1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 12 /* 13 * DMI stands for "Desktop Management Interface". It is part 14 * of and an antecedent to, SMBIOS, which stands for System 15 * Management BIOS. See further: http://www.dmtf.org/standards 16 */ 17 static char dmi_empty_string[] = " "; 18 19 static u16 __initdata dmi_ver; 20 /* 21 * Catch too early calls to dmi_check_system(): 22 */ 23 static int dmi_initialized; 24 25 /* DMI system identification string used during boot */ 26 static char dmi_ids_string[128] __initdata; 27 28 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 29 { 30 const u8 *bp = ((u8 *) dm) + dm->length; 31 32 if (s) { 33 s--; 34 while (s > 0 && *bp) { 35 bp += strlen(bp) + 1; 36 s--; 37 } 38 39 if (*bp != 0) { 40 size_t len = strlen(bp)+1; 41 size_t cmp_len = len > 8 ? 8 : len; 42 43 if (!memcmp(bp, dmi_empty_string, cmp_len)) 44 return dmi_empty_string; 45 return bp; 46 } 47 } 48 49 return ""; 50 } 51 52 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 53 { 54 const char *bp = dmi_string_nosave(dm, s); 55 char *str; 56 size_t len; 57 58 if (bp == dmi_empty_string) 59 return dmi_empty_string; 60 61 len = strlen(bp) + 1; 62 str = dmi_alloc(len); 63 if (str != NULL) 64 strcpy(str, bp); 65 else 66 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 67 68 return str; 69 } 70 71 /* 72 * We have to be cautious here. We have seen BIOSes with DMI pointers 73 * pointing to completely the wrong place for example 74 */ 75 static void dmi_table(u8 *buf, int len, int num, 76 void (*decode)(const struct dmi_header *, void *), 77 void *private_data) 78 { 79 u8 *data = buf; 80 int i = 0; 81 82 /* 83 * Stop when we see all the items the table claimed to have 84 * OR we run off the end of the table (also happens) 85 */ 86 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 87 const struct dmi_header *dm = (const struct dmi_header *)data; 88 89 /* 90 * We want to know the total length (formatted area and 91 * strings) before decoding to make sure we won't run off the 92 * table in dmi_decode or dmi_string 93 */ 94 data += dm->length; 95 while ((data - buf < len - 1) && (data[0] || data[1])) 96 data++; 97 if (data - buf < len - 1) 98 decode(dm, private_data); 99 data += 2; 100 i++; 101 } 102 } 103 104 static u32 dmi_base; 105 static u16 dmi_len; 106 static u16 dmi_num; 107 108 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 109 void *)) 110 { 111 u8 *buf; 112 113 buf = dmi_ioremap(dmi_base, dmi_len); 114 if (buf == NULL) 115 return -1; 116 117 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 118 119 add_device_randomness(buf, dmi_len); 120 121 dmi_iounmap(buf, dmi_len); 122 return 0; 123 } 124 125 static int __init dmi_checksum(const u8 *buf, u8 len) 126 { 127 u8 sum = 0; 128 int a; 129 130 for (a = 0; a < len; a++) 131 sum += buf[a]; 132 133 return sum == 0; 134 } 135 136 static char *dmi_ident[DMI_STRING_MAX]; 137 static LIST_HEAD(dmi_devices); 138 int dmi_available; 139 140 /* 141 * Save a DMI string 142 */ 143 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 144 { 145 const char *d = (const char*) dm; 146 char *p; 147 148 if (dmi_ident[slot]) 149 return; 150 151 p = dmi_string(dm, d[string]); 152 if (p == NULL) 153 return; 154 155 dmi_ident[slot] = p; 156 } 157 158 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 159 { 160 const u8 *d = (u8*) dm + index; 161 char *s; 162 int is_ff = 1, is_00 = 1, i; 163 164 if (dmi_ident[slot]) 165 return; 166 167 for (i = 0; i < 16 && (is_ff || is_00); i++) { 168 if (d[i] != 0x00) 169 is_00 = 0; 170 if (d[i] != 0xFF) 171 is_ff = 0; 172 } 173 174 if (is_ff || is_00) 175 return; 176 177 s = dmi_alloc(16*2+4+1); 178 if (!s) 179 return; 180 181 /* 182 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 183 * the UUID are supposed to be little-endian encoded. The specification 184 * says that this is the defacto standard. 