1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = " "; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* 30 * Catch too early calls to dmi_check_system(): 31 */ 32 static int dmi_initialized; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u16 handle; 41 } *dmi_memdev; 42 static int dmi_memdev_nr; 43 44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 45 { 46 const u8 *bp = ((u8 *) dm) + dm->length; 47 48 if (s) { 49 s--; 50 while (s > 0 && *bp) { 51 bp += strlen(bp) + 1; 52 s--; 53 } 54 55 if (*bp != 0) { 56 size_t len = strlen(bp)+1; 57 size_t cmp_len = len > 8 ? 8 : len; 58 59 if (!memcmp(bp, dmi_empty_string, cmp_len)) 60 return dmi_empty_string; 61 return bp; 62 } 63 } 64 65 return ""; 66 } 67 68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 69 { 70 const char *bp = dmi_string_nosave(dm, s); 71 char *str; 72 size_t len; 73 74 if (bp == dmi_empty_string) 75 return dmi_empty_string; 76 77 len = strlen(bp) + 1; 78 str = dmi_alloc(len); 79 if (str != NULL) 80 strcpy(str, bp); 81 82 return str; 83 } 84 85 /* 86 * We have to be cautious here. We have seen BIOSes with DMI pointers 87 * pointing to completely the wrong place for example 88 */ 89 static void dmi_decode_table(u8 *buf, 90 void (*decode)(const struct dmi_header *, void *), 91 void *private_data) 92 { 93 u8 *data = buf; 94 int i = 0; 95 96 /* 97 * Stop when we have seen all the items the table claimed to have 98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 99 * >= 3.0 only) OR we run off the end of the table (should never 100 * happen but sometimes does on bogus implementations.) 101 */ 102 while ((!dmi_num || i < dmi_num) && 103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 104 const struct dmi_header *dm = (const struct dmi_header *)data; 105 106 /* 107 * We want to know the total length (formatted area and 108 * strings) before decoding to make sure we won't run off the 109 * table in dmi_decode or dmi_string 110 */ 111 data += dm->length; 112 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 113 data++; 114 if (data - buf < dmi_len - 1) 115 decode(dm, private_data); 116 117 data += 2; 118 i++; 119 120 /* 121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 122 * For tables behind a 64-bit entry point, we have no item 123 * count and no exact table length, so stop on end-of-table 124 * marker. For tables behind a 32-bit entry point, we have 125 * seen OEM structures behind the end-of-table marker on 126 * some systems, so don't trust it. 127 */ 128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 129 break; 130 } 131 132 /* Trim DMI table length if needed */ 133 if (dmi_len > data - buf) 134 dmi_len = data - buf; 135 } 136 137 static phys_addr_t dmi_base; 138 139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 140 void *)) 141 { 142 u8 *buf; 143 u32 orig_dmi_len = dmi_len; 144 145 buf = dmi_early_remap(dmi_base, orig_dmi_len); 146 if (buf == NULL) 147 return -ENOMEM; 148 149 dmi_decode_table(buf, decode, NULL); 150 151 add_device_randomness(buf, dmi_len); 152 153 dmi_early_unmap(buf, orig_dmi_len); 154 return 0; 155 } 156 157 static int __init dmi_checksum(const u8 *buf, u8 len) 158 { 159 u8 sum = 0; 160 int a; 161 162 for (a = 0; a < len; a++) 163 sum += buf[a]; 164 165 return sum == 0; 166 } 167 168 static const char *dmi_ident[DMI_STRING_MAX]; 169 static LIST_HEAD(dmi_devices); 170 int dmi_available; 171 172 /* 173 * Save a DMI string 174 */ 175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 176 int string) 177 { 178 const char *d = (const char *) dm; 179 const char *p; 180 181 if (dmi_ident[slot] || dm->length <= string) 182 return; 183 184 p = dmi_string(dm, d[string]); 185 if (p == NULL) 186 return; 187 188 dmi_ident[slot] = p; 189 } 190 191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 192 int index) 193 { 194 const u8 *d; 195 char *s; 196 int is_ff = 1, is_00 = 1, i; 197 198 if (dmi_ident[slot] || dm->length <= index + 16) 199 return; 200 201 d = (u8 *) dm + index; 202 for (i = 0; i < 16 && (is_ff || is_00); i++) { 203 if (d[i] != 0x00) 204 is_00 = 0; 205 if (d[i] != 0xFF) 206 is_ff = 0; 207 } 208 209 if (is_ff || is_00) 210 return; 211 212 s = dmi_alloc(16*2+4+1); 213 if (!s) 214 return; 215 216 /* 217 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 218 * the UUID are supposed to be little-endian encoded. The specification 219 * says that this is the defacto standard. 