xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 80ecbd24)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 
12 /*
13  * DMI stands for "Desktop Management Interface".  It is part
14  * of and an antecedent to, SMBIOS, which stands for System
15  * Management BIOS.  See further: http://www.dmtf.org/standards
16  */
17 static char dmi_empty_string[] = "        ";
18 
19 static u16 __initdata dmi_ver;
20 /*
21  * Catch too early calls to dmi_check_system():
22  */
23 static int dmi_initialized;
24 
25 /* DMI system identification string used during boot */
26 static char dmi_ids_string[128] __initdata;
27 
28 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
29 {
30 	const u8 *bp = ((u8 *) dm) + dm->length;
31 
32 	if (s) {
33 		s--;
34 		while (s > 0 && *bp) {
35 			bp += strlen(bp) + 1;
36 			s--;
37 		}
38 
39 		if (*bp != 0) {
40 			size_t len = strlen(bp)+1;
41 			size_t cmp_len = len > 8 ? 8 : len;
42 
43 			if (!memcmp(bp, dmi_empty_string, cmp_len))
44 				return dmi_empty_string;
45 			return bp;
46 		}
47 	}
48 
49 	return "";
50 }
51 
52 static char * __init dmi_string(const struct dmi_header *dm, u8 s)
53 {
54 	const char *bp = dmi_string_nosave(dm, s);
55 	char *str;
56 	size_t len;
57 
58 	if (bp == dmi_empty_string)
59 		return dmi_empty_string;
60 
61 	len = strlen(bp) + 1;
62 	str = dmi_alloc(len);
63 	if (str != NULL)
64 		strcpy(str, bp);
65 	else
66 		printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len);
67 
68 	return str;
69 }
70 
71 /*
72  *	We have to be cautious here. We have seen BIOSes with DMI pointers
73  *	pointing to completely the wrong place for example
74  */
75 static void dmi_table(u8 *buf, int len, int num,
76 		      void (*decode)(const struct dmi_header *, void *),
77 		      void *private_data)
78 {
79 	u8 *data = buf;
80 	int i = 0;
81 
82 	/*
83 	 *	Stop when we see all the items the table claimed to have
84 	 *	OR we run off the end of the table (also happens)
85 	 */
86 	while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) {
87 		const struct dmi_header *dm = (const struct dmi_header *)data;
88 
89 		/*
90 		 *  We want to know the total length (formatted area and
91 		 *  strings) before decoding to make sure we won't run off the
92 		 *  table in dmi_decode or dmi_string
93 		 */
94 		data += dm->length;
95 		while ((data - buf < len - 1) && (data[0] || data[1]))
96 			data++;
97 		if (data - buf < len - 1)
98 			decode(dm, private_data);
99 		data += 2;
100 		i++;
101 	}
102 }
103 
104 static u32 dmi_base;
105 static u16 dmi_len;
106 static u16 dmi_num;
107 
108 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
109 		void *))
110 {
111 	u8 *buf;
112 
113 	buf = dmi_ioremap(dmi_base, dmi_len);
114 	if (buf == NULL)
115 		return -1;
116 
117 	dmi_table(buf, dmi_len, dmi_num, decode, NULL);
118 
119 	add_device_randomness(buf, dmi_len);
120 
121 	dmi_iounmap(buf, dmi_len);
122 	return 0;
123 }
124 
125 static int __init dmi_checksum(const u8 *buf, u8 len)
126 {
127 	u8 sum = 0;
128 	int a;
129 
130 	for (a = 0; a < len; a++)
131 		sum += buf[a];
132 
133 	return sum == 0;
134 }
135 
136 static char *dmi_ident[DMI_STRING_MAX];
137 static LIST_HEAD(dmi_devices);
138 int dmi_available;
139 
140 /*
141  *	Save a DMI string
142  */
143 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string)
144 {
145 	const char *d = (const char*) dm;
146 	char *p;
147 
148 	if (dmi_ident[slot])
149 		return;
150 
151 	p = dmi_string(dm, d[string]);
152 	if (p == NULL)
153 		return;
154 
155 	dmi_ident[slot] = p;
156 }
157 
158 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index)
159 {
160 	const u8 *d = (u8*) dm + index;
161 	char *s;
162 	int is_ff = 1, is_00 = 1, i;
163 
164 	if (dmi_ident[slot])
165 		return;
166 
167 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
168 		if (d[i] != 0x00)
169 			is_00 = 0;
170 		if (d[i] != 0xFF)
171 			is_ff = 0;
172 	}
173 
174 	if (is_ff || is_00)
175 		return;
176 
177 	s = dmi_alloc(16*2+4+1);
178 	if (!s)
179 		return;
180 
181 	/*
182 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
183 	 * the UUID are supposed to be little-endian encoded.  The specification
184 	 * says that this is the defacto standard.
