1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = " "; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* 30 * Catch too early calls to dmi_check_system(): 31 */ 32 static int dmi_initialized; 33 34 /* DMI system identification string used during boot */ 35 static char dmi_ids_string[128] __initdata; 36 37 static struct dmi_memdev_info { 38 const char *device; 39 const char *bank; 40 u16 handle; 41 } *dmi_memdev; 42 static int dmi_memdev_nr; 43 44 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 45 { 46 const u8 *bp = ((u8 *) dm) + dm->length; 47 48 if (s) { 49 s--; 50 while (s > 0 && *bp) { 51 bp += strlen(bp) + 1; 52 s--; 53 } 54 55 if (*bp != 0) { 56 size_t len = strlen(bp)+1; 57 size_t cmp_len = len > 8 ? 8 : len; 58 59 if (!memcmp(bp, dmi_empty_string, cmp_len)) 60 return dmi_empty_string; 61 return bp; 62 } 63 } 64 65 return ""; 66 } 67 68 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 69 { 70 const char *bp = dmi_string_nosave(dm, s); 71 char *str; 72 size_t len; 73 74 if (bp == dmi_empty_string) 75 return dmi_empty_string; 76 77 len = strlen(bp) + 1; 78 str = dmi_alloc(len); 79 if (str != NULL) 80 strcpy(str, bp); 81 82 return str; 83 } 84 85 /* 86 * We have to be cautious here. We have seen BIOSes with DMI pointers 87 * pointing to completely the wrong place for example 88 */ 89 static void dmi_decode_table(u8 *buf, 90 void (*decode)(const struct dmi_header *, void *), 91 void *private_data) 92 { 93 u8 *data = buf; 94 int i = 0; 95 96 /* 97 * Stop when we have seen all the items the table claimed to have 98 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 99 * >= 3.0 only) OR we run off the end of the table (should never 100 * happen but sometimes does on bogus implementations.) 101 */ 102 while ((!dmi_num || i < dmi_num) && 103 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 104 const struct dmi_header *dm = (const struct dmi_header *)data; 105 106 /* 107 * We want to know the total length (formatted area and 108 * strings) before decoding to make sure we won't run off the 109 * table in dmi_decode or dmi_string 110 */ 111 data += dm->length; 112 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 113 data++; 114 if (data - buf < dmi_len - 1) 115 decode(dm, private_data); 116 117 data += 2; 118 i++; 119 120 /* 121 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 122 * For tables behind a 64-bit entry point, we have no item 123 * count and no exact table length, so stop on end-of-table 124 * marker. For tables behind a 32-bit entry point, we have 125 * seen OEM structures behind the end-of-table marker on 126 * some systems, so don't trust it. 127 */ 128 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 129 break; 130 } 131 132 /* Trim DMI table length if needed */ 133 if (dmi_len > data - buf) 134 dmi_len = data - buf; 135 } 136 137 static phys_addr_t dmi_base; 138 139 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 140 void *)) 141 { 142 u8 *buf; 143 u32 orig_dmi_len = dmi_len; 144 145 buf = dmi_early_remap(dmi_base, orig_dmi_len); 146 if (buf == NULL) 147 return -1; 148 149 dmi_decode_table(buf, decode, NULL); 150 151 add_device_randomness(buf, dmi_len); 152 153 dmi_early_unmap(buf, orig_dmi_len); 154 return 0; 155 } 156 157 static int __init dmi_checksum(const u8 *buf, u8 len) 158 { 159 u8 sum = 0; 160 int a; 161 162 for (a = 0; a < len; a++) 163 sum += buf[a]; 164 165 return sum == 0; 166 } 167 168 static const char *dmi_ident[DMI_STRING_MAX]; 169 static LIST_HEAD(dmi_devices); 170 int dmi_available; 171 172 /* 173 * Save a DMI string 174 */ 175 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 176 int string) 177 { 178 const char *d = (const char *) dm; 179 const char *p; 180 181 if (dmi_ident[slot]) 182 return; 183 184 p = dmi_string(dm, d[string]); 185 if (p == NULL) 186 return; 187 188 dmi_ident[slot] = p; 189 } 190 191 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 192 int index) 193 { 194 const u8 *d = (u8 *) dm + index; 195 char *s; 196 int is_ff = 1, is_00 = 1, i; 197 198 if (dmi_ident[slot]) 199 return; 200 201 for (i = 0; i < 16 && (is_ff || is_00); i++) { 202 if (d[i] != 0x00) 203 is_00 = 0; 204 if (d[i] != 0xFF) 205 is_ff = 0; 206 } 207 208 if (is_ff || is_00) 209 return; 210 211 s = dmi_alloc(16*2+4+1); 212 if (!s) 213 return; 214 215 /* 216 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 217 * the UUID are supposed to be little-endian encoded. The specification 218 * says that this is the defacto standard. 