220 */ 221 if (dmi_ver >= 0x020600) 222 sprintf(s, "%pUL", d); 223 else 224 sprintf(s, "%pUB", d); 225 226 dmi_ident[slot] = s; 227 } 228 229 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 230 int index) 231 { 232 const u8 *d; 233 char *s; 234 235 if (dmi_ident[slot] || dm->length <= index) 236 return; 237 238 s = dmi_alloc(4); 239 if (!s) 240 return; 241 242 d = (u8 *) dm + index; 243 sprintf(s, "%u", *d & 0x7F); 244 dmi_ident[slot] = s; 245 } 246 247 static void __init dmi_save_one_device(int type, const char *name) 248 { 249 struct dmi_device *dev; 250 251 /* No duplicate device */ 252 if (dmi_find_device(type, name, NULL)) 253 return; 254 255 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 256 if (!dev) 257 return; 258 259 dev->type = type; 260 strcpy((char *)(dev + 1), name); 261 dev->name = (char *)(dev + 1); 262 dev->device_data = NULL; 263 list_add(&dev->list, &dmi_devices); 264 } 265 266 static void __init dmi_save_devices(const struct dmi_header *dm) 267 { 268 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 269 270 for (i = 0; i < count; i++) { 271 const char *d = (char *)(dm + 1) + (i * 2); 272 273 /* Skip disabled device */ 274 if ((*d & 0x80) == 0) 275 continue; 276 277 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 278 } 279 } 280 281 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 282 { 283 int i, count; 284 struct dmi_device *dev; 285 286 if (dm->length < 0x05) 287 return; 288 289 count = *(u8 *)(dm + 1); 290 for (i = 1; i <= count; i++) { 291 const char *devname = dmi_string(dm, i); 292 293 if (devname == dmi_empty_string) 294 continue; 295 296 dev = dmi_alloc(sizeof(*dev)); 297 if (!dev) 298 break; 299 300 dev->type = DMI_DEV_TYPE_OEM_STRING; 301 dev->name = devname; 302 dev->device_data = NULL; 303 304 list_add(&dev->list, &dmi_devices); 305 } 306 } 307 308 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 309 { 310 struct dmi_device *dev; 311 void *data; 312 313 data = dmi_alloc(dm->length); 314 if (data == NULL) 315 return; 316 317 memcpy(data, dm, dm->length); 318 319 dev = dmi_alloc(sizeof(*dev)); 320 if (!dev) 321 return; 322 323 dev->type = DMI_DEV_TYPE_IPMI; 324 dev->name = "IPMI controller"; 325 dev->device_data = data; 326 327 list_add_tail(&dev->list, &dmi_devices); 328 } 329 330 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 331 int devfn, const char *name, int type) 332 { 333 struct dmi_dev_onboard *dev; 334 335 /* Ignore invalid values */ 336 if (type == DMI_DEV_TYPE_DEV_SLOT && 337 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 338 return; 339 340 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 341 if (!dev) 342 return; 343 344 dev->instance = instance; 345 dev->segment = segment; 346 dev->bus = bus; 347 dev->devfn = devfn; 348 349 strcpy((char *)&dev[1], name); 350 dev->dev.type = type; 351 dev->dev.name = (char *)&dev[1]; 352 dev->dev.device_data = dev; 353 354 list_add(&dev->dev.list, &dmi_devices); 355 } 356 357 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 358 { 359 const char *name; 360 const u8 *d = (u8 *)dm; 361 362 if (dm->length < 0x0B) 363 return; 364 365 /* Skip disabled device */ 366 if ((d[0x5] & 0x80) == 0) 367 return; 368 369 name = dmi_string_nosave(dm, d[0x4]); 370 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 371 DMI_DEV_TYPE_DEV_ONBOARD); 372 dmi_save_one_device(d[0x5] & 0x7f, name); 373 } 374 375 static void __init dmi_save_system_slot(const struct dmi_header *dm) 376 { 377 const u8 *d = (u8 *)dm; 378 379 /* Need SMBIOS 2.6+ structure */ 380 if (dm->length < 0x11) 381 return; 382 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 383 d[0x10], dmi_string_nosave(dm, d[0x4]), 384 DMI_DEV_TYPE_DEV_SLOT); 385 } 