1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = ""; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* DMI system identification string used during boot */ 30 static char dmi_ids_string[128] __initdata; 31 32 static struct dmi_memdev_info { 33 const char *device; 34 const char *bank; 35 u64 size; /* bytes */ 36 u16 handle; 37 } *dmi_memdev; 38 static int dmi_memdev_nr; 39 40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 41 { 42 const u8 *bp = ((u8 *) dm) + dm->length; 43 const u8 *nsp; 44 45 if (s) { 46 while (--s > 0 && *bp) 47 bp += strlen(bp) + 1; 48 49 /* Strings containing only spaces are considered empty */ 50 nsp = bp; 51 while (*nsp == ' ') 52 nsp++; 53 if (*nsp != '\0') 54 return bp; 55 } 56 57 return dmi_empty_string; 58 } 59 60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 61 { 62 const char *bp = dmi_string_nosave(dm, s); 63 char *str; 64 size_t len; 65 66 if (bp == dmi_empty_string) 67 return dmi_empty_string; 68 69 len = strlen(bp) + 1; 70 str = dmi_alloc(len); 71 if (str != NULL) 72 strcpy(str, bp); 73 74 return str; 75 } 76 77 /* 78 * We have to be cautious here. We have seen BIOSes with DMI pointers 79 * pointing to completely the wrong place for example 80 */ 81 static void dmi_decode_table(u8 *buf, 82 void (*decode)(const struct dmi_header *, void *), 83 void *private_data) 84 { 85 u8 *data = buf; 86 int i = 0; 87 88 /* 89 * Stop when we have seen all the items the table claimed to have 90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 91 * >= 3.0 only) OR we run off the end of the table (should never 92 * happen but sometimes does on bogus implementations.) 93 */ 94 while ((!dmi_num || i < dmi_num) && 95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 96 const struct dmi_header *dm = (const struct dmi_header *)data; 97 98 /* 99 * We want to know the total length (formatted area and 100 * strings) before decoding to make sure we won't run off the 101 * table in dmi_decode or dmi_string 102 */ 103 data += dm->length; 104 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 105 data++; 106 if (data - buf < dmi_len - 1) 107 decode(dm, private_data); 108 109 data += 2; 110 i++; 111 112 /* 113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 114 * For tables behind a 64-bit entry point, we have no item 115 * count and no exact table length, so stop on end-of-table 116 * marker. For tables behind a 32-bit entry point, we have 117 * seen OEM structures behind the end-of-table marker on 118 * some systems, so don't trust it. 119 */ 120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 121 break; 122 } 123 124 /* Trim DMI table length if needed */ 125 if (dmi_len > data - buf) 126 dmi_len = data - buf; 127 } 128 129 static phys_addr_t dmi_base; 130 131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 132 void *)) 133 { 134 u8 *buf; 135 u32 orig_dmi_len = dmi_len; 136 137 buf = dmi_early_remap(dmi_base, orig_dmi_len); 138 if (buf == NULL) 139 return -ENOMEM; 140 141 dmi_decode_table(buf, decode, NULL); 142 143 add_device_randomness(buf, dmi_len); 144 145 dmi_early_unmap(buf, orig_dmi_len); 146 return 0; 147 } 148 149 static int __init dmi_checksum(const u8 *buf, u8 len) 150 { 151 u8 sum = 0; 152 int a; 153 154 for (a = 0; a < len; a++) 155 sum += buf[a]; 156 157 return sum == 0; 158 } 159 160 static const char *dmi_ident[DMI_STRING_MAX]; 161 static LIST_HEAD(dmi_devices); 162 int dmi_available; 163 164 /* 165 * Save a DMI string 166 */ 167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 168 int string) 169 { 170 const char *d = (const char *) dm; 171 const char *p; 172 173 if (dmi_ident[slot] || dm->length <= string) 174 return; 175 176 p = dmi_string(dm, d[string]); 177 if (p == NULL) 178 return; 179 180 dmi_ident[slot] = p; 181 } 182 183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 184 int index) 185 { 186 const u8 *d; 187 char *s; 188 int is_ff = 1, is_00 = 1, i; 189 190 if (dmi_ident[slot] || dm->length < index + 16) 191 return; 192 193 d = (u8 *) dm + index; 194 for (i = 0; i < 16 && (is_ff || is_00); i++) { 195 if (d[i] != 0x00) 196 is_00 = 0; 197 if (d[i] != 0xFF) 198 is_ff = 0; 199 } 200 201 if (is_ff || is_00) 202 return; 203 204 s = dmi_alloc(16*2+4+1); 205 if (!s) 206 return; 207 208 /* 209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 210 * the UUID are supposed to be little-endian encoded. The specification 211 * says that this is the defacto standard. 