219 */ 220 if (dmi_ver >= 0x020600) 221 sprintf(s, "%pUL", d); 222 else 223 sprintf(s, "%pUB", d); 224 225 dmi_ident[slot] = s; 226 } 227 228 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 229 int index) 230 { 231 const u8 *d = (u8 *) dm + index; 232 char *s; 233 234 if (dmi_ident[slot]) 235 return; 236 237 s = dmi_alloc(4); 238 if (!s) 239 return; 240 241 sprintf(s, "%u", *d & 0x7F); 242 dmi_ident[slot] = s; 243 } 244 245 static void __init dmi_save_one_device(int type, const char *name) 246 { 247 struct dmi_device *dev; 248 249 /* No duplicate device */ 250 if (dmi_find_device(type, name, NULL)) 251 return; 252 253 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 254 if (!dev) 255 return; 256 257 dev->type = type; 258 strcpy((char *)(dev + 1), name); 259 dev->name = (char *)(dev + 1); 260 dev->device_data = NULL; 261 list_add(&dev->list, &dmi_devices); 262 } 263 264 static void __init dmi_save_devices(const struct dmi_header *dm) 265 { 266 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 267 268 for (i = 0; i < count; i++) { 269 const char *d = (char *)(dm + 1) + (i * 2); 270 271 /* Skip disabled device */ 272 if ((*d & 0x80) == 0) 273 continue; 274 275 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 276 } 277 } 278 279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 280 { 281 int i, count = *(u8 *)(dm + 1); 282 struct dmi_device *dev; 283 284 for (i = 1; i <= count; i++) { 285 const char *devname = dmi_string(dm, i); 286 287 if (devname == dmi_empty_string) 288 continue; 289 290 dev = dmi_alloc(sizeof(*dev)); 291 if (!dev) 292 break; 293 294 dev->type = DMI_DEV_TYPE_OEM_STRING; 295 dev->name = devname; 296 dev->device_data = NULL; 297 298 list_add(&dev->list, &dmi_devices); 299 } 300 } 301 302 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 303 { 304 struct dmi_device *dev; 305 void *data; 306 307 data = dmi_alloc(dm->length); 308 if (data == NULL) 309 return; 310 311 memcpy(data, dm, dm->length); 312 313 dev = dmi_alloc(sizeof(*dev)); 314 if (!dev) 315 return; 316 317 dev->type = DMI_DEV_TYPE_IPMI; 318 dev->name = "IPMI controller"; 319 dev->device_data = data; 320 321 list_add_tail(&dev->list, &dmi_devices); 322 } 323 324 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 325 int devfn, const char *name, int type) 326 { 327 struct dmi_dev_onboard *dev; 328 329 /* Ignore invalid values */ 330 if (type == DMI_DEV_TYPE_DEV_SLOT && 331 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 332 return; 333 334 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 335 if (!dev) 336 return; 337 338 dev->instance = instance; 339 dev->segment = segment; 340 dev->bus = bus; 341 dev->devfn = devfn; 342 343 strcpy((char *)&dev[1], name); 344 dev->dev.type = type; 345 dev->dev.name = (char *)&dev[1]; 346 dev->dev.device_data = dev; 347 348 list_add(&dev->dev.list, &dmi_devices); 349 } 350 351 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 352 { 353 const char *name; 354 const u8 *d = (u8 *)dm; 355 356 /* Skip disabled device */ 357 if ((d[0x5] & 0x80) == 0) 358 return; 359 360 name = dmi_string_nosave(dm, d[0x4]); 361 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 362 DMI_DEV_TYPE_DEV_ONBOARD); 363 dmi_save_one_device(d[0x5] & 0x7f, name); 364 } 365 366 static void __init dmi_save_system_slot(const struct dmi_header *dm) 367 { 368 const u8 *d = (u8 *)dm; 369 370 /* Need SMBIOS 2.6+ structure */ 371 if (dm->length < 0x11) 372 return; 373 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 374 d[0x10], dmi_string_nosave(dm, d[0x4]), 375 DMI_DEV_TYPE_DEV_SLOT); 376 } 377 378 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 379 { 380 if (dm->type != DMI_ENTRY_MEM_DEVICE) 381 return; 382 dmi_memdev_nr++; 383 } 384 385 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 386 { 387 const char *d = (const char *)dm; 388 static int nr; 389 390 if (dm->type != DMI_ENTRY_MEM_DEVICE) 391 return; 392 if (nr >= dmi_memdev_nr) { 393 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 394 return; 395 } 396 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 397 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 398 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 399 nr++; 400 } 401 402 void __init dmi_memdev_walk(void) 403 { 404 if (!dmi_available) 405 return; 406 407 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 408 