386 387 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 388 { 389 if (dm->type != DMI_ENTRY_MEM_DEVICE) 390 return; 391 dmi_memdev_nr++; 392 } 393 394 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 395 { 396 const char *d = (const char *)dm; 397 static int nr; 398 399 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 400 return; 401 if (nr >= dmi_memdev_nr) { 402 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 403 return; 404 } 405 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 406 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 407 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 408 nr++; 409 } 410 411 void __init dmi_memdev_walk(void) 412 { 413 if (!dmi_available) 414 return; 415 416 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 417 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 418 if (dmi_memdev) 419 dmi_walk_early(save_mem_devices); 420 } 421 } 422 423 /* 424 * Process a DMI table entry. Right now all we care about are the BIOS 425 * and machine entries. For 2.5 we should pull the smbus controller info 426 * out of here. 427 */ 428 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 429 { 430 switch (dm->type) { 431 case 0: /* BIOS Information */ 432 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 433 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 434 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 435 break; 436 case 1: /* System Information */ 437 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 438 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 439 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 440 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 441 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 442 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 443 break; 444 case 2: /* Base Board Information */ 445 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 446 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 447 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 448 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 449 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 450 break; 451 case 3: /* Chassis Information */ 452 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 453 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 454 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 455 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 456 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 457 break; 458 case 9: /* System Slots */ 459 dmi_save_system_slot(dm); 460 break; 461 case 10: /* Onboard Devices Information */ 462 dmi_save_devices(dm); 463 break; 464 case 11: /* OEM Strings */ 465 dmi_save_oem_strings_devices(dm); 466 break; 467 case 38: /* IPMI Device Information */ 468 dmi_save_ipmi_device(dm); 469 break; 470 case 41: /* Onboard Devices Extended Information */ 471 dmi_save_extended_devices(dm); 472 } 473 } 474 475 static int __init print_filtered(char *buf, size_t len, const char *info) 476 { 477 int c = 0; 478 const char *p; 479 480 if (!info) 481 return c; 482 483 for (p = info; *p; p++) 484 if (isprint(*p)) 485 c += scnprintf(buf + c, len - c, "%c", *p); 486 else 487 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 488 return c; 489 } 490 491 static void __init dmi_format_ids(char *buf, size_t len) 492 { 493 int c = 0; 494 const char *board; /* Board Name is optional */ 495 496 c += print_filtered(buf + c, len - c, 497 dmi_get_system_info(DMI_SYS_VENDOR)); 498 c += scnprintf(buf + c, len - c, " "); 499 c += print_filtered(buf + c, len - c, 500 dmi_get_system_info(DMI_PRODUCT_NAME)); 501 502 board = dmi_get_system_info(DMI_BOARD_NAME); 503 if (board) { 504 c += scnprintf(buf + c, len - c, "/"); 505 c += print_filtered(buf + c, len - c, board); 506 } 507 c += scnprintf(buf + c, len - c, ", BIOS "); 508 c += print_filtered(buf + c, len - c, 509 dmi_get_system_info(DMI_BIOS_VERSION)); 510 c += scnprintf(buf + c, len - c, " "); 511 c += print_filtered(buf + c, len - c, 512 dmi_get_system_info(DMI_BIOS_DATE)); 513 } 514 515 /* 516 * Check for DMI/SMBIOS headers in the system firmware image. Any 517 * SMBIOS header must start 16 bytes before the DMI header, so take a 518 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 519 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 520 * takes precedence) and return 0. Otherwise return 1. 