185 */ 186 if (dmi_ver >= 0x0206) 187 sprintf(s, "%pUL", d); 188 else 189 sprintf(s, "%pUB", d); 190 191 dmi_ident[slot] = s; 192 } 193 194 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 195 { 196 const u8 *d = (u8*) dm + index; 197 char *s; 198 199 if (dmi_ident[slot]) 200 return; 201 202 s = dmi_alloc(4); 203 if (!s) 204 return; 205 206 sprintf(s, "%u", *d & 0x7F); 207 dmi_ident[slot] = s; 208 } 209 210 static void __init dmi_save_one_device(int type, const char *name) 211 { 212 struct dmi_device *dev; 213 214 /* No duplicate device */ 215 if (dmi_find_device(type, name, NULL)) 216 return; 217 218 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 219 if (!dev) { 220 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 221 return; 222 } 223 224 dev->type = type; 225 strcpy((char *)(dev + 1), name); 226 dev->name = (char *)(dev + 1); 227 dev->device_data = NULL; 228 list_add(&dev->list, &dmi_devices); 229 } 230 231 static void __init dmi_save_devices(const struct dmi_header *dm) 232 { 233 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 234 235 for (i = 0; i < count; i++) { 236 const char *d = (char *)(dm + 1) + (i * 2); 237 238 /* Skip disabled device */ 239 if ((*d & 0x80) == 0) 240 continue; 241 242 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 243 } 244 } 245 246 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 247 { 248 int i, count = *(u8 *)(dm + 1); 249 struct dmi_device *dev; 250 251 for (i = 1; i <= count; i++) { 252 char *devname = dmi_string(dm, i); 253 254 if (devname == dmi_empty_string) 255 continue; 256 257 dev = dmi_alloc(sizeof(*dev)); 258 if (!dev) { 259 printk(KERN_ERR 260 "dmi_save_oem_strings_devices: out of memory.\n"); 261 break; 262 } 263 264 dev->type = DMI_DEV_TYPE_OEM_STRING; 265 dev->name = devname; 266 dev->device_data = NULL; 267 268 list_add(&dev->list, &dmi_devices); 269 } 270 } 271 272 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 273 { 274 struct dmi_device *dev; 275 void * data; 276 277 data = dmi_alloc(dm->length); 278 if (data == NULL) { 279 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 280 return; 281 } 282 283 memcpy(data, dm, dm->length); 284 285 dev = dmi_alloc(sizeof(*dev)); 286 if (!dev) { 287 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 288 return; 289 } 290 291 dev->type = DMI_DEV_TYPE_IPMI; 292 dev->name = "IPMI controller"; 293 dev->device_data = data; 294 295 list_add_tail(&dev->list, &dmi_devices); 296 } 297 298 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 299 int devfn, const char *name) 300 { 301 struct dmi_dev_onboard *onboard_dev; 302 303 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 304 if (!onboard_dev) { 305 printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n"); 306 return; 307 } 308 onboard_dev->instance = instance; 309 onboard_dev->segment = segment; 310 onboard_dev->bus = bus; 311 onboard_dev->devfn = devfn; 312 313 strcpy((char *)&onboard_dev[1], name); 314 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 315 onboard_dev->dev.name = (char *)&onboard_dev[1]; 316 onboard_dev->dev.device_data = onboard_dev; 317 318 list_add(&onboard_dev->dev.list, &dmi_devices); 319 } 320 321 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 322 { 323 const u8 *d = (u8*) dm + 5; 324 325 /* Skip disabled device */ 326 if ((*d & 0x80) == 0) 327 return; 328 329 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 330 dmi_string_nosave(dm, *(d-1))); 331 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 332 } 333 334 /* 335 * Process a DMI table entry. Right now all we care about are the BIOS 336 * and machine entries. For 2.5 we should pull the smbus controller info 337 * out of here. 338 */ 339 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 340 { 341 switch(dm->type) { 342 case 0: /* BIOS Information */ 343 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 344 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 345 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 346 break; 347 case 1: /* System Information */ 348 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 349 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 350 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 351 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 352 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 353 break; 354 case 2: /* Base Board Information */ 355 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 356 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 357 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 358 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 359 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 360 break; 361 case 3: /* Chassis Information */ 362 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 363 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 364 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 365 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 366 