xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
13 
14 struct kobject *dmi_kobj;
15 EXPORT_SYMBOL_GPL(dmi_kobj);
16 
17 /*
18  * DMI stands for "Desktop Management Interface".  It is part
19  * of and an antecedent to, SMBIOS, which stands for System
20  * Management BIOS.  See further: http://www.dmtf.org/standards
21  */
22 static const char dmi_empty_string[] = "";
23 
24 static u32 dmi_ver __initdata;
25 static u32 dmi_len;
26 static u16 dmi_num;
27 static u8 smbios_entry_point[32];
28 static int smbios_entry_point_size;
29 
30 /* DMI system identification string used during boot */
31 static char dmi_ids_string[128] __initdata;
32 
33 static struct dmi_memdev_info {
34 	const char *device;
35 	const char *bank;
36 	u64 size;		/* bytes */
37 	u16 handle;
38 } *dmi_memdev;
39 static int dmi_memdev_nr;
40 
41 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
42 {
43 	const u8 *bp = ((u8 *) dm) + dm->length;
44 	const u8 *nsp;
45 
46 	if (s) {
47 		while (--s > 0 && *bp)
48 			bp += strlen(bp) + 1;
49 
50 		/* Strings containing only spaces are considered empty */
51 		nsp = bp;
52 		while (*nsp == ' ')
53 			nsp++;
54 		if (*nsp != '\0')
55 			return bp;
56 	}
57 
58 	return dmi_empty_string;
59 }
60 
61 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
62 {
63 	const char *bp = dmi_string_nosave(dm, s);
64 	char *str;
65 	size_t len;
66 
67 	if (bp == dmi_empty_string)
68 		return dmi_empty_string;
69 
70 	len = strlen(bp) + 1;
71 	str = dmi_alloc(len);
72 	if (str != NULL)
73 		strcpy(str, bp);
74 
75 	return str;
76 }
77 
78 /*
79  *	We have to be cautious here. We have seen BIOSes with DMI pointers
80  *	pointing to completely the wrong place for example
81  */
82 static void dmi_decode_table(u8 *buf,
83 			     void (*decode)(const struct dmi_header *, void *),
84 			     void *private_data)
85 {
86 	u8 *data = buf;
87 	int i = 0;
88 
89 	/*
90 	 * Stop when we have seen all the items the table claimed to have
91 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
92 	 * >= 3.0 only) OR we run off the end of the table (should never
93 	 * happen but sometimes does on bogus implementations.)
94 	 */
95 	while ((!dmi_num || i < dmi_num) &&
96 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
97 		const struct dmi_header *dm = (const struct dmi_header *)data;
98 
99 		/*
100 		 *  We want to know the total length (formatted area and
101 		 *  strings) before decoding to make sure we won't run off the
102 		 *  table in dmi_decode or dmi_string
103 		 */
104 		data += dm->length;
105 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
106 			data++;
107 		if (data - buf < dmi_len - 1)
108 			decode(dm, private_data);
109 
110 		data += 2;
111 		i++;
112 
113 		/*
114 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
115 		 * For tables behind a 64-bit entry point, we have no item
116 		 * count and no exact table length, so stop on end-of-table
117 		 * marker. For tables behind a 32-bit entry point, we have
118 		 * seen OEM structures behind the end-of-table marker on
119 		 * some systems, so don't trust it.