212 */ 213 if (dmi_ver >= 0x020600) 214 sprintf(s, "%pUl", d); 215 else 216 sprintf(s, "%pUb", d); 217 218 dmi_ident[slot] = s; 219 } 220 221 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 222 int index) 223 { 224 const u8 *d; 225 char *s; 226 227 if (dmi_ident[slot] || dm->length <= index) 228 return; 229 230 s = dmi_alloc(4); 231 if (!s) 232 return; 233 234 d = (u8 *) dm + index; 235 sprintf(s, "%u", *d & 0x7F); 236 dmi_ident[slot] = s; 237 } 238 239 static void __init dmi_save_one_device(int type, const char *name) 240 { 241 struct dmi_device *dev; 242 243 /* No duplicate device */ 244 if (dmi_find_device(type, name, NULL)) 245 return; 246 247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 248 if (!dev) 249 return; 250 251 dev->type = type; 252 strcpy((char *)(dev + 1), name); 253 dev->name = (char *)(dev + 1); 254 dev->device_data = NULL; 255 list_add(&dev->list, &dmi_devices); 256 } 257 258 static void __init dmi_save_devices(const struct dmi_header *dm) 259 { 260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 261 262 for (i = 0; i < count; i++) { 263 const char *d = (char *)(dm + 1) + (i * 2); 264 265 /* Skip disabled device */ 266 if ((*d & 0x80) == 0) 267 continue; 268 269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 270 } 271 } 272 273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 274 { 275 int i, count; 276 struct dmi_device *dev; 277 278 if (dm->length < 0x05) 279 return; 280 281 count = *(u8 *)(dm + 1); 282 for (i = 1; i <= count; i++) { 283 const char *devname = dmi_string(dm, i); 284 285 if (devname == dmi_empty_string) 286 continue; 287 288 dev = dmi_alloc(sizeof(*dev)); 289 if (!dev) 290 break; 291 292 dev->type = DMI_DEV_TYPE_OEM_STRING; 293 dev->name = devname; 294 dev->device_data = NULL; 295 296 list_add(&dev->list, &dmi_devices); 297 } 298 } 299 300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 301 { 302 struct dmi_device *dev; 303 void *data; 304 305 data = dmi_alloc(dm->length); 306 if (data == NULL) 307 return; 308 309 memcpy(data, dm, dm->length); 310 311 dev = dmi_alloc(sizeof(*dev)); 312 if (!dev) 313 return; 314 315 dev->type = DMI_DEV_TYPE_IPMI; 316 dev->name = "IPMI controller"; 317 dev->device_data = data; 318 319 list_add_tail(&dev->list, &dmi_devices); 320 } 321 322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 323 int devfn, const char *name, int type) 324 { 325 struct dmi_dev_onboard *dev; 326 327 /* Ignore invalid values */ 328 if (type == DMI_DEV_TYPE_DEV_SLOT && 329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 330 return; 331 332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 333 if (!dev) 334 return; 335 336 dev->instance = instance; 337 dev->segment = segment; 338 dev->bus = bus; 339 dev->devfn = devfn; 340 341 strcpy((char *)&dev[1], name); 342 dev->dev.type = type; 343 dev->dev.name = (char *)&dev[1]; 344 dev->dev.device_data = dev; 345 346 list_add(&dev->dev.list, &dmi_devices); 347 } 348 349 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 350 { 351 const char *name; 352 const u8 *d = (u8 *)dm; 353 354 if (dm->length < 0x0B) 355 return; 356 357 /* Skip disabled device */ 358 if ((d[0x5] & 0x80) == 0) 359 return; 360 361 name = dmi_string_nosave(dm, d[0x4]); 362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 363 DMI_DEV_TYPE_DEV_ONBOARD); 364 dmi_save_one_device(d[0x5] & 0x7f, name); 365 } 366 367 static void __init dmi_save_system_slot(const struct dmi_header *dm) 368 { 369 const u8 *d = (u8 *)dm; 370 371 /* Need SMBIOS 2.6+ structure */ 372 if (dm->length < 0x11) 373 return; 374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 375 d[0x10], dmi_string_nosave(dm, d[0x4]), 376 DMI_DEV_TYPE_DEV_SLOT); 377 } 378 379 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 380 { 381 if (dm->type != DMI_ENTRY_MEM_DEVICE) 382 return; 383 dmi_memdev_nr++; 384 } 385 386 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 387 { 388 const char *d = (const char *)dm; 389 static int nr; 390 u64 bytes; 391 u16 size; 392 393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 394 return; 395 if (nr >= dmi_memdev_nr) { 396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 397 return; 398 } 399 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 402 403 size = get_unaligned((u16 *)&d[0xC]); 404 if (size == 0) 405 bytes = 0; 406 else if (size == 0xffff) 407 bytes = ~0ull; 408 else if (size & 0x8000) 409 bytes = (u64)(size & 0x7fff) << 10; 410 else if (size != 0x7fff) 411 bytes = (u64)size << 20; 412 else 413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 414 415 dmi_memdev[nr].size = bytes; 416 nr++; 417 } 418 419 void __init dmi_memdev_walk(void) 420 { 421 if (!dmi_available) 422 return; 423 424 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 425 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 426 if (dmi_memdev) 427 dmi_walk_early(save_mem_devices); 428 } 429 } 430 431 /* 432 * Process a DMI table entry. Right now all we care about are the BIOS 433 * and machine entries. For 2.5 we should pull the smbus controller info 434 * out of here. 435 */ 436 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 437 { 438 switch (dm->type) { 439 case 0: /* BIOS Information */ 440 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 441 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 442 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 443 break; 444 case 1: /* System Information */ 445 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 446 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 447 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 448 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 449 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 450 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 451 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 452 break; 453 case 2: /* Base Board Information */ 454 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 455 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 456 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 457 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 458 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 459 break; 460 case 3: /* Chassis Information */ 461 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 462 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 463 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 464 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 465 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 466 break; 467 case 9: /* System Slots */ 468 dmi_save_system_slot(dm); 469 break; 470 case 10: /* Onboard Devices Information */ 471 dmi_save_devices(dm); 472 break; 473 case 11: /* OEM Strings */ 474 dmi_save_oem_strings_devices(dm); 475 break; 476 case 38: /* IPMI Device Information */ 477 dmi_save_ipmi_device(dm); 478 break; 479 case 41: /* Onboard Devices Extended Information */ 480 dmi_save_extended_devices(dm); 481 } 482 } 483 484 static int __init print_filtered(char *buf, size_t len, const char *info) 485 { 486 int c = 0; 487 const char *p; 488 489 if (!info) 490 return c; 491 492 for (p = info; *p; p++) 493 if (isprint(*p)) 494 c += scnprintf(buf + c, len - c, "%c", *p); 495 else 496 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 497 return c; 498 } 499 500 static void __init dmi_format_ids(char *buf, size_t len) 501 { 502 int c = 0; 503 const char *board; /* Board Name is optional */ 504 505 c += print_filtered(buf + c, len - c, 506 dmi_get_system_info(DMI_SYS_VENDOR)); 507 c += scnprintf(buf + c, len - c, " "); 508 c += print_filtered(buf + c, len - c, 509 dmi_get_system_info(DMI_PRODUCT_NAME)); 510 511 board = dmi_get_system_info(DMI_BOARD_NAME); 512 if (board) { 513 c += scnprintf(buf + c, len - c, "/"); 514 c += print_filtered(buf + c, len - c, board); 515 } 516 c += scnprintf(buf + c, len - c, ", BIOS "); 517 c += print_filtered(buf + c, len - c, 518 dmi_get_system_info(DMI_BIOS_VERSION)); 519 c += scnprintf(buf + c, len - c, " "); 520 c += print_filtered(buf + c, len - c, 521 dmi_get_system_info(DMI_BIOS_DATE)); 522 } 523 524 /* 525 * Check for DMI/SMBIOS headers in the system firmware image. Any 526 * SMBIOS header must start 16 bytes before the DMI header, so take a 527 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 528 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 529 * takes precedence) and return 0. Otherwise return 1. 