521 */ 522 static int __init dmi_present(const u8 *buf) 523 { 524 u32 smbios_ver; 525 526 if (memcmp(buf, "_SM_", 4) == 0 && 527 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 528 smbios_ver = get_unaligned_be16(buf + 6); 529 smbios_entry_point_size = buf[5]; 530 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 531 532 /* Some BIOS report weird SMBIOS version, fix that up */ 533 switch (smbios_ver) { 534 case 0x021F: 535 case 0x0221: 536 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 537 smbios_ver & 0xFF, 3); 538 smbios_ver = 0x0203; 539 break; 540 case 0x0233: 541 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 542 smbios_ver = 0x0206; 543 break; 544 } 545 } else { 546 smbios_ver = 0; 547 } 548 549 buf += 16; 550 551 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 552 if (smbios_ver) 553 dmi_ver = smbios_ver; 554 else 555 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 556 dmi_ver <<= 8; 557 dmi_num = get_unaligned_le16(buf + 12); 558 dmi_len = get_unaligned_le16(buf + 6); 559 dmi_base = get_unaligned_le32(buf + 8); 560 561 if (dmi_walk_early(dmi_decode) == 0) { 562 if (smbios_ver) { 563 pr_info("SMBIOS %d.%d present.\n", 564 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 565 } else { 566 smbios_entry_point_size = 15; 567 memcpy(smbios_entry_point, buf, 568 smbios_entry_point_size); 569 pr_info("Legacy DMI %d.%d present.\n", 570 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 571 } 572 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 573 pr_info("DMI: %s\n", dmi_ids_string); 574 return 0; 575 } 576 } 577 578 return 1; 579 } 580 581 /* 582 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 583 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 584 */ 585 static int __init dmi_smbios3_present(const u8 *buf) 586 { 587 if (memcmp(buf, "_SM3_", 5) == 0 && 588 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 589 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 590 dmi_num = 0; /* No longer specified */ 591 dmi_len = get_unaligned_le32(buf + 12); 592 dmi_base = get_unaligned_le64(buf + 16); 593 smbios_entry_point_size = buf[6]; 594 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 595 596 if (dmi_walk_early(dmi_decode) == 0) { 597 pr_info("SMBIOS %d.%d.%d present.\n", 598 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 599 dmi_ver & 0xFF); 600 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 601 pr_info("DMI: %s\n", dmi_ids_string); 602 return 0; 603 } 604 } 605 return 1; 606 } 607 608 void __init dmi_scan_machine(void) 609 { 610 char __iomem *p, *q; 611 char buf[32]; 612 613 if (efi_enabled(EFI_CONFIG_TABLES)) { 614 /* 615 * According to the DMTF SMBIOS reference spec v3.0.0, it is 616 * allowed to define both the 64-bit entry point (smbios3) and 617 * the 32-bit entry point (smbios), in which case they should 618 * either both point to the same SMBIOS structure table, or the 619 * table pointed to by the 64-bit entry point should contain a 620 * superset of the table contents pointed to by the 32-bit entry 621 * point (section 5.2) 622 * This implies that the 64-bit entry point should have 623 * precedence if it is defined and supported by the OS. If we 624 * have the 64-bit entry point, but fail to decode it, fall 625 * back to the legacy one (if available) 626 */ 627 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 628 p = dmi_early_remap(efi.smbios3, 32); 629 if (p == NULL) 630 goto error; 631 memcpy_fromio(buf, p, 32); 632 dmi_early_unmap(p, 32); 633 634 if (!dmi_smbios3_present(buf)) { 635 dmi_available = 1; 636 goto out; 637 } 638 } 639 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 640 goto error; 641 642 /* This is called as a core_initcall() because it isn't 643 * needed during early boot. This also means we can 644 * iounmap the space when we're done with it. 645 */ 646 p = dmi_early_remap(efi.smbios, 32); 647 if (p == NULL) 648 goto error; 649 memcpy_fromio(buf, p, 32); 650 dmi_early_unmap(p, 32); 651 652 if (!dmi_present(buf)) { 653 dmi_available = 1; 654 goto out; 655 } 656 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 657 p = dmi_early_remap(0xF0000, 0x10000); 658 if (p == NULL) 659 goto error; 660 661 /* 662 * Same logic as above, look for a 64-bit entry point 663 * first, and if not found, fall back to 32-bit entry point. 