120 		 */
121 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
122 			break;
123 	}
124 
125 	/* Trim DMI table length if needed */
126 	if (dmi_len > data - buf)
127 		dmi_len = data - buf;
128 }
129 
130 static phys_addr_t dmi_base;
131 
132 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
133 		void *))
134 {
135 	u8 *buf;
136 	u32 orig_dmi_len = dmi_len;
137 
138 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
139 	if (buf == NULL)
140 		return -ENOMEM;
141 
142 	dmi_decode_table(buf, decode, NULL);
143 
144 	add_device_randomness(buf, dmi_len);
145 
146 	dmi_early_unmap(buf, orig_dmi_len);
147 	return 0;
148 }
149 
150 static int __init dmi_checksum(const u8 *buf, u8 len)
151 {
152 	u8 sum = 0;
153 	int a;
154 
155 	for (a = 0; a < len; a++)
156 		sum += buf[a];
157 
158 	return sum == 0;
159 }
160 
161 static const char *dmi_ident[DMI_STRING_MAX];
162 static LIST_HEAD(dmi_devices);
163 int dmi_available;
164 
165 /*
166  *	Save a DMI string
167  */
168 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
169 		int string)
170 {
171 	const char *d = (const char *) dm;
172 	const char *p;
173 
174 	if (dmi_ident[slot] || dm->length <= string)
175 		return;
176 
177 	p = dmi_string(dm, d[string]);
178 	if (p == NULL)
179 		return;
180 
181 	dmi_ident[slot] = p;
182 }
183 
184 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
185 		int index)
186 {
187 	const u8 *d;
188 	char *s;
189 	int is_ff = 1, is_00 = 1, i;
190 
191 	if (dmi_ident[slot] || dm->length < index + 16)
192 		return;
193 
194 	d = (u8 *) dm + index;
195 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
196 		if (d[i] != 0x00)
197 			is_00 = 0;
198 		if (d[i] != 0xFF)
199 			is_ff = 0;
200 	}
201 
202 	if (is_ff || is_00)
203 		return;
204 
205 	s = dmi_alloc(16*2+4+1);
206 	if (!s)
207 		return;
208 
209 	/*
210 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
211 	 * the UUID are supposed to be little-endian encoded.  The specification
212 	 * says that this is the defacto standard.
213 	 */
214 	if (dmi_ver >= 0x020600)
215 		sprintf(s, "%pUl", d);
216 	else
217 		sprintf(s, "%pUb", d);
218 
219 	dmi_ident[slot] = s;
220 }
221 
222 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
223 		int index)
224 {
225 	const u8 *d;
226 	char *s;
227 
228 	if (dmi_ident[slot] || dm->length <= index)
229 		return;
230 
231 	s = dmi_alloc(4);
232 	if (!s)
233 		return;
234 
235 	d = (u8 *) dm + index;
236 	sprintf(s, "%u", *d & 0x7F);
237 	dmi_ident[slot] = s;
238 }
239 
240 static void __init dmi_save_one_device(int type, const char *name)
241 {
242 	struct dmi_device *dev;
243 
244 	/* No duplicate device */
245 	if (dmi_find_device(type, name, NULL))
246 		return;
247 
248 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
249 	if (!dev)
250 		return;
251 
252 	dev->type = type;
253 	strcpy((char *)(dev + 1), name);
254 	dev->name = (char *)(dev + 1);
255 	dev->device_data = NULL;
256 	list_add(&dev->list, &dmi_devices);
257 }
258 
259 static void __init dmi_save_devices(const struct dmi_header *dm)
260 {
261 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
262 
263 	for (i = 0; i < count; i++) {
264 		const char *d = (char *)(dm + 1) + (i * 2);
265 
266 		/* Skip disabled device */
267 		if ((*d & 0x80) == 0)
268 			continue;
269 
270 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
271 	}
272 }
273 
274 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
275 {
276 	int i, count;
277 	struct dmi_device *dev;
278 
279 	if (dm->length < 0x05)
280 		return;
281 
282 	count = *(u8 *)(dm + 1);
283 	for (i = 1; i <= count; i++) {
284 		const char *devname = dmi_string(dm, i);
285 
286 		if (devname == dmi_empty_string)
287 			continue;
288 