530 */ 531 static int __init dmi_present(const u8 *buf) 532 { 533 u32 smbios_ver; 534 535 if (memcmp(buf, "_SM_", 4) == 0 && 536 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 537 smbios_ver = get_unaligned_be16(buf + 6); 538 smbios_entry_point_size = buf[5]; 539 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 540 541 /* Some BIOS report weird SMBIOS version, fix that up */ 542 switch (smbios_ver) { 543 case 0x021F: 544 case 0x0221: 545 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 546 smbios_ver & 0xFF, 3); 547 smbios_ver = 0x0203; 548 break; 549 case 0x0233: 550 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 551 smbios_ver = 0x0206; 552 break; 553 } 554 } else { 555 smbios_ver = 0; 556 } 557 558 buf += 16; 559 560 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 561 if (smbios_ver) 562 dmi_ver = smbios_ver; 563 else 564 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 565 dmi_ver <<= 8; 566 dmi_num = get_unaligned_le16(buf + 12); 567 dmi_len = get_unaligned_le16(buf + 6); 568 dmi_base = get_unaligned_le32(buf + 8); 569 570 if (dmi_walk_early(dmi_decode) == 0) { 571 if (smbios_ver) { 572 pr_info("SMBIOS %d.%d present.\n", 573 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 574 } else { 575 smbios_entry_point_size = 15; 576 memcpy(smbios_entry_point, buf, 577 smbios_entry_point_size); 578 pr_info("Legacy DMI %d.%d present.\n", 579 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 580 } 581 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 582 pr_info("DMI: %s\n", dmi_ids_string); 583 return 0; 584 } 585 } 586 587 return 1; 588 } 589 590 /* 591 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 592 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 593 */ 594 static int __init dmi_smbios3_present(const u8 *buf) 595 { 596 if (memcmp(buf, "_SM3_", 5) == 0 && 597 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 598 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 599 dmi_num = 0; /* No longer specified */ 600 dmi_len = get_unaligned_le32(buf + 12); 601 dmi_base = get_unaligned_le64(buf + 16); 602 smbios_entry_point_size = buf[6]; 603 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 604 605 if (dmi_walk_early(dmi_decode) == 0) { 606 pr_info("SMBIOS %d.%d.%d present.\n", 607 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 608 dmi_ver & 0xFF); 609 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 610 pr_info("DMI: %s\n", dmi_ids_string); 611 return 0; 612 } 613 } 614 return 1; 615 } 616 617 void __init dmi_scan_machine(void) 618 { 619 char __iomem *p, *q; 620 char buf[32]; 621 622 if (efi_enabled(EFI_CONFIG_TABLES)) { 623 /* 624 * According to the DMTF SMBIOS reference spec v3.0.0, it is 625 * allowed to define both the 64-bit entry point (smbios3) and 626 * the 32-bit entry point (smbios), in which case they should 627 * either both point to the same SMBIOS structure table, or the 628 * table pointed to by the 64-bit entry point should contain a 629 * superset of the table contents pointed to by the 32-bit entry 630 * point (section 5.2) 631 * This implies that the 64-bit entry point should have 632 * precedence if it is defined and supported by the OS. If we 633 * have the 64-bit entry point, but fail to decode it, fall 634 * back to the legacy one (if available) 635 */ 636 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 637 p = dmi_early_remap(efi.smbios3, 32); 638 if (p == NULL) 639 goto error; 640 memcpy_fromio(buf, p, 32); 641 dmi_early_unmap(p, 32); 642 643 if (!dmi_smbios3_present(buf)) { 644 dmi_available = 1; 645 return; 646 } 647 } 648 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 649 goto error; 650 651 /* This is called as a core_initcall() because it isn't 652 * needed during early boot. This also means we can 653 * iounmap the space when we're done with it. 654 */ 655 p = dmi_early_remap(efi.smbios, 32); 656 if (p == NULL) 657 goto error; 658 memcpy_fromio(buf, p, 32); 659 dmi_early_unmap(p, 32); 660 661 if (!dmi_present(buf)) { 662 dmi_available = 1; 663 return; 664 } 665 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 666 p = dmi_early_remap(0xF0000, 0x10000); 667 if (p == NULL) 668 goto error; 669 670 /* 671 * Same logic as above, look for a 64-bit entry point 672 * first, and if not found, fall back to 32-bit entry point. 