664 */ 665 memcpy_fromio(buf, p, 16); 666 for (q = p + 16; q < p + 0x10000; q += 16) { 667 memcpy_fromio(buf + 16, q, 16); 668 if (!dmi_smbios3_present(buf)) { 669 dmi_available = 1; 670 dmi_early_unmap(p, 0x10000); 671 goto out; 672 } 673 memcpy(buf, buf + 16, 16); 674 } 675 676 /* 677 * Iterate over all possible DMI header addresses q. 678 * Maintain the 32 bytes around q in buf. On the 679 * first iteration, substitute zero for the 680 * out-of-range bytes so there is no chance of falsely 681 * detecting an SMBIOS header. 682 */ 683 memset(buf, 0, 16); 684 for (q = p; q < p + 0x10000; q += 16) { 685 memcpy_fromio(buf + 16, q, 16); 686 if (!dmi_present(buf)) { 687 dmi_available = 1; 688 dmi_early_unmap(p, 0x10000); 689 goto out; 690 } 691 memcpy(buf, buf + 16, 16); 692 } 693 dmi_early_unmap(p, 0x10000); 694 } 695 error: 696 pr_info("DMI not present or invalid.\n"); 697 out: 698 dmi_initialized = 1; 699 } 700 701 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 702 struct bin_attribute *attr, char *buf, 703 loff_t pos, size_t count) 704 { 705 memcpy(buf, attr->private + pos, count); 706 return count; 707 } 708 709 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 710 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 711 712 static int __init dmi_init(void) 713 { 714 struct kobject *tables_kobj; 715 u8 *dmi_table; 716 int ret = -ENOMEM; 717 718 if (!dmi_available) { 719 ret = -ENODATA; 720 goto err; 721 } 722 723 /* 724 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 725 * even after farther error, as it can be used by other modules like 726 * dmi-sysfs. 727 */ 728 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 729 if (!dmi_kobj) 730 goto err; 731 732 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 733 if (!tables_kobj) 734 goto err; 735 736 dmi_table = dmi_remap(dmi_base, dmi_len); 737 if (!dmi_table) 738 goto err_tables; 739 740 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 741 bin_attr_smbios_entry_point.private = smbios_entry_point; 742 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 743 if (ret) 744 goto err_unmap; 745 746 bin_attr_DMI.size = dmi_len; 747 bin_attr_DMI.private = dmi_table; 748 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 749 if (!ret) 750 return 0; 751 752 sysfs_remove_bin_file(tables_kobj, 753 &bin_attr_smbios_entry_point); 754 err_unmap: 755 dmi_unmap(dmi_table); 756 err_tables: 757 kobject_del(tables_kobj); 758 kobject_put(tables_kobj); 759 err: 760 pr_err("dmi: Firmware registration failed.\n"); 761 762 return ret; 763 } 764 subsys_initcall(dmi_init); 765 766 /** 767 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 768 * 769 * Invoke dump_stack_set_arch_desc() with DMI system information so that 770 * DMI identifiers are printed out on task dumps. Arch boot code should 771 * call this function after dmi_scan_machine() if it wants to print out DMI 772 * identifiers on task dumps. 