1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 /* 12 * DMI stands for "Desktop Management Interface". It is part 13 * of and an antecedent to, SMBIOS, which stands for System 14 * Management BIOS. See further: http://www.dmtf.org/standards 15 */ 16 static char dmi_empty_string[] = " "; 17 18 /* 19 * Catch too early calls to dmi_check_system(): 20 */ 21 static int dmi_initialized; 22 23 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 24 { 25 const u8 *bp = ((u8 *) dm) + dm->length; 26 27 if (s) { 28 s--; 29 while (s > 0 && *bp) { 30 bp += strlen(bp) + 1; 31 s--; 32 } 33 34 if (*bp != 0) { 35 size_t len = strlen(bp)+1; 36 size_t cmp_len = len > 8 ? 8 : len; 37 38 if (!memcmp(bp, dmi_empty_string, cmp_len)) 39 return dmi_empty_string; 40 return bp; 41 } 42 } 43 44 return ""; 45 } 46 47 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 48 { 49 const char *bp = dmi_string_nosave(dm, s); 50 char *str; 51 size_t len; 52 53 if (bp == dmi_empty_string) 54 return dmi_empty_string; 55 56 len = strlen(bp) + 1; 57 str = dmi_alloc(len); 58 if (str != NULL) 59 strcpy(str, bp); 60 else 61 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 62 63 return str; 64 } 65 66 /* 67 * We have to be cautious here. We have seen BIOSes with DMI pointers 68 * pointing to completely the wrong place for example 69 */ 70 static void dmi_table(u8 *buf, int len, int num, 71 void (*decode)(const struct dmi_header *, void *), 72 void *private_data) 73 { 74 u8 *data = buf; 75 int i = 0; 76 77 /* 78 * Stop when we see all the items the table claimed to have 79 * OR we run off the end of the table (also happens) 80 */ 81 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 82 const struct dmi_header *dm = (const struct dmi_header *)data; 83 84 /* 85 * We want to know the total length (formatted area and 86 * strings) before decoding to make sure we won't run off the 87 * table in dmi_decode or dmi_string 88 */ 89 data += dm->length; 90 while ((data - buf < len - 1) && (data[0] || data[1])) 91 data++; 92 if (data - buf < len - 1) 93 decode(dm, private_data); 94 data += 2; 95 i++; 96 } 97 } 98 99 static u32 dmi_base; 100 static u16 dmi_len; 101 static u16 dmi_num; 102 103 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 104 void *)) 105 { 106 u8 *buf; 107 108 buf = dmi_ioremap(dmi_base, dmi_len); 109 if (buf == NULL) 110 return -1; 111 112 dmi_table(buf, dmi_len, dmi_num, decode, NULL); 113 114 dmi_iounmap(buf, dmi_len); 115 return 0; 116 } 117 118 static int __init dmi_checksum(const u8 *buf) 119 { 120 u8 sum = 0; 121 int a; 122 123 for (a = 0; a < 15; a++) 124 sum += buf[a]; 125 126 return sum == 0; 127 } 128 129 static char *dmi_ident[DMI_STRING_MAX]; 130 static LIST_HEAD(dmi_devices); 131 int dmi_available; 132 133 /* 134 * Save a DMI string 135 */ 136 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 137 { 138 const char *d = (const char*) dm; 139 char *p; 140 141 if (dmi_ident[slot]) 142 return; 143 144 p = dmi_string(dm, d[string]); 145 if (p == NULL) 146 return; 147 148 dmi_ident[slot] = p; 149 } 150 151 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 152 { 153 const u8 *d = (u8*) dm + index; 154 char *s; 155 int is_ff = 1, is_00 = 1, i; 156 157 if (dmi_ident[slot]) 158 return; 159 160 for (i = 0; i < 16 && (is_ff || is_00); i++) { 161 if(d[i] != 0x00) is_ff = 0; 162 if(d[i] != 0xFF) is_00 = 0; 163 } 164 165 if (is_ff || is_00) 166 return; 167 168 s = dmi_alloc(16*2+4+1); 169 if (!s) 170 return; 171 172 sprintf(s, "%pUB", d); 173 174 dmi_ident[slot] = s; 175 } 176 177 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 178 { 179 const u8 *d = (u8*) dm + index; 180 char *s; 181 182 if (dmi_ident[slot]) 183 return; 184 185 s = dmi_alloc(4); 186 if (!s) 187 return; 188 189 sprintf(s, "%u", *d & 0x7F); 190 dmi_ident[slot] = s; 191 } 192 193 static void __init dmi_save_one_device(int type, const char *name) 194 { 195 struct dmi_device *dev; 196 197 /* No duplicate device */ 198 if (dmi_find_device(type, name, NULL)) 199 return; 200 201 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 202 if (!dev) { 203 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 204 return; 205 } 206 207 dev->type = type; 208 strcpy((char *)(dev + 1), name); 209 dev->name = (char *)(dev + 1); 210 dev->device_data = NULL; 211 list_add(&dev->list, &dmi_devices); 212 } 213 214 static void __init dmi_save_devices(const struct dmi_header *dm) 215 { 216 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 217 218 for (i = 0; i < count; i++) { 219 const char *d = (char *)(dm + 1) + (i * 2); 220 221 /* Skip disabled device */ 222 if ((*d & 0x80) == 0) 223 continue; 224 225 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 226 } 227 } 228 229 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 230 { 231 int i, count = *(u8 *)(dm + 1); 232 struct dmi_device *dev; 233 234 for (i = 1; i <= count; i++) { 235 char *devname = dmi_string(dm, i); 236 237 if (devname == dmi_empty_string) 238 continue; 239 240 dev = dmi_alloc(sizeof(*dev)); 241 if (!dev) { 242 printk(KERN_ERR 243 "dmi_save_oem_strings_devices: out of memory.