185 	 */
186 	if (dmi_ver >= 0x0206)
187 		sprintf(s, "%pUL", d);
188 	else
189 		sprintf(s, "%pUB", d);
190 
191         dmi_ident[slot] = s;
192 }
193 
194 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index)
195 {
196 	const u8 *d = (u8*) dm + index;
197 	char *s;
198 
199 	if (dmi_ident[slot])
200 		return;
201 
202 	s = dmi_alloc(4);
203 	if (!s)
204 		return;
205 
206 	sprintf(s, "%u", *d & 0x7F);
207 	dmi_ident[slot] = s;
208 }
209 
210 static void __init dmi_save_one_device(int type, const char *name)
211 {
212 	struct dmi_device *dev;
213 
214 	/* No duplicate device */
215 	if (dmi_find_device(type, name, NULL))
216 		return;
217 
218 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
219 	if (!dev) {
220 		printk(KERN_ERR "dmi_save_one_device: out of memory.\n");
221 		return;
222 	}
223 
224 	dev->type = type;
225 	strcpy((char *)(dev + 1), name);
226 	dev->name = (char *)(dev + 1);
227 	dev->device_data = NULL;
228 	list_add(&dev->list, &dmi_devices);
229 }
230 
231 static void __init dmi_save_devices(const struct dmi_header *dm)
232 {
233 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
234 
235 	for (i = 0; i < count; i++) {
236 		const char *d = (char *)(dm + 1) + (i * 2);
237 
238 		/* Skip disabled device */
239 		if ((*d & 0x80) == 0)
240 			continue;
241 
242 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
243 	}
244 }
245 
246 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
247 {
248 	int i, count = *(u8 *)(dm + 1);
249 	struct dmi_device *dev;
250 
251 	for (i = 1; i <= count; i++) {
252 		char *devname = dmi_string(dm, i);
253 
254 		if (devname == dmi_empty_string)
255 			continue;
256 
257 		dev = dmi_alloc(sizeof(*dev));
258 		if (!dev) {
259 			printk(KERN_ERR
260 			   "dmi_save_oem_strings_devices: out of memory.\n");
261 			break;
262 		}
263 
264 		dev->type = DMI_DEV_TYPE_OEM_STRING;
265 		dev->name = devname;
266 		dev->device_data = NULL;
267 
268 		list_add(&dev->list, &dmi_devices);
269 	}
270 }
271 
272 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
273 {
274 	struct dmi_device *dev;
275 	void * data;
276 
277 	data = dmi_alloc(dm->length);
278 	if (data == NULL) {
279 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
280 		return;
281 	}
282 
283 	memcpy(data, dm, dm->length);
284 
285 	dev = dmi_alloc(sizeof(*dev));
286 	if (!dev) {
287 		printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n");
288 		return;
289 	}
290 
291 	dev->type = DMI_DEV_TYPE_IPMI;
292 	dev->name = "IPMI controller";
293 	dev->device_data = data;
294 
295 	list_add_tail(&dev->list, &dmi_devices);
296 }
297 
298 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
299 					int devfn, const char *name)
300 {
301 	struct dmi_dev_onboard *onboard_dev;
302 
303 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
304 	if (!onboard_dev) {
305 		printk(KERN_ERR "dmi_save_dev_onboard: out of memory.\n");
306 		return;
307 	}
308 	onboard_dev->instance = instance;
309 	onboard_dev->segment = segment;
310 	onboard_dev->bus = bus;
311 	onboard_dev->devfn = devfn;
312 
313 	strcpy((char *)&onboard_dev[1], name);
314 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
315 	onboard_dev->dev.name = (char *)&onboard_dev[1];
316 	onboard_dev->dev.device_data = onboard_dev;
317 
318 	list_add(&onboard_dev->dev.list, &dmi_devices);
319 }
320 
321 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
322 {
323 	const u8 *d = (u8*) dm + 5;
324 
325 	/* Skip disabled device */
326 	if ((*d & 0x80) == 0)
327 		return;
328 
329 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
330 			     dmi_string_nosave(dm, *(d-1)));
331 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
332 }
333 
334 /*
335  *	Process a DMI table entry. Right now all we care about are the BIOS
336  *	and machine entries. For 2.5 we should pull the smbus controller info
337  *	out of here.