773 */ 774 void __init dmi_set_dump_stack_arch_desc(void) 775 { 776 dump_stack_set_arch_desc("%s", dmi_ids_string); 777 } 778 779 /** 780 * dmi_matches - check if dmi_system_id structure matches system DMI data 781 * @dmi: pointer to the dmi_system_id structure to check 782 */ 783 static bool dmi_matches(const struct dmi_system_id *dmi) 784 { 785 int i; 786 787 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 788 789 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 790 int s = dmi->matches[i].slot; 791 if (s == DMI_NONE) 792 break; 793 if (dmi_ident[s]) { 794 if (!dmi->matches[i].exact_match && 795 strstr(dmi_ident[s], dmi->matches[i].substr)) 796 continue; 797 else if (dmi->matches[i].exact_match && 798 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 799 continue; 800 } 801 802 /* No match */ 803 return false; 804 } 805 return true; 806 } 807 808 /** 809 * dmi_is_end_of_table - check for end-of-table marker 810 * @dmi: pointer to the dmi_system_id structure to check 811 */ 812 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 813 { 814 return dmi->matches[0].slot == DMI_NONE; 815 } 816 817 /** 818 * dmi_check_system - check system DMI data 819 * @list: array of dmi_system_id structures to match against 820 * All non-null elements of the list must match 821 * their slot's (field index's) data (i.e., each 822 * list string must be a substring of the specified 823 * DMI slot's string data) to be considered a 824 * successful match. 825 * 826 * Walk the blacklist table running matching functions until someone 827 * returns non zero or we hit the end. Callback function is called for 828 * each successful match. Returns the number of matches. 829 */ 830 int dmi_check_system(const struct dmi_system_id *list) 831 { 832 int count = 0; 833 const struct dmi_system_id *d; 834 835 for (d = list; !dmi_is_end_of_table(d); d++) 836 if (dmi_matches(d)) { 837 count++; 838 if (d->callback && d->callback(d)) 839 break; 840 } 841 842 return count; 843 } 844 EXPORT_SYMBOL(dmi_check_system); 845 846 /** 847 * dmi_first_match - find dmi_system_id structure matching system DMI data 848 * @list: array of dmi_system_id structures to match against 849 * All non-null elements of the list must match 850 * their slot's (field index's) data (i.e., each 851 * list string must be a substring of the specified 852 * DMI slot's string data) to be considered a 853 * successful match. 854 * 855 * Walk the blacklist table until the first match is found. Return the 856 * pointer to the matching entry or NULL if there's no match. 857 */ 858 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 859 { 860 const struct dmi_system_id *d; 861 862 for (d = list; !dmi_is_end_of_table(d); d++) 863 if (dmi_matches(d)) 864 return d; 865 866 return NULL; 867 } 868 EXPORT_SYMBOL(dmi_first_match); 869 870 /** 871 * dmi_get_system_info - return DMI data value 872 * @field: data index (see enum dmi_field) 873 * 874 * Returns one DMI data value, can be used to perform 875 * complex DMI data checks. 876 */ 877 const char *dmi_get_system_info(int field) 878 { 879 return dmi_ident[field]; 880 } 881 EXPORT_SYMBOL(dmi_get_system_info); 882 883 /** 884 * dmi_name_in_serial - Check if string is in the DMI product serial information 885 * @str: string to check for 886 */ 887 int dmi_name_in_serial(const char *str) 888 { 889 int f = DMI_PRODUCT_SERIAL; 890 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 891 return 1; 892 return 0; 893 } 894 895 /** 896 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 897 * @str: Case sensitive Name 898 */ 899 int dmi_name_in_vendors(const char *str) 900 { 901 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 902 int i; 903 for (i = 0; fields[i] != DMI_NONE; i++) { 904 int f = fields[i]; 905 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 906 return 1; 907 } 908 return 0; 909 } 910 EXPORT_SYMBOL(dmi_name_in_vendors); 911 912 /** 913 * dmi_find_device - find onboard device by type/name 914 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 915 * @name: device name string or %NULL to match all 916 * @from: previous device found in search, or %NULL for new search. 917 * 918 * Iterates through the list of known onboard devices. If a device is 919 * found with a matching @type and @name, a pointer to its device 920 * structure is returned. Otherwise, %NULL is returned. 921 * A new search is initiated by passing %NULL as the @from argument. 922 * If @from is not %NULL, searches continue from next device. 