 247 struct dmi_device *dev; 248 249 /* No duplicate device */ 250 if (dmi_find_device(type, name, NULL)) 251 return; 252 253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 254 if (!dev) 255 return; 256 257 dev->type = type; 258 strcpy((char *)(dev + 1), name); 259 dev->name = (char *)(dev + 1); 260 dev->device_data = NULL; 261 list_add(&dev->list, &dmi_devices); 262 } 263 264 static void __init dmi_save_devices(const struct dmi_header *dm) 265 { 266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 267 268 for (i = 0; i < count; i++) { 269 const char *d = (char *)(dm + 1) + (i * 2); 270 271 /* Skip disabled device */ 272 if ((*d & 0x80) == 0) 273 continue; 274 275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 276 } 277 } 278 279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 280 { 281 int i, count = *(u8 *)(dm + 1); 282 struct dmi_device *dev; 283 284 for (i = 1; i <= count; i++) { 285 const char *devname = dmi_string(dm, i); 286 287 if (devname == dmi_empty_string) 288 continue; 289 290 dev = dmi_alloc(sizeof(*dev)); 291 if (!dev) 292 break; 293 294 dev->type = DMI_DEV_TYPE_OEM_STRING; 295 dev->name = devname; 296 dev->device_data = NULL; 297 298 list_add(&dev->list, &dmi_devices); 299 } 300 } 301 302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 303 { 304 struct dmi_device *dev; 305 void *data; 306 307 data = dmi_alloc(dm->length); 308 if (data == NULL) 309 return; 310 311 memcpy(data, dm, dm->length); 312 313 dev = dmi_alloc(sizeof(*dev)); 314 if (!dev) 315 return; 316 317 dev->type = DMI_DEV_TYPE_IPMI; 318 dev->name = "IPMI controller"; 319 dev->device_data = data; 320 321 list_add_tail(&dev->list, &dmi_devices); 322 } 323 324 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 325 int devfn, const char *name) 326 { 327 struct dmi_dev_onboard *onboard_dev; 328 329 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 330 if (!onboard_dev) 331 return; 332 333 onboard_dev->instance = instance; 334 onboard_dev->segment = segment; 335 onboard_dev->bus = bus; 336 onboard_dev->devfn = devfn; 337 338 strcpy((char *)&onboard_dev[1], name); 339 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 340 onboard_dev->dev.name = (char *)&onboard_dev[1]; 341 onboard_dev->dev.device_data = onboard_dev; 342 343 list_add(&onboard_dev->dev.list, &dmi_devices); 344 } 345 346 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 347 { 348 const u8 *d = (u8 *) dm + 5; 349 350 /* Skip disabled device */ 351 if ((*d & 0x80) == 0) 352 return; 353 354 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 355 dmi_string_nosave(dm, *(d-1))); 356 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 357 } 358 359 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 360 { 361 if (dm->type != DMI_ENTRY_MEM_DEVICE) 362 return; 363 dmi_memdev_nr++; 364 } 365 366 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 367 { 368 const char *d = (const char *)dm; 369 static int nr; 370 371 if (dm->type != DMI_ENTRY_MEM_DEVICE) 372 return; 373 if (nr >= dmi_memdev_nr) { 374 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 375 return; 376 } 377 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 378 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 379 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 380 nr++; 381 } 382 383 void __init dmi_memdev_walk(void) 384 { 385 if (!dmi_available) 386 return; 387 388 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 389 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 390 if (dmi_memdev) 391 dmi_walk_early(save_mem_devices); 392 } 393 } 394 395 /* 396 * Process a DMI table entry. Right now all we care about are the BIOS 397 * and machine entries. For 2.5 we should pull the smbus controller info 398 * out of here. 399 */ 400 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 401 { 402 switch (dm->type) { 403 case 0: /* BIOS Information */ 404 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 405 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 406 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 407 break; 408 case 1: /* System Information */ 409 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 410 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 411 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 412 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 413 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 414 break; 415 case 2: /* Base Board Information */ 416 