338  */
339 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
340 {
341 	switch(dm->type) {
342 	case 0:		/* BIOS Information */
343 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
344 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
345 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
346 		break;
347 	case 1:		/* System Information */
348 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
349 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
350 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
351 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
352 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
353 		break;
354 	case 2:		/* Base Board Information */
355 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
356 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
357 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
358 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
359 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
360 		break;
361 	case 3:		/* Chassis Information */
362 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
363 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
364 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
365 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
366 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
367 		break;
368 	case 10:	/* Onboard Devices Information */
369 		dmi_save_devices(dm);
370 		break;
371 	case 11:	/* OEM Strings */
372 		dmi_save_oem_strings_devices(dm);
373 		break;
374 	case 38:	/* IPMI Device Information */
375 		dmi_save_ipmi_device(dm);
376 		break;
377 	case 41:	/* Onboard Devices Extended Information */
378 		dmi_save_extended_devices(dm);
379 	}
380 }
381 
382 static int __init print_filtered(char *buf, size_t len, const char *info)
383 {
384 	int c = 0;
385 	const char *p;
386 
387 	if (!info)
388 		return c;
389 
390 	for (p = info; *p; p++)
391 		if (isprint(*p))
392 			c += scnprintf(buf + c, len - c, "%c", *p);
393 		else
394 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
395 	return c;
396 }
397 
398 static void __init dmi_format_ids(char *buf, size_t len)
399 {
400 	int c = 0;
401 	const char *board;	/* Board Name is optional */
402 
403 	c += print_filtered(buf + c, len - c,
404 			    dmi_get_system_info(DMI_SYS_VENDOR));
405 	c += scnprintf(buf + c, len - c, " ");
406 	c += print_filtered(buf + c, len - c,
407 			    dmi_get_system_info(DMI_PRODUCT_NAME));
408 
409 	board = dmi_get_system_info(DMI_BOARD_NAME);
410 	if (board) {
411 		c += scnprintf(buf + c, len - c, "/");
412 		c += print_filtered(buf + c, len - c, board);
413 	}
414 	c += scnprintf(buf + c, len - c, ", BIOS ");
415 	c += print_filtered(buf + c, len - c,
416 			    dmi_get_system_info(DMI_BIOS_VERSION));
417 	c += scnprintf(buf + c, len - c, " ");
418 	c += print_filtered(buf + c, len - c,
419 			    dmi_get_system_info(DMI_BIOS_DATE));
420 }
421 
422 /*
423  * Check for DMI/SMBIOS headers in the system firmware image.  Any
424  * SMBIOS header must start 16 bytes before the DMI header, so take a
425  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
426  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
427  * takes precedence) and return 0.  Otherwise return 1.