\n"); 244 break; 245 } 246 247 dev->type = DMI_DEV_TYPE_OEM_STRING; 248 dev->name = devname; 249 dev->device_data = NULL; 250 251 list_add(&dev->list, &dmi_devices); 252 } 253 } 254 255 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 256 { 257 struct dmi_device *dev; 258 void * data; 259 260 data = dmi_alloc(dm->length); 261 if (data == NULL) { 262 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 263 return; 264 } 265 266 memcpy(data, dm, dm->length); 267 268 dev = dmi_alloc(sizeof(*dev)); 269 if (!dev) { 270 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 271 return; 272 } 273 274 dev->type = DMI_DEV_TYPE_IPMI; 275 dev->name = "IPMI controller"; 276 dev->device_data = data; 277 278 list_add_tail(&dev->list, &dmi_devices); 279 } 280 281 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 282 { 283 const u8 *d = (u8*) dm + 5; 284 285 /* Skip disabled device */ 286 if ((*d & 0x80) == 0) 287 return; 288 289 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 290 } 291 292 /* 293 * Process a DMI table entry. Right now all we care about are the BIOS 294 * and machine entries. For 2.5 we should pull the smbus controller info 295 * out of here. 296 */ 297 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 298 { 299 switch(dm->type) { 300 case 0: /* BIOS Information */ 301 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 302 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 303 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 304 break; 305 case 1: /* System Information */ 306 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 307 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 308 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 309 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 310 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 311 break; 312 case 2: /* Base Board Information */ 313 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 314 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 315 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 316 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 317 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 318 break; 319 case 3: /* Chassis Information */ 320 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 321 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 322 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 323 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 324 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 325 break; 326 case 10: /* Onboard Devices Information */ 327 dmi_save_devices(dm); 328 break; 329 case 11: /* OEM Strings */ 330 dmi_save_oem_strings_devices(dm); 331 break; 332 case 38: /* IPMI Device Information */ 333 dmi_save_ipmi_device(dm); 334 break; 335 case 41: /* Onboard Devices Extended Information */ 336 dmi_save_extended_devices(dm); 337 } 338 } 339 340 static int __init dmi_present(const char __iomem *p) 341 { 342 u8 buf[15]; 343 344 memcpy_fromio(buf, p, 15); 345 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 346 dmi_num = (buf[13] << 8) | buf[12]; 347 dmi_len = (buf[7] << 8) | buf[6]; 348 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 349 (buf[9] << 8) | buf[8]; 350 351 /* 352 * DMI version 0.0 means that the real version is taken from 353 * the SMBIOS version, which we don't know at this point. 354 */ 355 if (buf[14] != 0) 356 printk(KERN_INFO "DMI %d.%d present.\n", 357 buf[14] >> 4, buf[14] & 0xF); 358 else 359 printk(KERN_INFO "DMI present.