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 417 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 418 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 419 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 420 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 421 break; 422 case 3: /* Chassis Information */ 423 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 424 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 425 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 426 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 427 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 428 break; 429 case 10: /* Onboard Devices Information */ 430 dmi_save_devices(dm); 431 break; 432 case 11: /* OEM Strings */ 433 dmi_save_oem_strings_devices(dm); 434 break; 435 case 38: /* IPMI Device Information */ 436 dmi_save_ipmi_device(dm); 437 break; 438 case 41: /* Onboard Devices Extended Information */ 439 dmi_save_extended_devices(dm); 440 } 441 } 442 443 static int __init print_filtered(char *buf, size_t len, const char *info) 444 { 445 int c = 0; 446 const char *p; 447 448 if (!info) 449 return c; 450 451 for (p = info; *p; p++) 452 if (isprint(*p)) 453 c += scnprintf(buf + c, len - c, "%c", *p); 454 else 455 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 456 return c; 457 } 458 459 static void __init dmi_format_ids(char *buf, size_t len) 460 { 461 int c = 0; 462 const char *board; /* Board Name is optional */ 463 464 c += print_filtered(buf + c, len - c, 465 dmi_get_system_info(DMI_SYS_VENDOR)); 466 c += scnprintf(buf + c, len - c, " "); 467 c += print_filtered(buf + c, len - c, 468 dmi_get_system_info(DMI_PRODUCT_NAME)); 469 470 board = dmi_get_system_info(DMI_BOARD_NAME); 471 if (board) { 472 c += scnprintf(buf + c, len - c, "/"); 473 c += print_filtered(buf + c, len - c, board); 474 } 475 c += scnprintf(buf + c, len - c, ", BIOS "); 476 c += print_filtered(buf + c, len - c, 477 dmi_get_system_info(DMI_BIOS_VERSION)); 478 c += scnprintf(buf + c, len - c, " "); 479 c += print_filtered(buf + c, len - c, 480 dmi_get_system_info(DMI_BIOS_DATE)); 481 } 482 483 /* 484 * Check for DMI/SMBIOS headers in the system firmware image. Any 485 * SMBIOS header must start 16 bytes before the DMI header, so take a 486 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 487 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 488 * takes precedence) and return 0. Otherwise return 1. 489 */ 490 static int __init dmi_present(const u8 *buf) 491 { 492 u32 smbios_ver; 493 494 if (memcmp(buf, "_SM_", 4) == 0 && 495 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 496 smbios_ver = get_unaligned_be16(buf + 6); 497 smbios_entry_point_size = buf[5]; 498 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 499 500 /* Some BIOS report weird SMBIOS version, fix that up */ 501 switch (smbios_ver) { 502 case 0x021F: 503 case 0x0221: 504 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 505 smbios_ver & 0xFF, 3); 506 smbios_ver = 0x0203; 507 break; 508 case 0x0233: 509 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 510 smbios_ver = 0x0206; 511 break; 512 } 513 } else { 514 smbios_ver = 0; 515 } 516 517 buf += 16; 518 519 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 520 if (smbios_ver) 521 dmi_ver = smbios_ver; 522 else 523 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 524 dmi_num = get_unaligned_le16(buf + 12); 525 dmi_len = get_unaligned_le16(buf + 6); 526 dmi_base = get_unaligned_le32(buf + 8); 527 528 if (dmi_walk_early(dmi_decode) == 0) { 529 if (smbios_ver) { 530 pr_info("SMBIOS %d.%d present.\n", 531 dmi_ver >> 8, dmi_ver & 0xFF); 532 } else { 533 smbios_entry_point_size = 15; 534 memcpy(smbios_entry_point, buf, 535 smbios_entry_point_size); 536 pr_info("Legacy DMI %d.%d present.\n", 537 dmi_ver >> 8, dmi_ver & 0xFF); 538 } 539 dmi_ver <<= 8; 540 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 541 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 542 return 0; 543 } 544 } 545 546 return 1; 547 } 548 549 /* 550 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 551 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 552 */ 553 static int __init dmi_smbios3_present(const u8 *buf) 554 { 555 if (memcmp(buf, "_SM3_", 5) == 0 && 556 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 557 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 558 dmi_num = 0; /* No longer specified */ 559 dmi_len = get_unaligned_le32(buf + 12); 560 dmi_base = get_unaligned_le64(buf + 16); 561 smbios_entry_point_size = buf[6]; 562 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 563 564 if (dmi_walk_early(dmi_decode) == 0) { 565 pr_info("SMBIOS %d.