428  */
429 static int __init dmi_present(const u8 *buf)
430 {
431 	int smbios_ver;
432 
433 	if (memcmp(buf, "_SM_", 4) == 0 &&
434 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
435 		smbios_ver = (buf[6] << 8) + buf[7];
436 
437 		/* Some BIOS report weird SMBIOS version, fix that up */
438 		switch (smbios_ver) {
439 		case 0x021F:
440 		case 0x0221:
441 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
442 				 smbios_ver & 0xFF, 3);
443 			smbios_ver = 0x0203;
444 			break;
445 		case 0x0233:
446 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
447 			smbios_ver = 0x0206;
448 			break;
449 		}
450 	} else {
451 		smbios_ver = 0;
452 	}
453 
454 	buf += 16;
455 
456 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
457 		dmi_num = (buf[13] << 8) | buf[12];
458 		dmi_len = (buf[7] << 8) | buf[6];
459 		dmi_base = (buf[11] << 24) | (buf[10] << 16) |
460 			(buf[9] << 8) | buf[8];
461 
462 		if (dmi_walk_early(dmi_decode) == 0) {
463 			if (smbios_ver) {
464 				dmi_ver = smbios_ver;
465 				pr_info("SMBIOS %d.%d present.\n",
466 				       dmi_ver >> 8, dmi_ver & 0xFF);
467 			} else {
468 				dmi_ver = (buf[14] & 0xF0) << 4 |
469 					   (buf[14] & 0x0F);
470 				pr_info("Legacy DMI %d.%d present.\n",
471 				       dmi_ver >> 8, dmi_ver & 0xFF);
472 			}
473 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
474 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
475 			return 0;
476 		}
477 	}
478 
479 	return 1;
480 }
481 
482 void __init dmi_scan_machine(void)
483 {
484 	char __iomem *p, *q;
485 	char buf[32];
486 
487 	if (efi_enabled(EFI_CONFIG_TABLES)) {
488 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
489 			goto error;
490 
491 		/* This is called as a core_initcall() because it isn't
492 		 * needed during early boot.  This also means we can
493 		 * iounmap the space when we're done with it.
494 		 */
495 		p = dmi_ioremap(efi.smbios, 32);
496 		if (p == NULL)
497 			goto error;
498 		memcpy_fromio(buf, p, 32);
499 		dmi_iounmap(p, 32);
500 
501 		if (!dmi_present(buf)) {
502 			dmi_available = 1;
503 			goto out;
504 		}
505 	}
506 	else {
507 		/*
508 		 * no iounmap() for that ioremap(); it would be a no-op, but
509 		 * it's so early in setup that sucker gets confused into doing
510 		 * what it shouldn't if we actually call it.
511 		 */
512 		p = dmi_ioremap(0xF0000, 0x10000);
513 		if (p == NULL)
514 			goto error;
515 
516 		/*
517 		 * Iterate over all possible DMI header addresses q.
518 		 * Maintain the 32 bytes around q in buf.  On the
519 		 * first iteration, substitute zero for the
520 		 * out-of-range bytes so there is no chance of falsely
521 		 * detecting an SMBIOS header.
522 		 */
523 		memset(buf, 0, 16);
524 		for (q = p; q < p + 0x10000; q += 16) {
525 			memcpy_fromio(buf + 16, q, 16);
526 			if (!dmi_present(buf)) {
527 				dmi_available = 1;
528 				dmi_iounmap(p, 0x10000);
529 				goto out;
530 			}
531 			memcpy(buf, buf + 16, 16);
532 		}
533 		dmi_iounmap(p, 0x10000);
534 	}
535  error:
536 	printk(KERN_INFO "DMI not present or invalid.\n");
537  out:
538 	dmi_initialized = 1;
539 }
540 
541 /**
542  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
543  *
544  * Invoke dump_stack_set_arch_desc() with DMI system information so that
545  * DMI identifiers are printed out on task dumps.  Arch boot code should
546  * call this function after dmi_scan_machine() if it wants to print out DMI
547  * identifiers on task dumps.