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 367 break; 368 case 10: /* Onboard Devices Information */ 369 dmi_save_devices(dm); 370 break; 371 case 11: /* OEM Strings */ 372 dmi_save_oem_strings_devices(dm); 373 break; 374 case 38: /* IPMI Device Information */ 375 dmi_save_ipmi_device(dm); 376 break; 377 case 41: /* Onboard Devices Extended Information */ 378 dmi_save_extended_devices(dm); 379 } 380 } 381 382 static int __init print_filtered(char *buf, size_t len, const char *info) 383 { 384 int c = 0; 385 const char *p; 386 387 if (!info) 388 return c; 389 390 for (p = info; *p; p++) 391 if (isprint(*p)) 392 c += scnprintf(buf + c, len - c, "%c", *p); 393 else 394 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 395 return c; 396 } 397 398 static void __init dmi_format_ids(char *buf, size_t len) 399 { 400 int c = 0; 401 const char *board; /* Board Name is optional */ 402 403 c += print_filtered(buf + c, len - c, 404 dmi_get_system_info(DMI_SYS_VENDOR)); 405 c += scnprintf(buf + c, len - c, " "); 406 c += print_filtered(buf + c, len - c, 407 dmi_get_system_info(DMI_PRODUCT_NAME)); 408 409 board = dmi_get_system_info(DMI_BOARD_NAME); 410 if (board) { 411 c += scnprintf(buf + c, len - c, "/"); 412 c += print_filtered(buf + c, len - c, board); 413 } 414 c += scnprintf(buf + c, len - c, ", BIOS "); 415 c += print_filtered(buf + c, len - c, 416 dmi_get_system_info(DMI_BIOS_VERSION)); 417 c += scnprintf(buf + c, len - c, " "); 418 c += print_filtered(buf + c, len - c, 419 dmi_get_system_info(DMI_BIOS_DATE)); 420 } 421 422 /* 423 * Check for DMI/SMBIOS headers in the system firmware image. Any 424 * SMBIOS header must start 16 bytes before the DMI header, so take a 425 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 426 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 427 * takes precedence) and return 0. Otherwise return 1. 428 */ 429 static int __init dmi_present(const u8 *buf) 430 { 431 int smbios_ver; 432 433 if (memcmp(buf, "_SM_", 4) == 0 && 434 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 435 smbios_ver = (buf[6] << 8) + buf[7]; 436 437 /* Some BIOS report weird SMBIOS version, fix that up */ 438 switch (smbios_ver) { 439 case 0x021F: 440 case 0x0221: 441 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 442 smbios_ver & 0xFF, 3); 443 smbios_ver = 0x0203; 444 break; 445 case 0x0233: 446 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); 447 smbios_ver = 0x0206; 448 break; 449 } 450 } else { 451 smbios_ver = 0; 452 } 453 454 buf += 16; 455 456 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 457 dmi_num = (buf[13] << 8) | buf[12]; 458 dmi_len = (buf[7] << 8) | buf[6]; 459 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 460 (buf[9] << 8) | buf[8]; 461 462 if (dmi_walk_early(dmi_decode) == 0) { 463 if (smbios_ver) { 464 dmi_ver = smbios_ver; 465 pr_info("SMBIOS %d.%d present.\n", 466 dmi_ver >> 8, dmi_ver & 0xFF); 467 } else { 468 dmi_ver = (buf[14] & 0xF0) << 4 | 469 (buf[14] & 0x0F); 470 pr_info("Legacy DMI %d.%d present.\n", 471 dmi_ver >> 8, dmi_ver & 0xFF); 472 } 473 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 474 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 475 return 0; 476 } 477 } 478 479 return 1; 480 } 481 482 void __init dmi_scan_machine(void) 483 { 484 char __iomem *p, *q; 485 char buf[32]; 486 487 if (efi_enabled(EFI_CONFIG_TABLES)) { 488 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 489 goto error; 490 491 /* This is called as a core_initcall() because it isn't 492 * needed during early boot. This also means we can 493 * iounmap the space when we're done with it. 494 */ 495 p = dmi_ioremap(efi.smbios, 32); 496 if (p == NULL) 497 goto error; 498 memcpy_fromio(buf, p, 32); 499 dmi_iounmap(p, 32); 500 501 if (!dmi_present(buf)) { 502 dmi_available = 1; 503 goto out; 504 } 505 } 506 else { 507 /* 508 * no iounmap() for that ioremap(); it would be a no-op, but 509 * it's so early in setup that sucker gets confused into doing 510 * what it shouldn't if we actually call it. 511 */ 512 p = dmi_ioremap(0xF0000, 0x10000); 513 if (p == NULL) 514 goto error; 515 516 /* 517 * Iterate over all possible DMI header addresses q. 518 * Maintain the 32 bytes around q in buf. On the 519 * first iteration, substitute zero for the 520 * out-of-range bytes so there is no chance of falsely 521 * detecting an SMBIOS header. 