289 		dev = dmi_alloc(sizeof(*dev));
290 		if (!dev)
291 			break;
292 
293 		dev->type = DMI_DEV_TYPE_OEM_STRING;
294 		dev->name = devname;
295 		dev->device_data = NULL;
296 
297 		list_add(&dev->list, &dmi_devices);
298 	}
299 }
300 
301 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
302 {
303 	struct dmi_device *dev;
304 	void *data;
305 
306 	data = dmi_alloc(dm->length);
307 	if (data == NULL)
308 		return;
309 
310 	memcpy(data, dm, dm->length);
311 
312 	dev = dmi_alloc(sizeof(*dev));
313 	if (!dev)
314 		return;
315 
316 	dev->type = DMI_DEV_TYPE_IPMI;
317 	dev->name = "IPMI controller";
318 	dev->device_data = data;
319 
320 	list_add_tail(&dev->list, &dmi_devices);
321 }
322 
323 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
324 					int devfn, const char *name, int type)
325 {
326 	struct dmi_dev_onboard *dev;
327 
328 	/* Ignore invalid values */
329 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
330 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
331 		return;
332 
333 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
334 	if (!dev)
335 		return;
336 
337 	dev->instance = instance;
338 	dev->segment = segment;
339 	dev->bus = bus;
340 	dev->devfn = devfn;
341 
342 	strcpy((char *)&dev[1], name);
343 	dev->dev.type = type;
344 	dev->dev.name = (char *)&dev[1];
345 	dev->dev.device_data = dev;
346 
347 	list_add(&dev->dev.list, &dmi_devices);
348 }
349 
350 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
351 {
352 	const char *name;
353 	const u8 *d = (u8 *)dm;
354 
355 	if (dm->length < 0x0B)
356 		return;
357 
358 	/* Skip disabled device */
359 	if ((d[0x5] & 0x80) == 0)
360 		return;
361 
362 	name = dmi_string_nosave(dm, d[0x4]);
363 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
364 			     DMI_DEV_TYPE_DEV_ONBOARD);
365 	dmi_save_one_device(d[0x5] & 0x7f, name);
366 }
367 
368 static void __init dmi_save_system_slot(const struct dmi_header *dm)
369 {
370 	const u8 *d = (u8 *)dm;
371 
372 	/* Need SMBIOS 2.6+ structure */
373 	if (dm->length < 0x11)
374 		return;
375 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
376 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
377 			     DMI_DEV_TYPE_DEV_SLOT);
378 }
379 
380 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
381 {
382 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
383 		return;
384 	dmi_memdev_nr++;
385 }
386 
387 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
388 {
389 	const char *d = (const char *)dm;
390 	static int nr;
391 	u64 bytes;
392 	u16 size;
393 
394 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
395 		return;
396 	if (nr >= dmi_memdev_nr) {
397 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
398 		return;
399 	}
400 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
401 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
402 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
403 
404 	size = get_unaligned((u16 *)&d[0xC]);
405 	if (size == 0)
406 		bytes = 0;
407 	else if (size == 0xffff)
408 		bytes = ~0ull;
409 	else if (size & 0x8000)
410 		bytes = (u64)(size & 0x7fff) << 10;
411 	else if (size != 0x7fff)
412 		bytes = (u64)size << 20;
413 	else
414 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
415 
416 	dmi_memdev[nr].size = bytes;
417 	nr++;
418 }
419 
420 static void __init dmi_memdev_walk(void)
421 {
422 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
423 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
424 		if (dmi_memdev)
425 			dmi_walk_early(save_mem_devices);
426 	}
427 }
428 
429 /*
430  *	Process a DMI table entry. Right now all we care about are the BIOS
431  *	and machine entries. For 2.5 we should pull the smbus controller info
432  *	out of here.
