1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char * __init dmi_string(struct dmi_header *dm, u8 s) 12 { 13 u8 *bp = ((u8 *) dm) + dm->length; 14 char *str = ""; 15 16 if (s) { 17 s--; 18 while (s > 0 && *bp) { 19 bp += strlen(bp) + 1; 20 s--; 21 } 22 23 if (*bp != 0) { 24 str = dmi_alloc(strlen(bp) + 1); 25 if (str != NULL) 26 strcpy(str, bp); 27 else 28 printk(KERN_ERR "dmi_string: out of memory.\n"); 29 } 30 } 31 32 return str; 33 } 34 35 /* 36 * We have to be cautious here. We have seen BIOSes with DMI pointers 37 * pointing to completely the wrong place for example 38 */ 39 static int __init dmi_table(u32 base, int len, int num, 40 void (*decode)(struct dmi_header *)) 41 { 42 u8 *buf, *data; 43 int i = 0; 44 45 buf = dmi_ioremap(base, len); 46 if (buf == NULL) 47 return -1; 48 49 data = buf; 50 51 /* 52 * Stop when we see all the items the table claimed to have 53 * OR we run off the end of the table (also happens) 54 */ 55 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 56 struct dmi_header *dm = (struct dmi_header *)data; 57 /* 58 * We want to know the total length (formated area and strings) 59 * before decoding to make sure we won't run off the table in 60 * dmi_decode or dmi_string 61 */ 62 data += dm->length; 63 while ((data - buf < len - 1) && (data[0] || data[1])) 64 data++; 65 if (data - buf < len - 1) 66 decode(dm); 67 data += 2; 68 i++; 69 } 70 dmi_iounmap(buf, len); 71 return 0; 72 } 73 74 static int __init dmi_checksum(u8 *buf) 75 { 76 u8 sum = 0; 77 int a; 78 79 for (a = 0; a < 15; a++) 80 sum += buf[a]; 81 82 return sum == 0; 83 } 84 85 static char *dmi_ident[DMI_STRING_MAX]; 86 static LIST_HEAD(dmi_devices); 87 88 /* 89 * Save a DMI string 90 */ 91 static void __init dmi_save_ident(struct dmi_header *dm, int slot, int string) 92 { 93 char *p, *d = (char*) dm; 94 95 if (dmi_ident[slot]) 96 return; 97 98 p = dmi_string(dm, d[string]); 99 if (p == NULL) 100 return; 101 102 dmi_ident[slot] = p; 103 } 104 105 static void __init dmi_save_devices(struct dmi_header *dm) 106 { 107 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 108 struct dmi_device *dev; 109 110 for (i = 0; i < count; i++) { 111 char *d = (char *)(dm + 1) + (i * 2); 112 113 /* Skip disabled device */ 114 if ((*d & 0x80) == 0) 115 continue; 116 117 dev = dmi_alloc(sizeof(*dev)); 118 if (!dev) { 119 printk(KERN_ERR "dmi_save_devices: out of memory.\n"); 120 break; 121 } 122 123 dev->type = *d++ & 0x7f; 124 dev->name = dmi_string(dm, *d); 125 dev->device_data = NULL; 126 list_add(&dev->list, &dmi_devices); 127 } 128 } 129 130 static void __init dmi_save_oem_strings_devices(struct dmi_header *dm) 131 { 132 int i, count = *(u8 *)(dm + 1); 133 struct dmi_device *dev; 134 135 for (i = 1; i <= count; i++) { 136 dev = dmi_alloc(sizeof(*dev)); 137 if (!dev) { 138 printk(KERN_ERR 139 "dmi_save_oem_strings_devices: out of memory.\n"); 140 break; 141 } 142 143 dev->type = DMI_DEV_TYPE_OEM_STRING; 144 dev->name = dmi_string(dm, i); 145 dev->device_data = NULL; 146 147 list_add(&dev->list, &dmi_devices); 148 } 149 } 150 151 static void __init dmi_save_ipmi_device(struct dmi_header *dm) 152 { 153 struct dmi_device *dev; 154 void * data; 155 156 data = dmi_alloc(dm->length); 157 if (data == NULL) { 158 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 159 return; 160 } 161 162 memcpy(data, dm, dm->length); 163 164 dev = dmi_alloc(sizeof(*dev)); 165 if (!dev) { 166 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 167 return; 168 } 169 170 dev->type = DMI_DEV_TYPE_IPMI; 171 dev->name = "IPMI controller"; 172 dev->device_data = data; 173 174 list_add(&dev->list, &dmi_devices); 175 } 176 177 /* 178 * Process a DMI table entry. Right now all we care about are the BIOS 179 * and machine entries. For 2.5 we should pull the smbus controller info 180 * out of here. 181 */ 182 static void __init dmi_decode(struct dmi_header *dm) 183 { 184 switch(dm->type) { 185 case 0: /* BIOS Information */ 186 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 187 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 188 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 189 break; 190 case 1: /* System Information */ 191 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 192 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 193 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 194 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 195 break; 196 case 2: /* Base Board Information */ 197 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 198 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 199 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 200 break; 201 case 10: /* Onboard Devices Information */ 202 dmi_save_devices(dm); 203 break; 204 case 11: /* OEM Strings */ 205 dmi_save_oem_strings_devices(dm); 206 break; 207 case 38: /* IPMI Device Information */ 208 dmi_save_ipmi_device(dm); 209 } 210 } 211 212 static int __init dmi_present(char __iomem *p) 213 { 214 u8 buf[15]; 215 memcpy_fromio(buf, p, 15); 216 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 217 u16 num = (buf[13] << 8) | buf[12]; 218 u16 len = (buf[7] << 8) | buf[6]; 219 u32 base = (buf[11] << 24) | (buf[10] << 16) | 220 (buf[9] << 8) | buf[8]; 221 222 /* 223 * DMI version 0.0 means that the real version is taken from 224 * the SMBIOS version, which we don't know at this point. 