522 */ 523 memset(buf, 0, 16); 524 for (q = p; q < p + 0x10000; q += 16) { 525 memcpy_fromio(buf + 16, q, 16); 526 if (!dmi_present(buf)) { 527 dmi_available = 1; 528 dmi_iounmap(p, 0x10000); 529 goto out; 530 } 531 memcpy(buf, buf + 16, 16); 532 } 533 dmi_iounmap(p, 0x10000); 534 } 535 error: 536 printk(KERN_INFO "DMI not present or invalid.\n"); 537 out: 538 dmi_initialized = 1; 539 } 540 541 /** 542 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 543 * 544 * Invoke dump_stack_set_arch_desc() with DMI system information so that 545 * DMI identifiers are printed out on task dumps. Arch boot code should 546 * call this function after dmi_scan_machine() if it wants to print out DMI 547 * identifiers on task dumps. 548 */ 549 void __init dmi_set_dump_stack_arch_desc(void) 550 { 551 dump_stack_set_arch_desc("%s", dmi_ids_string); 552 } 553 554 /** 555 * dmi_matches - check if dmi_system_id structure matches system DMI data 556 * @dmi: pointer to the dmi_system_id structure to check 557 */ 558 static bool dmi_matches(const struct dmi_system_id *dmi) 559 { 560 int i; 561 562 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 563 564 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 565 int s = dmi->matches[i].slot; 566 if (s == DMI_NONE) 567 break; 568 if (dmi_ident[s]) { 569 if (!dmi->matches[i].exact_match && 570 strstr(dmi_ident[s], dmi->matches[i].substr)) 571 continue; 572 else if (dmi->matches[i].exact_match && 573 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 574 continue; 575 } 576 577 /* No match */ 578 return false; 579 } 580 return true; 581 } 582 583 /** 584 * dmi_is_end_of_table - check for end-of-table marker 585 * @dmi: pointer to the dmi_system_id structure to check 586 */ 587 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 588 { 589 return dmi->matches[0].slot == DMI_NONE; 590 } 591 592 /** 593 * dmi_check_system - check system DMI data 594 * @list: array of dmi_system_id structures to match against 595 * All non-null elements of the list must match 596 * their slot's (field index's) data (i.e., each 597 * list string must be a substring of the specified 598 * DMI slot's string data) to be considered a 599 * successful match. 600 * 601 * Walk the blacklist table running matching functions until someone 602 * returns non zero or we hit the end. Callback function is called for 603 * each successful match. Returns the number of matches. 604 */ 605 int dmi_check_system(const struct dmi_system_id *list) 606 { 607 int count = 0; 608 const struct dmi_system_id *d; 609 610 for (d = list; !dmi_is_end_of_table(d); d++) 611 if (dmi_matches(d)) { 612 count++; 613 if (d->callback && d->callback(d)) 614 break; 615 } 616 617 return count; 618 } 619 EXPORT_SYMBOL(dmi_check_system); 620 621 /** 622 * dmi_first_match - find dmi_system_id structure matching system DMI data 623 * @list: array of dmi_system_id structures to match against 624 * All non-null elements of the list must match 625 * their slot's (field index's) data (i.e., each 626 * list string must be a substring of the specified 627 * DMI slot's string data) to be considered a 628 * successful match. 629 * 630 * Walk the blacklist table until the first match is found. Return the 631 * pointer to the matching entry or NULL if there's no match. 632 */ 633 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 634 { 635 const struct dmi_system_id *d; 636 637 for (d = list; !dmi_is_end_of_table(d); d++) 638 if (dmi_matches(d)) 639 return d; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dmi_first_match); 644 645 /** 646 * dmi_get_system_info - return DMI data value 647 * @field: data index (see enum dmi_field) 648 * 649 * Returns one DMI data value, can be used to perform 650 * complex DMI data checks. 651 */ 652 const char *dmi_get_system_info(int field) 653 { 654 return dmi_ident[field]; 655 } 656 EXPORT_SYMBOL(dmi_get_system_info); 657 658 /** 659 * dmi_name_in_serial - Check if string is in the DMI product serial information 660 * @str: string to check for 661 */ 662 int dmi_name_in_serial(const char *str) 663 { 664 int f = DMI_PRODUCT_SERIAL; 665 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 666 return 1; 667 return 0; 668 } 669 670 /** 671 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 672 * @str: Case sensitive Name 673 */ 674 int dmi_name_in_vendors(const char *str) 675 { 676 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 677 int i; 678 for (i = 0; fields[i] != DMI_NONE; i++) { 679 int f = fields[i]; 680 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 681 return 1; 682 } 683 return 0; 684 } 685 EXPORT_SYMBOL(dmi_name_in_vendors); 686 687 /** 688 * dmi_find_device - find onboard device by type/name 689 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 690 * @name: device name string or %NULL to match all 691 * @from: previous device found in search, or %NULL for new search. 