%d.%d present.\n", 566 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 567 dmi_ver & 0xFF); 568 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 569 pr_debug("DMI: %s\n", dmi_ids_string); 570 return 0; 571 } 572 } 573 return 1; 574 } 575 576 void __init dmi_scan_machine(void) 577 { 578 char __iomem *p, *q; 579 char buf[32]; 580 581 if (efi_enabled(EFI_CONFIG_TABLES)) { 582 /* 583 * According to the DMTF SMBIOS reference spec v3.0.0, it is 584 * allowed to define both the 64-bit entry point (smbios3) and 585 * the 32-bit entry point (smbios), in which case they should 586 * either both point to the same SMBIOS structure table, or the 587 * table pointed to by the 64-bit entry point should contain a 588 * superset of the table contents pointed to by the 32-bit entry 589 * point (section 5.2) 590 * This implies that the 64-bit entry point should have 591 * precedence if it is defined and supported by the OS. If we 592 * have the 64-bit entry point, but fail to decode it, fall 593 * back to the legacy one (if available) 594 */ 595 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 596 p = dmi_early_remap(efi.smbios3, 32); 597 if (p == NULL) 598 goto error; 599 memcpy_fromio(buf, p, 32); 600 dmi_early_unmap(p, 32); 601 602 if (!dmi_smbios3_present(buf)) { 603 dmi_available = 1; 604 goto out; 605 } 606 } 607 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 608 goto error; 609 610 /* This is called as a core_initcall() because it isn't 611 * needed during early boot. This also means we can 612 * iounmap the space when we're done with it. 613 */ 614 p = dmi_early_remap(efi.smbios, 32); 615 if (p == NULL) 616 goto error; 617 memcpy_fromio(buf, p, 32); 618 dmi_early_unmap(p, 32); 619 620 if (!dmi_present(buf)) { 621 dmi_available = 1; 622 goto out; 623 } 624 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 625 p = dmi_early_remap(0xF0000, 0x10000); 626 if (p == NULL) 627 goto error; 628 629 /* 630 * Iterate over all possible DMI header addresses q. 631 * Maintain the 32 bytes around q in buf. On the 632 * first iteration, substitute zero for the 633 * out-of-range bytes so there is no chance of falsely 634 * detecting an SMBIOS header. 635 */ 636 memset(buf, 0, 16); 637 for (q = p; q < p + 0x10000; q += 16) { 638 memcpy_fromio(buf + 16, q, 16); 639 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 640 dmi_available = 1; 641 dmi_early_unmap(p, 0x10000); 642 goto out; 643 } 644 memcpy(buf, buf + 16, 16); 645 } 646 dmi_early_unmap(p, 0x10000); 647 } 648 error: 649 pr_info("DMI not present or invalid.\n"); 650 out: 651 dmi_initialized = 1; 652 } 653 654 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 655 struct bin_attribute *attr, char *buf, 656 loff_t pos, size_t count) 657 { 658 memcpy(buf, attr->private + pos, count); 659 return count; 660 } 661 662 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 663 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 664 665 static int __init dmi_init(void) 666 { 667 struct kobject *tables_kobj; 668 u8 *dmi_table; 669 int ret = -ENOMEM; 670 671 if (!dmi_available) { 672 ret = -ENODATA; 673 goto err; 674 } 675 676 /* 677 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 678 * even after farther error, as it can be used by other modules like 679 * dmi-sysfs. 680 */ 681 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 682 if (!dmi_kobj) 683 goto err; 684 685 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 686 if (!tables_kobj) 687 goto err; 688 689 dmi_table = dmi_remap(dmi_base, dmi_len); 690 if (!dmi_table) 691 goto err_tables; 692 693 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 694 bin_attr_smbios_entry_point.private = smbios_entry_point; 695 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 696 if (ret) 697 goto err_unmap; 698 699 bin_attr_DMI.size = dmi_len; 700 bin_attr_DMI.private = dmi_table; 701 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 702 if (!ret) 703 return 0; 704 705 sysfs_remove_bin_file(tables_kobj, 706 &bin_attr_smbios_entry_point); 707 err_unmap: 708 dmi_unmap(dmi_table); 709 err_tables: 710 kobject_del(tables_kobj); 711 kobject_put(tables_kobj); 712 err: 713 pr_err("dmi: Firmware registration failed.