433  */
434 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
435 {
436 	switch (dm->type) {
437 	case 0:		/* BIOS Information */
438 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
439 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
440 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
441 		break;
442 	case 1:		/* System Information */
443 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
444 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
445 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
446 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
447 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
448 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
449 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
450 		break;
451 	case 2:		/* Base Board Information */
452 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
453 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
454 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
455 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
456 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
457 		break;
458 	case 3:		/* Chassis Information */
459 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
460 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
461 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
462 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
463 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
464 		break;
465 	case 9:		/* System Slots */
466 		dmi_save_system_slot(dm);
467 		break;
468 	case 10:	/* Onboard Devices Information */
469 		dmi_save_devices(dm);
470 		break;
471 	case 11:	/* OEM Strings */
472 		dmi_save_oem_strings_devices(dm);
473 		break;
474 	case 38:	/* IPMI Device Information */
475 		dmi_save_ipmi_device(dm);
476 		break;
477 	case 41:	/* Onboard Devices Extended Information */
478 		dmi_save_extended_devices(dm);
479 	}
480 }
481 
482 static int __init print_filtered(char *buf, size_t len, const char *info)
483 {
484 	int c = 0;
485 	const char *p;
486 
487 	if (!info)
488 		return c;
489 
490 	for (p = info; *p; p++)
491 		if (isprint(*p))
492 			c += scnprintf(buf + c, len - c, "%c", *p);
493 		else
494 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
495 	return c;
496 }
497 
498 static void __init dmi_format_ids(char *buf, size_t len)
499 {
500 	int c = 0;
501 	const char *board;	/* Board Name is optional */
502 
503 	c += print_filtered(buf + c, len - c,
504 			    dmi_get_system_info(DMI_SYS_VENDOR));
505 	c += scnprintf(buf + c, len - c, " ");
506 	c += print_filtered(buf + c, len - c,
507 			    dmi_get_system_info(DMI_PRODUCT_NAME));
508 
509 	board = dmi_get_system_info(DMI_BOARD_NAME);
510 	if (board) {
511 		c += scnprintf(buf + c, len - c, "/");
512 		c += print_filtered(buf + c, len - c, board);
513 	}
514 	c += scnprintf(buf + c, len - c, ", BIOS ");
515 	c += print_filtered(buf + c, len - c,
516 			    dmi_get_system_info(DMI_BIOS_VERSION));
517 	c += scnprintf(buf + c, len - c, " ");
518 	c += print_filtered(buf + c, len - c,
519 			    dmi_get_system_info(DMI_BIOS_DATE));
520 }
521 
522 /*
523  * Check for DMI/SMBIOS headers in the system firmware image.  Any
524  * SMBIOS header must start 16 bytes before the DMI header, so take a
525  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
526  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
527  * takes precedence) and return 0.  Otherwise return 1.
528  */
529 static int __init dmi_present(const u8 *buf)
530 {
531 	u32 smbios_ver;
532 
533 	if (memcmp(buf, "_SM_", 4) == 0 &&
534 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
535 		smbios_ver = get_unaligned_be16(buf + 6);
536 		smbios_entry_point_size = buf[5];
537 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
538 
539 		/* Some BIOS report weird SMBIOS version, fix that up */
540 		switch (smbios_ver) {
541 		case 0x021F:
542 		case 0x0221:
543 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
544 				 smbios_ver & 0xFF, 3);
545 			smbios_ver = 0x0203;
546 			break;
547 		case 0x0233:
548 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
549 			smbios_ver = 0x0206;
550 			break;
551 		}
552 	} else {
553 		smbios_ver = 0;
554 	}
555 
556 	buf += 16;
557 
558 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
559 		if (smbios_ver)
560 			dmi_ver = smbios_ver;
561 		else
562 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
563 		dmi_ver <<= 8;
564 		dmi_num = get_unaligned_le16(buf + 12);
565 		dmi_len = get_unaligned_le16(buf + 6);
566 		dmi_base = get_unaligned_le32(buf + 8);
567 
568 		if (dmi_walk_early(dmi_decode) == 0) {
569 			if (smbios_ver) {
570 				pr_info("SMBIOS %d.%d present.\n",
571 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
572 			} else {
573 				smbios_entry_point_size = 15;
574 				memcpy(smbios_entry_point, buf,