923 */ 924 const struct dmi_device *dmi_find_device(int type, const char *name, 925 const struct dmi_device *from) 926 { 927 const struct list_head *head = from ? &from->list : &dmi_devices; 928 struct list_head *d; 929 930 for (d = head->next; d != &dmi_devices; d = d->next) { 931 const struct dmi_device *dev = 932 list_entry(d, struct dmi_device, list); 933 934 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 935 ((name == NULL) || (strcmp(dev->name, name) == 0))) 936 return dev; 937 } 938 939 return NULL; 940 } 941 EXPORT_SYMBOL(dmi_find_device); 942 943 /** 944 * dmi_get_date - parse a DMI date 945 * @field: data index (see enum dmi_field) 946 * @yearp: optional out parameter for the year 947 * @monthp: optional out parameter for the month 948 * @dayp: optional out parameter for the day 949 * 950 * The date field is assumed to be in the form resembling 951 * [mm[/dd]]/yy[yy] and the result is stored in the out 952 * parameters any or all of which can be omitted. 953 * 954 * If the field doesn't exist, all out parameters are set to zero 955 * and false is returned. Otherwise, true is returned with any 956 * invalid part of date set to zero. 957 * 958 * On return, year, month and day are guaranteed to be in the 959 * range of [0,9999], [0,12] and [0,31] respectively. 960 */ 961 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 962 { 963 int year = 0, month = 0, day = 0; 964 bool exists; 965 const char *s, *y; 966 char *e; 967 968 s = dmi_get_system_info(field); 969 exists = s; 970 if (!exists) 971 goto out; 972 973 /* 974 * Determine year first. We assume the date string resembles 975 * mm/dd/yy[yy] but the original code extracted only the year 976 * from the end. Keep the behavior in the spirit of no 977 * surprises. 978 */ 979 y = strrchr(s, '/'); 980 if (!y) 981 goto out; 982 983 y++; 984 year = simple_strtoul(y, &e, 10); 985 if (y != e && year < 100) { /* 2-digit year */ 986 year += 1900; 987 if (year < 1996) /* no dates < spec 1.0 */ 988 year += 100; 989 } 990 if (year > 9999) /* year should fit in %04d */ 991 year = 0; 992 993 /* parse the mm and dd */ 994 month = simple_strtoul(s, &e, 10); 995 if (s == e || *e != '/' || !month || month > 12) { 996 month = 0; 997 goto out; 998 } 999 1000 s = e + 1; 1001 day = simple_strtoul(s, &e, 10); 1002 if (s == y || s == e || *e != '/' || day > 31) 1003 day = 0; 1004 out: 1005 if (yearp) 1006 *yearp = year; 1007 if (monthp) 1008 *monthp = month; 1009 if (dayp) 1010 *dayp = day; 1011 return exists; 1012 } 1013 EXPORT_SYMBOL(dmi_get_date); 1014 1015 /** 1016 * dmi_walk - Walk the DMI table and get called back for every record 1017 * @decode: Callback function 1018 * @private_data: Private data to be passed to the callback function 1019 * 1020 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1021 * or a different negative error code if DMI walking fails. 1022 */ 1023 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1024 void *private_data) 1025 { 1026 u8 *buf; 1027 1028 if (!dmi_available) 1029 return -ENXIO; 1030 1031 buf = dmi_remap(dmi_base, dmi_len); 1032 if (buf == NULL) 1033 return -ENOMEM; 1034 1035 dmi_decode_table(buf, decode, private_data); 1036 1037 dmi_unmap(buf); 1038 return 0; 1039 } 1040 EXPORT_SYMBOL_GPL(dmi_walk); 1041 1042 /** 1043 * dmi_match - compare a string to the dmi field (if exists) 1044 * @f: DMI field identifier 1045 * @str: string to compare the DMI field to 1046 * 1047 * Returns true if the requested field equals to the str (including NULL). 1048 */ 1049 bool dmi_match(enum dmi_field f, const char *str) 1050 { 1051 const char *info = dmi_get_system_info(f); 1052 1053 if (info == NULL || str == NULL) 1054 return info == str; 1055 1056 return !strcmp(info, str); 1057 } 1058 EXPORT_SYMBOL_GPL(dmi_match); 1059 1060 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1061 { 1062 int n; 1063 1064 if (dmi_memdev == NULL) 1065 return; 1066 1067 for (n = 0; n < dmi_memdev_nr; n++) { 1068 if (handle == dmi_memdev[n].handle) { 1069 *bank = dmi_memdev[n].bank; 1070 *device = dmi_memdev[n].device; 1071 break; 1072 } 1073 } 1074 } 1075 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1076