548  */
549 void __init dmi_set_dump_stack_arch_desc(void)
550 {
551 	dump_stack_set_arch_desc("%s", dmi_ids_string);
552 }
553 
554 /**
555  *	dmi_matches - check if dmi_system_id structure matches system DMI data
556  *	@dmi: pointer to the dmi_system_id structure to check
557  */
558 static bool dmi_matches(const struct dmi_system_id *dmi)
559 {
560 	int i;
561 
562 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
563 
564 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
565 		int s = dmi->matches[i].slot;
566 		if (s == DMI_NONE)
567 			break;
568 		if (dmi_ident[s]) {
569 			if (!dmi->matches[i].exact_match &&
570 			    strstr(dmi_ident[s], dmi->matches[i].substr))
571 				continue;
572 			else if (dmi->matches[i].exact_match &&
573 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
574 				continue;
575 		}
576 
577 		/* No match */
578 		return false;
579 	}
580 	return true;
581 }
582 
583 /**
584  *	dmi_is_end_of_table - check for end-of-table marker
585  *	@dmi: pointer to the dmi_system_id structure to check
586  */
587 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
588 {
589 	return dmi->matches[0].slot == DMI_NONE;
590 }
591 
592 /**
593  *	dmi_check_system - check system DMI data
594  *	@list: array of dmi_system_id structures to match against
595  *		All non-null elements of the list must match
596  *		their slot's (field index's) data (i.e., each
597  *		list string must be a substring of the specified
598  *		DMI slot's string data) to be considered a
599  *		successful match.
600  *
601  *	Walk the blacklist table running matching functions until someone
602  *	returns non zero or we hit the end. Callback function is called for
603  *	each successful match. Returns the number of matches.
604  */
605 int dmi_check_system(const struct dmi_system_id *list)
606 {
607 	int count = 0;
608 	const struct dmi_system_id *d;
609 
610 	for (d = list; !dmi_is_end_of_table(d); d++)
611 		if (dmi_matches(d)) {
612 			count++;
613 			if (d->callback && d->callback(d))
614 				break;
615 		}
616 
617 	return count;
618 }
619 EXPORT_SYMBOL(dmi_check_system);
620 
621 /**
622  *	dmi_first_match - find dmi_system_id structure matching system DMI data
623  *	@list: array of dmi_system_id structures to match against
624  *		All non-null elements of the list must match
625  *		their slot's (field index's) data (i.e., each
626  *		list string must be a substring of the specified
627  *		DMI slot's string data) to be considered a
628  *		successful match.
629  *
630  *	Walk the blacklist table until the first match is found.  Return the
631  *	pointer to the matching entry or NULL if there's no match.
632  */
633 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
634 {
635 	const struct dmi_system_id *d;
636 
637 	for (d = list; !dmi_is_end_of_table(d); d++)
638 		if (dmi_matches(d))
639 			return d;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL(dmi_first_match);
644 
645 /**
646  *	dmi_get_system_info - return DMI data value
647  *	@field: data index (see enum dmi_field)
648  *
649  *	Returns one DMI data value, can be used to perform
650  *	complex DMI data checks.
651  */
652 const char *dmi_get_system_info(int field)
653 {
654 	return dmi_ident[field];
655 }
656 EXPORT_SYMBOL(dmi_get_system_info);
657 
658 /**
659  * dmi_name_in_serial - Check if string is in the DMI product serial information
660  * @str: string to check for
661  */
662 int dmi_name_in_serial(const char *str)
663 {
664 	int f = DMI_PRODUCT_SERIAL;
665 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
666 		return 1;
667 	return 0;
668 }
669 
670 /**
671  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
672  *	@str: 	Case sensitive Name
673  */
674 int dmi_name_in_vendors(const char *str)
675 {
676 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
677 	int i;
678 	for (i = 0; fields[i] != DMI_NONE; i++) {
679 		int f = fields[i];
680 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
681 			return 1;
682 	}
683 	return 0;
684 }
685 EXPORT_SYMBOL(dmi_name_in_vendors);
686 
687 /**
688  *	dmi_find_device - find onboard device by type/name
689  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
690  *	@name: device name string or %NULL to match all
691  *	@from: previous device found in search, or %NULL for new search.
692  *
693  *	Iterates through the list of known onboard devices. If a device is
694  *	found with a matching @vendor and @device, a pointer to its device
695  *	structure is returned.  Otherwise, %NULL is returned.
696  *	A new search is initiated by passing %NULL as the @from argument.
697  *	If @from is not %NULL, searches continue from next device.