575 				       smbios_entry_point_size);
576 				pr_info("Legacy DMI %d.%d present.\n",
577 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
578 			}
579 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
580 			pr_info("DMI: %s\n", dmi_ids_string);
581 			return 0;
582 		}
583 	}
584 
585 	return 1;
586 }
587 
588 /*
589  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
590  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
591  */
592 static int __init dmi_smbios3_present(const u8 *buf)
593 {
594 	if (memcmp(buf, "_SM3_", 5) == 0 &&
595 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
596 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
597 		dmi_num = 0;			/* No longer specified */
598 		dmi_len = get_unaligned_le32(buf + 12);
599 		dmi_base = get_unaligned_le64(buf + 16);
600 		smbios_entry_point_size = buf[6];
601 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
602 
603 		if (dmi_walk_early(dmi_decode) == 0) {
604 			pr_info("SMBIOS %d.%d.%d present.\n",
605 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
606 				dmi_ver & 0xFF);
607 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
608 			pr_info("DMI: %s\n", dmi_ids_string);
609 			return 0;
610 		}
611 	}
612 	return 1;
613 }
614 
615 static void __init dmi_scan_machine(void)
616 {
617 	char __iomem *p, *q;
618 	char buf[32];
619 
620 	if (efi_enabled(EFI_CONFIG_TABLES)) {
621 		/*
622 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
623 		 * allowed to define both the 64-bit entry point (smbios3) and
624 		 * the 32-bit entry point (smbios), in which case they should
625 		 * either both point to the same SMBIOS structure table, or the
626 		 * table pointed to by the 64-bit entry point should contain a
627 		 * superset of the table contents pointed to by the 32-bit entry
628 		 * point (section 5.2)
629 		 * This implies that the 64-bit entry point should have
630 		 * precedence if it is defined and supported by the OS. If we
631 		 * have the 64-bit entry point, but fail to decode it, fall
632 		 * back to the legacy one (if available)
633 		 */
634 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
635 			p = dmi_early_remap(efi.smbios3, 32);
636 			if (p == NULL)
637 				goto error;
638 			memcpy_fromio(buf, p, 32);
639 			dmi_early_unmap(p, 32);
640 
641 			if (!dmi_smbios3_present(buf)) {
642 				dmi_available = 1;
643 				return;
644 			}
645 		}
646 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
647 			goto error;
648 
649 		/* This is called as a core_initcall() because it isn't
650 		 * needed during early boot.  This also means we can
651 		 * iounmap the space when we're done with it.
652 		 */
653 		p = dmi_early_remap(efi.smbios, 32);
654 		if (p == NULL)
655 			goto error;
656 		memcpy_fromio(buf, p, 32);
657 		dmi_early_unmap(p, 32);
658 
659 		if (!dmi_present(buf)) {
660 			dmi_available = 1;
661 			return;
662 		}
663 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
664 		p = dmi_early_remap(0xF0000, 0x10000);
665 		if (p == NULL)
666 			goto error;
667 
668 		/*
669 		 * Same logic as above, look for a 64-bit entry point
670 		 * first, and if not found, fall back to 32-bit entry point.
671 		 */
672 		memcpy_fromio(buf, p, 16);
673 		for (q = p + 16; q < p + 0x10000; q += 16) {
674 			memcpy_fromio(buf + 16, q, 16);
675 			if (!dmi_smbios3_present(buf)) {
676 				dmi_available = 1;
677 				dmi_early_unmap(p, 0x10000);
678 				return;
679 			}
680 			memcpy(buf, buf + 16, 16);
681 		}
682 
683 		/*
684 		 * Iterate over all possible DMI header addresses q.
685 		 * Maintain the 32 bytes around q in buf.  On the
686 		 * first iteration, substitute zero for the
687 		 * out-of-range bytes so there is no chance of falsely
688 		 * detecting an SMBIOS header.
689 		 */
690 		memset(buf, 0, 16);
691 		for (q = p; q < p + 0x10000; q += 16) {
692 			memcpy_fromio(buf + 16, q, 16);
693 			if (!dmi_present(buf)) {
694 				dmi_available = 1;
695 				dmi_early_unmap(p, 0x10000);
696 				return;
697 			}
698 			memcpy(buf, buf + 16, 16);
699 		}
700 		dmi_early_unmap(p, 0x10000);
701 	}
702  error:
703 	pr_info("DMI not present or invalid.\n");
704 }
705 
706 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
707 			      struct bin_attribute *attr, char *buf,
708 			      loff_t pos, size_t count)
709 {
710 	memcpy(buf, attr->private + pos, count);
711 	return count;
712 }
713 
714 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
715 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
716 
717 static int __init dmi_init(void)
718 {
719 	struct kobject *tables_kobj;
720 	u8 *dmi_table;
721 	int ret = -ENOMEM;
722 
723 	if (!dmi_available)
724 		return 0;
725 
726 	/*
727 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
728 	 * even after farther error, as it can be used by other modules like
729 	 * dmi-sysfs.