673 */ 674 memcpy_fromio(buf, p, 16); 675 for (q = p + 16; q < p + 0x10000; q += 16) { 676 memcpy_fromio(buf + 16, q, 16); 677 if (!dmi_smbios3_present(buf)) { 678 dmi_available = 1; 679 dmi_early_unmap(p, 0x10000); 680 return; 681 } 682 memcpy(buf, buf + 16, 16); 683 } 684 685 /* 686 * Iterate over all possible DMI header addresses q. 687 * Maintain the 32 bytes around q in buf. On the 688 * first iteration, substitute zero for the 689 * out-of-range bytes so there is no chance of falsely 690 * detecting an SMBIOS header. 691 */ 692 memset(buf, 0, 16); 693 for (q = p; q < p + 0x10000; q += 16) { 694 memcpy_fromio(buf + 16, q, 16); 695 if (!dmi_present(buf)) { 696 dmi_available = 1; 697 dmi_early_unmap(p, 0x10000); 698 return; 699 } 700 memcpy(buf, buf + 16, 16); 701 } 702 dmi_early_unmap(p, 0x10000); 703 } 704 error: 705 pr_info("DMI not present or invalid.\n"); 706 } 707 708 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 709 struct bin_attribute *attr, char *buf, 710 loff_t pos, size_t count) 711 { 712 memcpy(buf, attr->private + pos, count); 713 return count; 714 } 715 716 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 717 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 718 719 static int __init dmi_init(void) 720 { 721 struct kobject *tables_kobj; 722 u8 *dmi_table; 723 int ret = -ENOMEM; 724 725 if (!dmi_available) 726 return 0; 727 728 /* 729 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 730 * even after farther error, as it can be used by other modules like 731 * dmi-sysfs. 732 */ 733 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 734 if (!dmi_kobj) 735 goto err; 736 737 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 738 if (!tables_kobj) 739 goto err; 740 741 dmi_table = dmi_remap(dmi_base, dmi_len); 742 if (!dmi_table) 743 goto err_tables; 744 745 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 746 bin_attr_smbios_entry_point.private = smbios_entry_point; 747 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 748 if (ret) 749 goto err_unmap; 750 751 bin_attr_DMI.size = dmi_len; 752 bin_attr_DMI.private = dmi_table; 753 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 754 if (!ret) 755 return 0; 756 757 sysfs_remove_bin_file(tables_kobj, 758 &bin_attr_smbios_entry_point); 759 err_unmap: 760 dmi_unmap(dmi_table); 761 err_tables: 762 kobject_del(tables_kobj); 763 kobject_put(tables_kobj); 764 err: 765 pr_err("dmi: Firmware registration failed.\n"); 766 767 return ret; 768 } 769 subsys_initcall(dmi_init); 770 771 /** 772 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 773 * 774 * Invoke dump_stack_set_arch_desc() with DMI system information so that 775 * DMI identifiers are printed out on task dumps. Arch boot code should 776 * call this function after dmi_scan_machine() if it wants to print out DMI 777 * identifiers on task dumps. 778 */ 779 void __init dmi_set_dump_stack_arch_desc(void) 780 { 781 dump_stack_set_arch_desc("%s", dmi_ids_string); 782 } 783 784 /** 785 * dmi_matches - check if dmi_system_id structure matches system DMI data 786 * @dmi: pointer to the dmi_system_id structure to check 787 */ 788 static bool dmi_matches(const struct dmi_system_id *dmi) 789 { 790 int i; 791 792 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 793 int s = dmi->matches[i].slot; 794 if (s == DMI_NONE) 795 break; 796 if (s == DMI_OEM_STRING) { 797 /* DMI_OEM_STRING must be exact match */ 798 const struct dmi_device *valid; 799 800 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 801 dmi->matches[i].substr, NULL); 802 if (valid) 803 continue; 804 } else if (dmi_ident[s]) { 805 if (dmi->matches[i].exact_match) { 806 if (!strcmp(dmi_ident[s], 807 dmi->matches[i].substr)) 808 continue; 809 } else { 810 if (strstr(dmi_ident[s], 811 dmi->matches[i].substr)) 812 continue; 813 } 814 } 815 816 /* No match */ 817 return false; 818 } 819 return true; 820 } 821 822 /** 823 * dmi_is_end_of_table - check for end-of-table marker 824 * @dmi: pointer to the dmi_system_id structure to check 825 */ 826 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 827 { 828 return dmi->matches[0].slot == DMI_NONE; 829 } 830 831 /** 832 * dmi_check_system - check system DMI data 833 * @list: array of dmi_system_id structures to match against 834 * All non-null elements of the list must match 835 * their slot's (field index's) data (i.e., each 836 * list string must be a substring of the specified 837 * DMI slot's string data) to be considered a 838 * successful match. 