698  */
699 const struct dmi_device * dmi_find_device(int type, const char *name,
700 				    const struct dmi_device *from)
701 {
702 	const struct list_head *head = from ? &from->list : &dmi_devices;
703 	struct list_head *d;
704 
705 	for(d = head->next; d != &dmi_devices; d = d->next) {
706 		const struct dmi_device *dev =
707 			list_entry(d, struct dmi_device, list);
708 
709 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
710 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
711 			return dev;
712 	}
713 
714 	return NULL;
715 }
716 EXPORT_SYMBOL(dmi_find_device);
717 
718 /**
719  *	dmi_get_date - parse a DMI date
720  *	@field:	data index (see enum dmi_field)
721  *	@yearp: optional out parameter for the year
722  *	@monthp: optional out parameter for the month
723  *	@dayp: optional out parameter for the day
724  *
725  *	The date field is assumed to be in the form resembling
726  *	[mm[/dd]]/yy[yy] and the result is stored in the out
727  *	parameters any or all of which can be omitted.
728  *
729  *	If the field doesn't exist, all out parameters are set to zero
730  *	and false is returned.  Otherwise, true is returned with any
731  *	invalid part of date set to zero.
732  *
733  *	On return, year, month and day are guaranteed to be in the
734  *	range of [0,9999], [0,12] and [0,31] respectively.
735  */
736 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
737 {
738 	int year = 0, month = 0, day = 0;
739 	bool exists;
740 	const char *s, *y;
741 	char *e;
742 
743 	s = dmi_get_system_info(field);
744 	exists = s;
745 	if (!exists)
746 		goto out;
747 
748 	/*
749 	 * Determine year first.  We assume the date string resembles
750 	 * mm/dd/yy[yy] but the original code extracted only the year
751 	 * from the end.  Keep the behavior in the spirit of no
752 	 * surprises.
753 	 */
754 	y = strrchr(s, '/');
755 	if (!y)
756 		goto out;
757 
758 	y++;
759 	year = simple_strtoul(y, &e, 10);
760 	if (y != e && year < 100) {	/* 2-digit year */
761 		year += 1900;
762 		if (year < 1996)	/* no dates < spec 1.0 */
763 			year += 100;
764 	}
765 	if (year > 9999)		/* year should fit in %04d */
766 		year = 0;
767 
768 	/* parse the mm and dd */
769 	month = simple_strtoul(s, &e, 10);
770 	if (s == e || *e != '/' || !month || month > 12) {
771 		month = 0;
772 		goto out;
773 	}
774 
775 	s = e + 1;
776 	day = simple_strtoul(s, &e, 10);
777 	if (s == y || s == e || *e != '/' || day > 31)
778 		day = 0;
779 out:
780 	if (yearp)
781 		*yearp = year;
782 	if (monthp)
783 		*monthp = month;
784 	if (dayp)
785 		*dayp = day;
786 	return exists;
787 }
788 EXPORT_SYMBOL(dmi_get_date);
789 
790 /**
791  *	dmi_walk - Walk the DMI table and get called back for every record
792  *	@decode: Callback function
793  *	@private_data: Private data to be passed to the callback function
794  *
795  *	Returns -1 when the DMI table can't be reached, 0 on success.
796  */
797 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
798 	     void *private_data)
799 {
800 	u8 *buf;
801 
802 	if (!dmi_available)
803 		return -1;
804 
805 	buf = ioremap(dmi_base, dmi_len);
806 	if (buf == NULL)
807 		return -1;
808 
809 	dmi_table(buf, dmi_len, dmi_num, decode, private_data);
810 
811 	iounmap(buf);
812 	return 0;
813 }
814 EXPORT_SYMBOL_GPL(dmi_walk);
815 
816 /**
817  * dmi_match - compare a string to the dmi field (if exists)
818  * @f: DMI field identifier
819  * @str: string to compare the DMI field to
820  *
821  * Returns true if the requested field equals to the str (including NULL).
822  */
823 bool dmi_match(enum dmi_field f, const char *str)
824 {
825 	const char *info = dmi_get_system_info(f);
826 
827 	if (info == NULL || str == NULL)
828 		return info == str;
829 
830 	return !strcmp(info, str);
831 }
832 EXPORT_SYMBOL_GPL(dmi_match);
833