730 	 */
731 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
732 	if (!dmi_kobj)
733 		goto err;
734 
735 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
736 	if (!tables_kobj)
737 		goto err;
738 
739 	dmi_table = dmi_remap(dmi_base, dmi_len);
740 	if (!dmi_table)
741 		goto err_tables;
742 
743 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
744 	bin_attr_smbios_entry_point.private = smbios_entry_point;
745 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
746 	if (ret)
747 		goto err_unmap;
748 
749 	bin_attr_DMI.size = dmi_len;
750 	bin_attr_DMI.private = dmi_table;
751 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
752 	if (!ret)
753 		return 0;
754 
755 	sysfs_remove_bin_file(tables_kobj,
756 			      &bin_attr_smbios_entry_point);
757  err_unmap:
758 	dmi_unmap(dmi_table);
759  err_tables:
760 	kobject_del(tables_kobj);
761 	kobject_put(tables_kobj);
762  err:
763 	pr_err("dmi: Firmware registration failed.\n");
764 
765 	return ret;
766 }
767 subsys_initcall(dmi_init);
768 
769 /**
770  *	dmi_setup - scan and setup DMI system information
771  *
772  *	Scan the DMI system information. This setups DMI identifiers
773  *	(dmi_system_id) for printing it out on task dumps and prepares
774  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
775  *	for using this when reporting memory errors.
776  */
777 void __init dmi_setup(void)
778 {
779 	dmi_scan_machine();
780 	if (!dmi_available)
781 		return;
782 
783 	dmi_memdev_walk();
784 	dump_stack_set_arch_desc("%s", dmi_ids_string);
785 }
786 
787 /**
788  *	dmi_matches - check if dmi_system_id structure matches system DMI data
789  *	@dmi: pointer to the dmi_system_id structure to check
790  */
791 static bool dmi_matches(const struct dmi_system_id *dmi)
792 {
793 	int i;
794 
795 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
796 		int s = dmi->matches[i].slot;
797 		if (s == DMI_NONE)
798 			break;
799 		if (s == DMI_OEM_STRING) {
800 			/* DMI_OEM_STRING must be exact match */
801 			const struct dmi_device *valid;
802 
803 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
804 						dmi->matches[i].substr, NULL);
805 			if (valid)
806 				continue;
807 		} else if (dmi_ident[s]) {
808 			if (dmi->matches[i].exact_match) {
809 				if (!strcmp(dmi_ident[s],
810 					    dmi->matches[i].substr))
811 					continue;
812 			} else {
813 				if (strstr(dmi_ident[s],
814 					   dmi->matches[i].substr))
815 					continue;
816 			}
817 		}
818 
819 		/* No match */
820 		return false;
821 	}
822 	return true;
823 }
824 
825 /**
826  *	dmi_is_end_of_table - check for end-of-table marker
827  *	@dmi: pointer to the dmi_system_id structure to check
828  */
829 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
830 {
831 	return dmi->matches[0].slot == DMI_NONE;
832 }
833 
834 /**
835  *	dmi_check_system - check system DMI data
836  *	@list: array of dmi_system_id structures to match against
837  *		All non-null elements of the list must match
838  *		their slot's (field index's) data (i.e., each
839  *		list string must be a substring of the specified
840  *		DMI slot's string data) to be considered a
841  *		successful match.
842  *
843  *	Walk the blacklist table running matching functions until someone
844  *	returns non zero or we hit the end. Callback function is called for
845  *	each successful match. Returns the number of matches.
846  *
847  *	dmi_setup must be called before this function is called.
848  */
849 int dmi_check_system(const struct dmi_system_id *list)
850 {
851 	int count = 0;
852 	const struct dmi_system_id *d;
853 
854 	for (d = list; !dmi_is_end_of_table(d); d++)
855 		if (dmi_matches(d)) {
856 			count++;
857 			if (d->callback && d->callback(d))
858 				break;
859 		}
860 
861 	return count;
862 }
863 EXPORT_SYMBOL(dmi_check_system);
864 
865 /**
866  *	dmi_first_match - find dmi_system_id structure matching system DMI data
867  *	@list: array of dmi_system_id structures to match against
868  *		All non-null elements of the list must match
869  *		their slot's (field index's) data (i.e., each
870  *		list string must be a substring of the specified
871  *		DMI slot's string data) to be considered a
872  *		successful match.