\n"); 714 715 return ret; 716 } 717 subsys_initcall(dmi_init); 718 719 /** 720 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 721 * 722 * Invoke dump_stack_set_arch_desc() with DMI system information so that 723 * DMI identifiers are printed out on task dumps. Arch boot code should 724 * call this function after dmi_scan_machine() if it wants to print out DMI 725 * identifiers on task dumps. 726 */ 727 void __init dmi_set_dump_stack_arch_desc(void) 728 { 729 dump_stack_set_arch_desc("%s", dmi_ids_string); 730 } 731 732 /** 733 * dmi_matches - check if dmi_system_id structure matches system DMI data 734 * @dmi: pointer to the dmi_system_id structure to check 735 */ 736 static bool dmi_matches(const struct dmi_system_id *dmi) 737 { 738 int i; 739 740 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 741 742 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 743 int s = dmi->matches[i].slot; 744 if (s == DMI_NONE) 745 break; 746 if (dmi_ident[s]) { 747 if (!dmi->matches[i].exact_match && 748 strstr(dmi_ident[s], dmi->matches[i].substr)) 749 continue; 750 else if (dmi->matches[i].exact_match && 751 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 752 continue; 753 } 754 755 /* No match */ 756 return false; 757 } 758 return true; 759 } 760 761 /** 762 * dmi_is_end_of_table - check for end-of-table marker 763 * @dmi: pointer to the dmi_system_id structure to check 764 */ 765 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 766 { 767 return dmi->matches[0].slot == DMI_NONE; 768 } 769 770 /** 771 * dmi_check_system - check system DMI data 772 * @list: array of dmi_system_id structures to match against 773 * All non-null elements of the list must match 774 * their slot's (field index's) data (i.e., each 775 * list string must be a substring of the specified 776 * DMI slot's string data) to be considered a 777 * successful match. 778 * 779 * Walk the blacklist table running matching functions until someone 780 * returns non zero or we hit the end. Callback function is called for 781 * each successful match. Returns the number of matches. 782 */ 783 int dmi_check_system(const struct dmi_system_id *list) 784 { 785 int count = 0; 786 const struct dmi_system_id *d; 787 788 for (d = list; !dmi_is_end_of_table(d); d++) 789 if (dmi_matches(d)) { 790 count++; 791 if (d->callback && d->callback(d)) 792 break; 793 } 794 795 return count; 796 } 797 EXPORT_SYMBOL(dmi_check_system); 798 799 /** 800 * dmi_first_match - find dmi_system_id structure matching system DMI data 801 * @list: array of dmi_system_id structures to match against 802 * All non-null elements of the list must match 803 * their slot's (field index's) data (i.e., each 804 * list string must be a substring of the specified 805 * DMI slot's string data) to be considered a 806 * successful match. 807 * 808 * Walk the blacklist table until the first match is found. Return the 809 * pointer to the matching entry or NULL if there's no match. 810 */ 811 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 812 { 813 const struct dmi_system_id *d; 814 815 for (d = list; !dmi_is_end_of_table(d); d++) 816 if (dmi_matches(d)) 817 return d; 818 819 return NULL; 820 } 821 EXPORT_SYMBOL(dmi_first_match); 822 823 /** 824 * dmi_get_system_info - return DMI data value 825 * @field: data index (see enum dmi_field) 826 * 827 * Returns one DMI data value, can be used to perform 828 * complex DMI data checks. 829 */ 830 const char *dmi_get_system_info(int field) 831 { 832 return dmi_ident[field]; 833 } 834 EXPORT_SYMBOL(dmi_get_system_info); 835 836 /** 837 * dmi_name_in_serial - Check if string is in the DMI product serial information 838 * @str: string to check for 839 */ 840 int dmi_name_in_serial(const char *str) 841 { 842 int f = DMI_PRODUCT_SERIAL; 843 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 844 return 1; 845 return 0; 846 } 847 848 /** 849 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 850 * @str: Case sensitive Name 851 */ 852 int dmi_name_in_vendors(const char *str) 853 { 854 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 855 int i; 856 for (i = 0; fields[i] != DMI_NONE; i++) { 857 int f = fields[i]; 858 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 859 return 1; 860 } 861 return 0; 862 } 863 EXPORT_SYMBOL(dmi_name_in_vendors); 864 865 /** 866 * dmi_find_device - find onboard device by type/name 867 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 868 * @name: device name string or %NULL to match all 869 * @from: previous device found in search, or %NULL for new search. 