692 * 693 * Iterates through the list of known onboard devices. If a device is 694 * found with a matching @vendor and @device, a pointer to its device 695 * structure is returned. Otherwise, %NULL is returned. 696 * A new search is initiated by passing %NULL as the @from argument. 697 * If @from is not %NULL, searches continue from next device. 698 */ 699 const struct dmi_device * dmi_find_device(int type, const char *name, 700 const struct dmi_device *from) 701 { 702 const struct list_head *head = from ? &from->list : &dmi_devices; 703 struct list_head *d; 704 705 for(d = head->next; d != &dmi_devices; d = d->next) { 706 const struct dmi_device *dev = 707 list_entry(d, struct dmi_device, list); 708 709 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 710 ((name == NULL) || (strcmp(dev->name, name) == 0))) 711 return dev; 712 } 713 714 return NULL; 715 } 716 EXPORT_SYMBOL(dmi_find_device); 717 718 /** 719 * dmi_get_date - parse a DMI date 720 * @field: data index (see enum dmi_field) 721 * @yearp: optional out parameter for the year 722 * @monthp: optional out parameter for the month 723 * @dayp: optional out parameter for the day 724 * 725 * The date field is assumed to be in the form resembling 726 * [mm[/dd]]/yy[yy] and the result is stored in the out 727 * parameters any or all of which can be omitted. 728 * 729 * If the field doesn't exist, all out parameters are set to zero 730 * and false is returned. Otherwise, true is returned with any 731 * invalid part of date set to zero. 732 * 733 * On return, year, month and day are guaranteed to be in the 734 * range of [0,9999], [0,12] and [0,31] respectively. 735 */ 736 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 737 { 738 int year = 0, month = 0, day = 0; 739 bool exists; 740 const char *s, *y; 741 char *e; 742 743 s = dmi_get_system_info(field); 744 exists = s; 745 if (!exists) 746 goto out; 747 748 /* 749 * Determine year first. We assume the date string resembles 750 * mm/dd/yy[yy] but the original code extracted only the year 751 * from the end. Keep the behavior in the spirit of no 752 * surprises. 753 */ 754 y = strrchr(s, '/'); 755 if (!y) 756 goto out; 757 758 y++; 759 year = simple_strtoul(y, &e, 10); 760 if (y != e && year < 100) { /* 2-digit year */ 761 year += 1900; 762 if (year < 1996) /* no dates < spec 1.0 */ 763 year += 100; 764 } 765 if (year > 9999) /* year should fit in %04d */ 766 year = 0; 767 768 /* parse the mm and dd */ 769 month = simple_strtoul(s, &e, 10); 770 if (s == e || *e != '/' || !month || month > 12) { 771 month = 0; 772 goto out; 773 } 774 775 s = e + 1; 776 day = simple_strtoul(s, &e, 10); 777 if (s == y || s == e || *e != '/' || day > 31) 778 day = 0; 779 out: 780 if (yearp) 781 *yearp = year; 782 if (monthp) 783 *monthp = month; 784 if (dayp) 785 *dayp = day; 786 return exists; 787 } 788 EXPORT_SYMBOL(dmi_get_date); 789 790 /** 791 * dmi_walk - Walk the DMI table and get called back for every record 792 * @decode: Callback function 793 * @private_data: Private data to be passed to the callback function 794 * 795 * Returns -1 when the DMI table can't be reached, 0 on success. 796 */ 797 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 798 void *private_data) 799 { 800 u8 *buf; 801 802 if (!dmi_available) 803 return -1; 804 805 buf = ioremap(dmi_base, dmi_len); 806 if (buf == NULL) 807 return -1; 808 809 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 810 811 iounmap(buf); 812 return 0; 813 } 814 EXPORT_SYMBOL_GPL(dmi_walk); 815 816 /** 817 * dmi_match - compare a string to the dmi field (if exists) 818 * @f: DMI field identifier 819 * @str: string to compare the DMI field to 820 * 821 * Returns true if the requested field equals to the str (including NULL). 822 */ 823 bool dmi_match(enum dmi_field f, const char *str) 824 { 825 const char *info = dmi_get_system_info(f); 826 827 if (info == NULL || str == NULL) 828 return info == str; 829 830 return !strcmp(info, str); 831 } 832 EXPORT_SYMBOL_GPL(dmi_match); 833