873  *
874  *	Walk the blacklist table until the first match is found.  Return the
875  *	pointer to the matching entry or NULL if there's no match.
876  *
877  *	dmi_setup must be called before this function is called.
878  */
879 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
880 {
881 	const struct dmi_system_id *d;
882 
883 	for (d = list; !dmi_is_end_of_table(d); d++)
884 		if (dmi_matches(d))
885 			return d;
886 
887 	return NULL;
888 }
889 EXPORT_SYMBOL(dmi_first_match);
890 
891 /**
892  *	dmi_get_system_info - return DMI data value
893  *	@field: data index (see enum dmi_field)
894  *
895  *	Returns one DMI data value, can be used to perform
896  *	complex DMI data checks.
897  */
898 const char *dmi_get_system_info(int field)
899 {
900 	return dmi_ident[field];
901 }
902 EXPORT_SYMBOL(dmi_get_system_info);
903 
904 /**
905  * dmi_name_in_serial - Check if string is in the DMI product serial information
906  * @str: string to check for
907  */
908 int dmi_name_in_serial(const char *str)
909 {
910 	int f = DMI_PRODUCT_SERIAL;
911 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
912 		return 1;
913 	return 0;
914 }
915 
916 /**
917  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
918  *	@str: Case sensitive Name
919  */
920 int dmi_name_in_vendors(const char *str)
921 {
922 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
923 	int i;
924 	for (i = 0; fields[i] != DMI_NONE; i++) {
925 		int f = fields[i];
926 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
927 			return 1;
928 	}
929 	return 0;
930 }
931 EXPORT_SYMBOL(dmi_name_in_vendors);
932 
933 /**
934  *	dmi_find_device - find onboard device by type/name
935  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
936  *	@name: device name string or %NULL to match all
937  *	@from: previous device found in search, or %NULL for new search.
938  *
939  *	Iterates through the list of known onboard devices. If a device is
940  *	found with a matching @type and @name, a pointer to its device
941  *	structure is returned.  Otherwise, %NULL is returned.
942  *	A new search is initiated by passing %NULL as the @from argument.
943  *	If @from is not %NULL, searches continue from next device.
944  */
945 const struct dmi_device *dmi_find_device(int type, const char *name,
946 				    const struct dmi_device *from)
947 {
948 	const struct list_head *head = from ? &from->list : &dmi_devices;
949 	struct list_head *d;
950 
951 	for (d = head->next; d != &dmi_devices; d = d->next) {
952 		const struct dmi_device *dev =
953 			list_entry(d, struct dmi_device, list);
954 
955 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
956 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
957 			return dev;
958 	}
959 
960 	return NULL;
961 }
962 EXPORT_SYMBOL(dmi_find_device);
963 
964 /**
965  *	dmi_get_date - parse a DMI date
966  *	@field:	data index (see enum dmi_field)
967  *	@yearp: optional out parameter for the year
968  *	@monthp: optional out parameter for the month
969  *	@dayp: optional out parameter for the day
970  *
971  *	The date field is assumed to be in the form resembling
972  *	[mm[/dd]]/yy[yy] and the result is stored in the out
973  *	parameters any or all of which can be omitted.
974  *
975  *	If the field doesn't exist, all out parameters are set to zero
976  *	and false is returned.  Otherwise, true is returned with any
977  *	invalid part of date set to zero.
978  *
979  *	On return, year, month and day are guaranteed to be in the
980  *	range of [0,9999], [0,12] and [0,31] respectively.
981  */
982 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
983 {
984 	int year = 0, month = 0, day = 0;
985 	bool exists;
986 	const char *s, *y;
987 	char *e;
988 
989 	s = dmi_get_system_info(field);
990 	exists = s;
991 	if (!exists)
992 		goto out;
993 
994 	/*
995 	 * Determine year first.  We assume the date string resembles
996 	 * mm/dd/yy[yy] but the original code extracted only the year
997 	 * from the end.  Keep the behavior in the spirit of no
998 	 * surprises.