\n"); 360 if (dmi_walk_early(dmi_decode) == 0) 361 return 0; 362 } 363 return 1; 364 } 365 366 void __init dmi_scan_machine(void) 367 { 368 char __iomem *p, *q; 369 int rc; 370 371 if (efi_enabled) { 372 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 373 goto error; 374 375 /* This is called as a core_initcall() because it isn't 376 * needed during early boot. This also means we can 377 * iounmap the space when we're done with it. 378 */ 379 p = dmi_ioremap(efi.smbios, 32); 380 if (p == NULL) 381 goto error; 382 383 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 384 dmi_iounmap(p, 32); 385 if (!rc) { 386 dmi_available = 1; 387 goto out; 388 } 389 } 390 else { 391 /* 392 * no iounmap() for that ioremap(); it would be a no-op, but 393 * it's so early in setup that sucker gets confused into doing 394 * what it shouldn't if we actually call it. 395 */ 396 p = dmi_ioremap(0xF0000, 0x10000); 397 if (p == NULL) 398 goto error; 399 400 for (q = p; q < p + 0x10000; q += 16) { 401 rc = dmi_present(q); 402 if (!rc) { 403 dmi_available = 1; 404 dmi_iounmap(p, 0x10000); 405 goto out; 406 } 407 } 408 dmi_iounmap(p, 0x10000); 409 } 410 error: 411 printk(KERN_INFO "DMI not present or invalid.\n"); 412 out: 413 dmi_initialized = 1; 414 } 415 416 /** 417 * dmi_matches - check if dmi_system_id structure matches system DMI data 418 * @dmi: pointer to the dmi_system_id structure to check 419 */ 420 static bool dmi_matches(const struct dmi_system_id *dmi) 421 { 422 int i; 423 424 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 425 426 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 427 int s = dmi->matches[i].slot; 428 if (s == DMI_NONE) 429 break; 430 if (dmi_ident[s] 431 && strstr(dmi_ident[s], dmi->matches[i].substr)) 432 continue; 433 /* No match */ 434 return false; 435 } 436 return true; 437 } 438 439 /** 440 * dmi_is_end_of_table - check for end-of-table marker 441 * @dmi: pointer to the dmi_system_id structure to check 442 */ 443 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 444 { 445 return dmi->matches[0].slot == DMI_NONE; 446 } 447 448 /** 449 * dmi_check_system - check system DMI data 450 * @list: array of dmi_system_id structures to match against 451 * All non-null elements of the list must match 452 * their slot's (field index's) data (i.e., each 453 * list string must be a substring of the specified 454 * DMI slot's string data) to be considered a 455 * successful match. 456 * 457 * Walk the blacklist table running matching functions until someone 458 * returns non zero or we hit the end. Callback function is called for 459 * each successful match. Returns the number of matches. 460 */ 461 int dmi_check_system(const struct dmi_system_id *list) 462 { 463 int count = 0; 464 const struct dmi_system_id *d; 465 466 for (d = list; !dmi_is_end_of_table(d); d++) 467 if (dmi_matches(d)) { 468 count++; 469 if (d->callback && d->callback(d)) 470 break; 471 } 472 473 return count; 474 } 475 EXPORT_SYMBOL(dmi_check_system); 476 477 /** 478 * dmi_first_match - find dmi_system_id structure matching system DMI data 479 * @list: array of dmi_system_id structures to match against 480 * All non-null elements of the list must match 481 * their slot's (field index's) data (i.e., each 482 * list string must be a substring of the specified 483 * DMI slot's string data) to be considered a 484 * successful match. 485 * 486 * Walk the blacklist table until the first match is found. Return the 487 * pointer to the matching entry or NULL if there's no match. 488 */ 489 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 490 { 491 const struct dmi_system_id *d; 492 493 for (d = list; !dmi_is_end_of_table(d); d++) 494 if (dmi_matches(d)) 495 return d; 496 497 return NULL; 498 } 499 EXPORT_SYMBOL(dmi_first_match); 500 501 /** 502 * dmi_get_system_info - return DMI data value 503 * @field: data index (see enum dmi_field) 504 * 505 * Returns one DMI data value, can be used to perform 506 * complex DMI data checks. 507 */ 508 const char *dmi_get_system_info(int field) 509 { 510 return dmi_ident[field]; 511 } 512 EXPORT_SYMBOL(dmi_get_system_info); 513 514 /** 515 * dmi_name_in_serial - Check if string is in the DMI product serial information 516 * @str: string to check for 517 */ 518 int dmi_name_in_serial(const char *str) 519 { 520 int f = DMI_PRODUCT_SERIAL; 521 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 522 return 1; 523 return 0; 524 } 525 526 /** 527 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 528 * @str: Case sensitive Name 529 */ 530 int dmi_name_in_vendors(const char *str) 531 { 532 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 533 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 534 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 535 int i; 536 for (i = 0; fields[i] != DMI_NONE; i++) { 537 int f = fields[i]; 538 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 539 return 1; 540 } 541 return 0; 542 } 543 EXPORT_SYMBOL(dmi_name_in_vendors); 544 545 /** 546 * dmi_find_device - find onboard device by type/name 547 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 548 * @name: device name string or %NULL to match all 549 * @from: previous device found in search, or %NULL for new search. 