839 * 840 * Walk the blacklist table running matching functions until someone 841 * returns non zero or we hit the end. Callback function is called for 842 * each successful match. Returns the number of matches. 843 * 844 * dmi_scan_machine must be called before this function is called. 845 */ 846 int dmi_check_system(const struct dmi_system_id *list) 847 { 848 int count = 0; 849 const struct dmi_system_id *d; 850 851 for (d = list; !dmi_is_end_of_table(d); d++) 852 if (dmi_matches(d)) { 853 count++; 854 if (d->callback && d->callback(d)) 855 break; 856 } 857 858 return count; 859 } 860 EXPORT_SYMBOL(dmi_check_system); 861 862 /** 863 * dmi_first_match - find dmi_system_id structure matching system DMI data 864 * @list: array of dmi_system_id structures to match against 865 * All non-null elements of the list must match 866 * their slot's (field index's) data (i.e., each 867 * list string must be a substring of the specified 868 * DMI slot's string data) to be considered a 869 * successful match. 870 * 871 * Walk the blacklist table until the first match is found. Return the 872 * pointer to the matching entry or NULL if there's no match. 873 * 874 * dmi_scan_machine must be called before this function is called. 875 */ 876 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 877 { 878 const struct dmi_system_id *d; 879 880 for (d = list; !dmi_is_end_of_table(d); d++) 881 if (dmi_matches(d)) 882 return d; 883 884 return NULL; 885 } 886 EXPORT_SYMBOL(dmi_first_match); 887 888 /** 889 * dmi_get_system_info - return DMI data value 890 * @field: data index (see enum dmi_field) 891 * 892 * Returns one DMI data value, can be used to perform 893 * complex DMI data checks. 894 */ 895 const char *dmi_get_system_info(int field) 896 { 897 return dmi_ident[field]; 898 } 899 EXPORT_SYMBOL(dmi_get_system_info); 900 901 /** 902 * dmi_name_in_serial - Check if string is in the DMI product serial information 903 * @str: string to check for 904 */ 905 int dmi_name_in_serial(const char *str) 906 { 907 int f = DMI_PRODUCT_SERIAL; 908 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 909 return 1; 910 return 0; 911 } 912 913 /** 914 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 915 * @str: Case sensitive Name 916 */ 917 int dmi_name_in_vendors(const char *str) 918 { 919 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 920 int i; 921 for (i = 0; fields[i] != DMI_NONE; i++) { 922 int f = fields[i]; 923 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 924 return 1; 925 } 926 return 0; 927 } 928 EXPORT_SYMBOL(dmi_name_in_vendors); 929 930 /** 931 * dmi_find_device - find onboard device by type/name 932 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 933 * @name: device name string or %NULL to match all 934 * @from: previous device found in search, or %NULL for new search. 935 * 936 * Iterates through the list of known onboard devices. If a device is 937 * found with a matching @type and @name, a pointer to its device 938 * structure is returned. Otherwise, %NULL is returned. 939 * A new search is initiated by passing %NULL as the @from argument. 940 * If @from is not %NULL, searches continue from next device. 941 */ 942 const struct dmi_device *dmi_find_device(int type, const char *name, 943 const struct dmi_device *from) 944 { 945 const struct list_head *head = from ? &from->list : &dmi_devices; 946 struct list_head *d; 947 948 for (d = head->next; d != &dmi_devices; d = d->next) { 949 const struct dmi_device *dev = 950 list_entry(d, struct dmi_device, list); 951 952 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 953 ((name == NULL) || (strcmp(dev->name, name) == 0))) 954 return dev; 955 } 956 957 return NULL; 958 } 959 EXPORT_SYMBOL(dmi_find_device); 960 961 /** 962 * dmi_get_date - parse a DMI date 963 * @field: data index (see enum dmi_field) 964 * @yearp: optional out parameter for the year 965 * @monthp: optional out parameter for the month 966 * @dayp: optional out parameter for the day 967 * 968 * The date field is assumed to be in the form resembling 969 * [mm[/dd]]/yy[yy] and the result is stored in the out 970 * parameters any or all of which can be omitted. 