999 	 */
1000 	y = strrchr(s, '/');
1001 	if (!y)
1002 		goto out;
1003 
1004 	y++;
1005 	year = simple_strtoul(y, &e, 10);
1006 	if (y != e && year < 100) {	/* 2-digit year */
1007 		year += 1900;
1008 		if (year < 1996)	/* no dates < spec 1.0 */
1009 			year += 100;
1010 	}
1011 	if (year > 9999)		/* year should fit in %04d */
1012 		year = 0;
1013 
1014 	/* parse the mm and dd */
1015 	month = simple_strtoul(s, &e, 10);
1016 	if (s == e || *e != '/' || !month || month > 12) {
1017 		month = 0;
1018 		goto out;
1019 	}
1020 
1021 	s = e + 1;
1022 	day = simple_strtoul(s, &e, 10);
1023 	if (s == y || s == e || *e != '/' || day > 31)
1024 		day = 0;
1025 out:
1026 	if (yearp)
1027 		*yearp = year;
1028 	if (monthp)
1029 		*monthp = month;
1030 	if (dayp)
1031 		*dayp = day;
1032 	return exists;
1033 }
1034 EXPORT_SYMBOL(dmi_get_date);
1035 
1036 /**
1037  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1038  *
1039  *	Returns year on success, -ENXIO if DMI is not selected,
1040  *	or a different negative error code if DMI field is not present
1041  *	or not parseable.
1042  */
1043 int dmi_get_bios_year(void)
1044 {
1045 	bool exists;
1046 	int year;
1047 
1048 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1049 	if (!exists)
1050 		return -ENODATA;
1051 
1052 	return year ? year : -ERANGE;
1053 }
1054 EXPORT_SYMBOL(dmi_get_bios_year);
1055 
1056 /**
1057  *	dmi_walk - Walk the DMI table and get called back for every record
1058  *	@decode: Callback function
1059  *	@private_data: Private data to be passed to the callback function
1060  *
1061  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1062  *	or a different negative error code if DMI walking fails.
1063  */
1064 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1065 	     void *private_data)
1066 {
1067 	u8 *buf;
1068 
1069 	if (!dmi_available)
1070 		return -ENXIO;
1071 
1072 	buf = dmi_remap(dmi_base, dmi_len);
1073 	if (buf == NULL)
1074 		return -ENOMEM;
1075 
1076 	dmi_decode_table(buf, decode, private_data);
1077 
1078 	dmi_unmap(buf);
1079 	return 0;
1080 }
1081 EXPORT_SYMBOL_GPL(dmi_walk);
1082 
1083 /**
1084  * dmi_match - compare a string to the dmi field (if exists)
1085  * @f: DMI field identifier
1086  * @str: string to compare the DMI field to
1087  *
1088  * Returns true if the requested field equals to the str (including NULL).
1089  */
1090 bool dmi_match(enum dmi_field f, const char *str)
1091 {
1092 	const char *info = dmi_get_system_info(f);
1093 
1094 	if (info == NULL || str == NULL)
1095 		return info == str;
1096 
1097 	return !strcmp(info, str);
1098 }
1099 EXPORT_SYMBOL_GPL(dmi_match);
1100 
1101 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1102 {
1103 	int n;
1104 
1105 	if (dmi_memdev == NULL)
1106 		return;
1107 
1108 	for (n = 0; n < dmi_memdev_nr; n++) {
1109 		if (handle == dmi_memdev[n].handle) {
1110 			*bank = dmi_memdev[n].bank;
1111 			*device = dmi_memdev[n].device;
1112 			break;
1113 		}
1114 	}
1115 }
1116 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1117 
1118 u64 dmi_memdev_size(u16 handle)
1119 {
1120 	int n;
1121 
1122 	if (dmi_memdev) {
1123 		for (n = 0; n < dmi_memdev_nr; n++) {
1124 			if (handle == dmi_memdev[n].handle)
1125 				return dmi_memdev[n].size;
1126 		}
1127 	}
1128 	return ~0ull;
1129 }
1130 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1131