550 * 551 * Iterates through the list of known onboard devices. If a device is 552 * found with a matching @vendor and @device, a pointer to its device 553 * structure is returned. Otherwise, %NULL is returned. 554 * A new search is initiated by passing %NULL as the @from argument. 555 * If @from is not %NULL, searches continue from next device. 556 */ 557 const struct dmi_device * dmi_find_device(int type, const char *name, 558 const struct dmi_device *from) 559 { 560 const struct list_head *head = from ? &from->list : &dmi_devices; 561 struct list_head *d; 562 563 for(d = head->next; d != &dmi_devices; d = d->next) { 564 const struct dmi_device *dev = 565 list_entry(d, struct dmi_device, list); 566 567 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 568 ((name == NULL) || (strcmp(dev->name, name) == 0))) 569 return dev; 570 } 571 572 return NULL; 573 } 574 EXPORT_SYMBOL(dmi_find_device); 575 576 /** 577 * dmi_get_date - parse a DMI date 578 * @field: data index (see enum dmi_field) 579 * @yearp: optional out parameter for the year 580 * @monthp: optional out parameter for the month 581 * @dayp: optional out parameter for the day 582 * 583 * The date field is assumed to be in the form resembling 584 * [mm[/dd]]/yy[yy] and the result is stored in the out 585 * parameters any or all of which can be omitted. 586 * 587 * If the field doesn't exist, all out parameters are set to zero 588 * and false is returned. Otherwise, true is returned with any 589 * invalid part of date set to zero. 590 * 591 * On return, year, month and day are guaranteed to be in the 592 * range of [0,9999], [0,12] and [0,31] respectively. 593 */ 594 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 595 { 596 int year = 0, month = 0, day = 0; 597 bool exists; 598 const char *s, *y; 599 char *e; 600 601 s = dmi_get_system_info(field); 602 exists = s; 603 if (!exists) 604 goto out; 605 606 /* 607 * Determine year first. We assume the date string resembles 608 * mm/dd/yy[yy] but the original code extracted only the year 609 * from the end. Keep the behavior in the spirit of no 610 * surprises. 611 */ 612 y = strrchr(s, '/'); 613 if (!y) 614 goto out; 615 616 y++; 617 year = simple_strtoul(y, &e, 10); 618 if (y != e && year < 100) { /* 2-digit year */ 619 year += 1900; 620 if (year < 1996) /* no dates < spec 1.0 */ 621 year += 100; 622 } 623 if (year > 9999) /* year should fit in %04d */ 624 year = 0; 625 626 /* parse the mm and dd */ 627 month = simple_strtoul(s, &e, 10); 628 if (s == e || *e != '/' || !month || month > 12) { 629 month = 0; 630 goto out; 631 } 632 633 s = e + 1; 634 day = simple_strtoul(s, &e, 10); 635 if (s == y || s == e || *e != '/' || day > 31) 636 day = 0; 637 out: 638 if (yearp) 639 *yearp = year; 640 if (monthp) 641 *monthp = month; 642 if (dayp) 643 *dayp = day; 644 return exists; 645 } 646 EXPORT_SYMBOL(dmi_get_date); 647 648 /** 649 * dmi_walk - Walk the DMI table and get called back for every record 650 * @decode: Callback function 651 * @private_data: Private data to be passed to the callback function 652 * 653 * Returns -1 when the DMI table can't be reached, 0 on success. 654 */ 655 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 656 void *private_data) 657 { 658 u8 *buf; 659 660 if (!dmi_available) 661 return -1; 662 663 buf = ioremap(dmi_base, dmi_len); 664 if (buf == NULL) 665 return -1; 666 667 dmi_table(buf, dmi_len, dmi_num, decode, private_data); 668 669 iounmap(buf); 670 return 0; 671 } 672 EXPORT_SYMBOL_GPL(dmi_walk); 673 674 /** 675 * dmi_match - compare a string to the dmi field (if exists) 676 * @f: DMI field identifier 677 * @str: string to compare the DMI field to 678 * 679 * Returns true if the requested field equals to the str (including NULL). 680 */ 681 bool dmi_match(enum dmi_field f, const char *str) 682 { 683 const char *info = dmi_get_system_info(f); 684 685 if (info == NULL || str == NULL) 686 return info == str; 687 688 return !strcmp(info, str); 689 } 690 EXPORT_SYMBOL_GPL(dmi_match); 691