870 * 871 * Iterates through the list of known onboard devices. If a device is 872 * found with a matching @vendor and @device, a pointer to its device 873 * structure is returned. Otherwise, %NULL is returned. 874 * A new search is initiated by passing %NULL as the @from argument. 875 * If @from is not %NULL, searches continue from next device. 876 */ 877 const struct dmi_device *dmi_find_device(int type, const char *name, 878 const struct dmi_device *from) 879 { 880 const struct list_head *head = from ? &from->list : &dmi_devices; 881 struct list_head *d; 882 883 for (d = head->next; d != &dmi_devices; d = d->next) { 884 const struct dmi_device *dev = 885 list_entry(d, struct dmi_device, list); 886 887 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 888 ((name == NULL) || (strcmp(dev->name, name) == 0))) 889 return dev; 890 } 891 892 return NULL; 893 } 894 EXPORT_SYMBOL(dmi_find_device); 895 896 /** 897 * dmi_get_date - parse a DMI date 898 * @field: data index (see enum dmi_field) 899 * @yearp: optional out parameter for the year 900 * @monthp: optional out parameter for the month 901 * @dayp: optional out parameter for the day 902 * 903 * The date field is assumed to be in the form resembling 904 * [mm[/dd]]/yy[yy] and the result is stored in the out 905 * parameters any or all of which can be omitted. 906 * 907 * If the field doesn't exist, all out parameters are set to zero 908 * and false is returned. Otherwise, true is returned with any 909 * invalid part of date set to zero. 910 * 911 * On return, year, month and day are guaranteed to be in the 912 * range of [0,9999], [0,12] and [0,31] respectively. 913 */ 914 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 915 { 916 int year = 0, month = 0, day = 0; 917 bool exists; 918 const char *s, *y; 919 char *e; 920 921 s = dmi_get_system_info(field); 922 exists = s; 923 if (!exists) 924 goto out; 925 926 /* 927 * Determine year first. We assume the date string resembles 928 * mm/dd/yy[yy] but the original code extracted only the year 929 * from the end. Keep the behavior in the spirit of no 930 * surprises. 931 */ 932 y = strrchr(s, '/'); 933 if (!y) 934 goto out; 935 936 y++; 937 year = simple_strtoul(y, &e, 10); 938 if (y != e && year < 100) { /* 2-digit year */ 939 year += 1900; 940 if (year < 1996) /* no dates < spec 1.0 */ 941 year += 100; 942 } 943 if (year > 9999) /* year should fit in %04d */ 944 year = 0; 945 946 /* parse the mm and dd */ 947 month = simple_strtoul(s, &e, 10); 948 if (s == e || *e != '/' || !month || month > 12) { 949 month = 0; 950 goto out; 951 } 952 953 s = e + 1; 954 day = simple_strtoul(s, &e, 10); 955 if (s == y || s == e || *e != '/' || day > 31) 956 day = 0; 957 out: 958 if (yearp) 959 *yearp = year; 960 if (monthp) 961 *monthp = month; 962 if (dayp) 963 *dayp = day; 964 return exists; 965 } 966 EXPORT_SYMBOL(dmi_get_date); 967 968 /** 969 * dmi_walk - Walk the DMI table and get called back for every record 970 * @decode: Callback function 971 * @private_data: Private data to be passed to the callback function 972 * 973 * Returns -1 when the DMI table can't be reached, 0 on success. 974 */ 975 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 976 void *private_data) 977 { 978 u8 *buf; 979 980 if (!dmi_available) 981 return -1; 982 983 buf = dmi_remap(dmi_base, dmi_len); 984 if (buf == NULL) 985 return -1; 986 987 dmi_decode_table(buf, decode, private_data); 988 989 dmi_unmap(buf); 990 return 0; 991 } 992 EXPORT_SYMBOL_GPL(dmi_walk); 993 994 /** 995 * dmi_match - compare a string to the dmi field (if exists) 996 * @f: DMI field identifier 997 * @str: string to compare the DMI field to 998 * 999 * Returns true if the requested field equals to the str (including NULL). 1000 */ 1001 bool dmi_match(enum dmi_field f, const char *str) 1002 { 1003 const char *info = dmi_get_system_info(f); 1004 1005 if (info == NULL || str == NULL) 1006 return info == str; 1007 1008 return !strcmp(info, str); 1009 } 1010 EXPORT_SYMBOL_GPL(dmi_match); 1011 1012 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1013 { 1014 int n; 1015 1016 if (dmi_memdev == NULL) 1017 return; 1018 1019 for (n = 0; n < dmi_memdev_nr; n++) { 1020 if (handle == dmi_memdev[n].handle) { 1021 *bank = dmi_memdev[n].bank; 1022 *device = dmi_memdev[n].device; 1023 break; 1024 } 1025 } 1026 } 1027 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1028