225 */ 226 if (buf[14] != 0) 227 printk(KERN_INFO "DMI %d.%d present.\n", 228 buf[14] >> 4, buf[14] & 0xF); 229 else 230 printk(KERN_INFO "DMI present.\n"); 231 if (dmi_table(base,len, num, dmi_decode) == 0) 232 return 0; 233 } 234 return 1; 235 } 236 237 void __init dmi_scan_machine(void) 238 { 239 char __iomem *p, *q; 240 int rc; 241 242 if (efi_enabled) { 243 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 244 goto out; 245 246 /* This is called as a core_initcall() because it isn't 247 * needed during early boot. This also means we can 248 * iounmap the space when we're done with it. 249 */ 250 p = dmi_ioremap(efi.smbios, 32); 251 if (p == NULL) 252 goto out; 253 254 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 255 dmi_iounmap(p, 32); 256 if (!rc) 257 return; 258 } 259 else { 260 /* 261 * no iounmap() for that ioremap(); it would be a no-op, but 262 * it's so early in setup that sucker gets confused into doing 263 * what it shouldn't if we actually call it. 264 */ 265 p = dmi_ioremap(0xF0000, 0x10000); 266 if (p == NULL) 267 goto out; 268 269 for (q = p; q < p + 0x10000; q += 16) { 270 rc = dmi_present(q); 271 if (!rc) 272 return; 273 } 274 } 275 out: printk(KERN_INFO "DMI not present or invalid.\n"); 276 } 277 278 /** 279 * dmi_check_system - check system DMI data 280 * @list: array of dmi_system_id structures to match against 281 * All non-null elements of the list must match 282 * their slot's (field index's) data (i.e., each 283 * list string must be a substring of the specified 284 * DMI slot's string data) to be considered a 285 * successful match. 286 * 287 * Walk the blacklist table running matching functions until someone 288 * returns non zero or we hit the end. Callback function is called for 289 * each successful match. Returns the number of matches. 290 */ 291 int dmi_check_system(struct dmi_system_id *list) 292 { 293 int i, count = 0; 294 struct dmi_system_id *d = list; 295 296 while (d->ident) { 297 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 298 int s = d->matches[i].slot; 299 if (s == DMI_NONE) 300 continue; 301 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 302 continue; 303 /* No match */ 304 goto fail; 305 } 306 count++; 307 if (d->callback && d->callback(d)) 308 break; 309 fail: d++; 310 } 311 312 return count; 313 } 314 EXPORT_SYMBOL(dmi_check_system); 315 316 /** 317 * dmi_get_system_info - return DMI data value 318 * @field: data index (see enum dmi_field) 319 * 320 * Returns one DMI data value, can be used to perform 321 * complex DMI data checks. 322 */ 323 char *dmi_get_system_info(int field) 324 { 325 return dmi_ident[field]; 326 } 327 EXPORT_SYMBOL(dmi_get_system_info); 328 329 330 /** 331 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 332 * @str: Case sensitive Name 333 */ 334 int dmi_name_in_vendors(char *str) 335 { 336 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 337 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 338 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 339 int i; 340 for (i = 0; fields[i] != DMI_NONE; i++) { 341 int f = fields[i]; 342 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 343 return 1; 344 } 345 return 0; 346 } 347 EXPORT_SYMBOL(dmi_name_in_vendors); 348 349 /** 350 * dmi_find_device - find onboard device by type/name 351 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 352 * @name: device name string or %NULL to match all 353 * @from: previous device found in search, or %NULL for new search. 354 * 355 * Iterates through the list of known onboard devices. If a device is 356 * found with a matching @vendor and @device, a pointer to its device 357 * structure is returned. Otherwise, %NULL is returned. 358 * A new search is initiated by passing %NULL as the @from argument. 359 * If @from is not %NULL, searches continue from next device. 360 */ 361 struct dmi_device * dmi_find_device(int type, const char *name, 362 struct dmi_device *from) 363 { 364 struct list_head *d, *head = from ? &from->list : &dmi_devices; 365 366 for(d = head->next; d != &dmi_devices; d = d->next) { 367 struct dmi_device *dev = list_entry(d, struct dmi_device, list); 368 369 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 370 ((name == NULL) || (strcmp(dev->name, name) == 0))) 371 return dev; 372 } 373 374 return NULL; 375 } 376 EXPORT_SYMBOL(dmi_find_device); 377 378 /** 379 * dmi_get_year - Return year of a DMI date 380 * @field: data index (like dmi_get_system_info) 381 * 382 * Returns -1 when the field doesn't exist. 0 when it is broken. 383 */ 384 int dmi_get_year(int field) 385 { 386 int year; 387 char *s = dmi_get_system_info(field); 388 389 if (!s) 390 return -1; 391 if (*s == '\0') 392 return 0; 393 s = strrchr(s, '/'); 394 if (!s) 395 return 0; 396 397 s += 1; 398 year = simple_strtoul(s, NULL, 0); 399 if (year && year < 100) { /* 2-digit year */ 400 year += 1900; 401 if (year < 1996) /* no dates < spec 1.0 */ 402 year += 100; 403 } 404 405 return year; 406 } 407