971 * 972 * If the field doesn't exist, all out parameters are set to zero 973 * and false is returned. Otherwise, true is returned with any 974 * invalid part of date set to zero. 975 * 976 * On return, year, month and day are guaranteed to be in the 977 * range of [0,9999], [0,12] and [0,31] respectively. 978 */ 979 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 980 { 981 int year = 0, month = 0, day = 0; 982 bool exists; 983 const char *s, *y; 984 char *e; 985 986 s = dmi_get_system_info(field); 987 exists = s; 988 if (!exists) 989 goto out; 990 991 /* 992 * Determine year first. We assume the date string resembles 993 * mm/dd/yy[yy] but the original code extracted only the year 994 * from the end. Keep the behavior in the spirit of no 995 * surprises. 996 */ 997 y = strrchr(s, '/'); 998 if (!y) 999 goto out; 1000 1001 y++; 1002 year = simple_strtoul(y, &e, 10); 1003 if (y != e && year < 100) { /* 2-digit year */ 1004 year += 1900; 1005 if (year < 1996) /* no dates < spec 1.0 */ 1006 year += 100; 1007 } 1008 if (year > 9999) /* year should fit in %04d */ 1009 year = 0; 1010 1011 /* parse the mm and dd */ 1012 month = simple_strtoul(s, &e, 10); 1013 if (s == e || *e != '/' || !month || month > 12) { 1014 month = 0; 1015 goto out; 1016 } 1017 1018 s = e + 1; 1019 day = simple_strtoul(s, &e, 10); 1020 if (s == y || s == e || *e != '/' || day > 31) 1021 day = 0; 1022 out: 1023 if (yearp) 1024 *yearp = year; 1025 if (monthp) 1026 *monthp = month; 1027 if (dayp) 1028 *dayp = day; 1029 return exists; 1030 } 1031 EXPORT_SYMBOL(dmi_get_date); 1032 1033 /** 1034 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1035 * 1036 * Returns year on success, -ENXIO if DMI is not selected, 1037 * or a different negative error code if DMI field is not present 1038 * or not parseable. 1039 */ 1040 int dmi_get_bios_year(void) 1041 { 1042 bool exists; 1043 int year; 1044 1045 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1046 if (!exists) 1047 return -ENODATA; 1048 1049 return year ? year : -ERANGE; 1050 } 1051 EXPORT_SYMBOL(dmi_get_bios_year); 1052 1053 /** 1054 * dmi_walk - Walk the DMI table and get called back for every record 1055 * @decode: Callback function 1056 * @private_data: Private data to be passed to the callback function 1057 * 1058 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1059 * or a different negative error code if DMI walking fails. 1060 */ 1061 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1062 void *private_data) 1063 { 1064 u8 *buf; 1065 1066 if (!dmi_available) 1067 return -ENXIO; 1068 1069 buf = dmi_remap(dmi_base, dmi_len); 1070 if (buf == NULL) 1071 return -ENOMEM; 1072 1073 dmi_decode_table(buf, decode, private_data); 1074 1075 dmi_unmap(buf); 1076 return 0; 1077 } 1078 EXPORT_SYMBOL_GPL(dmi_walk); 1079 1080 /** 1081 * dmi_match - compare a string to the dmi field (if exists) 1082 * @f: DMI field identifier 1083 * @str: string to compare the DMI field to 1084 * 1085 * Returns true if the requested field equals to the str (including NULL). 1086 */ 1087 bool dmi_match(enum dmi_field f, const char *str) 1088 { 1089 const char *info = dmi_get_system_info(f); 1090 1091 if (info == NULL || str == NULL) 1092 return info == str; 1093 1094 return !strcmp(info, str); 1095 } 1096 EXPORT_SYMBOL_GPL(dmi_match); 1097 1098 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1099 { 1100 int n; 1101 1102 if (dmi_memdev == NULL) 1103 return; 1104 1105 for (n = 0; n < dmi_memdev_nr; n++) { 1106 if (handle == dmi_memdev[n].handle) { 1107 *bank = dmi_memdev[n].bank; 1108 *device = dmi_memdev[n].device; 1109 break; 1110 } 1111 } 1112 } 1113 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1114 1115 u64 dmi_memdev_size(u16 handle) 1116 { 1117 int n; 1118 1119 if (dmi_memdev) { 1120 for (n = 0; n < dmi_memdev_nr; n++) { 1121 if (handle == dmi_memdev[n].handle) 1122 return dmi_memdev[n].size; 1123 } 1124 } 1125 return ~0ull; 1126 } 1127 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1128