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 409 if (dmi_memdev) 410 dmi_walk_early(save_mem_devices); 411 } 412 } 413 414 /* 415 * Process a DMI table entry. Right now all we care about are the BIOS 416 * and machine entries. For 2.5 we should pull the smbus controller info 417 * out of here. 418 */ 419 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 420 { 421 switch (dm->type) { 422 case 0: /* BIOS Information */ 423 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 424 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 425 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 426 break; 427 case 1: /* System Information */ 428 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 429 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 430 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 431 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 432 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 433 break; 434 case 2: /* Base Board Information */ 435 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 436 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 437 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 438 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 439 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 440 break; 441 case 3: /* Chassis Information */ 442 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 443 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 444 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 445 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 446 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 447 break; 448 case 9: /* System Slots */ 449 dmi_save_system_slot(dm); 450 break; 451 case 10: /* Onboard Devices Information */ 452 dmi_save_devices(dm); 453 break; 454 case 11: /* OEM Strings */ 455 dmi_save_oem_strings_devices(dm); 456 break; 457 case 38: /* IPMI Device Information */ 458 dmi_save_ipmi_device(dm); 459 break; 460 case 41: /* Onboard Devices Extended Information */ 461 dmi_save_extended_devices(dm); 462 } 463 } 464 465 static int __init print_filtered(char *buf, size_t len, const char *info) 466 { 467 int c = 0; 468 const char *p; 469 470 if (!info) 471 return c; 472 473 for (p = info; *p; p++) 474 if (isprint(*p)) 475 c += scnprintf(buf + c, len - c, "%c", *p); 476 else 477 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 478 return c; 479 } 480 481 static void __init dmi_format_ids(char *buf, size_t len) 482 { 483 int c = 0; 484 const char *board; /* Board Name is optional */ 485 486 c += print_filtered(buf + c, len - c, 487 dmi_get_system_info(DMI_SYS_VENDOR)); 488 c += scnprintf(buf + c, len - c, " "); 489 c += print_filtered(buf + c, len - c, 490 dmi_get_system_info(DMI_PRODUCT_NAME)); 491 492 board = dmi_get_system_info(DMI_BOARD_NAME); 493 if (board) { 494 c += scnprintf(buf + c, len - c, "/"); 495 c += print_filtered(buf + c, len - c, board); 496 } 497 c += scnprintf(buf + c, len - c, ", BIOS "); 498 c += print_filtered(buf + c, len - c, 499 dmi_get_system_info(DMI_BIOS_VERSION)); 500 c += scnprintf(buf + c, len - c, " "); 501 c += print_filtered(buf + c, len - c, 502 dmi_get_system_info(DMI_BIOS_DATE)); 503 } 504 505 /* 506 * Check for DMI/SMBIOS headers in the system firmware image. Any 507 * SMBIOS header must start 16 bytes before the DMI header, so take a 508 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 509 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 510 * takes precedence) and return 0. Otherwise return 1. 511 */ 512 static int __init dmi_present(const u8 *buf) 513 { 514 u32 smbios_ver; 515 516 if (memcmp(buf, "_SM_", 4) == 0 && 517 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 518 smbios_ver = get_unaligned_be16(buf + 6); 519 smbios_entry_point_size = buf[5]; 520 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 521 522 /* Some BIOS report weird SMBIOS version, fix that up */ 523 switch (smbios_ver) { 524 case 0x021F: 525 case 0x0221: 526 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 527 smbios_ver & 0xFF, 3); 528 smbios_ver = 0x0203; 529 break; 530 case 0x0233: 531 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 532 smbios_ver = 0x0206; 533 break; 534 } 535 } else { 536 smbios_ver = 0; 537 } 538 539 buf += 16; 540 541 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 542 if (smbios_ver) 543 dmi_ver = smbios_ver; 544 else 545 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 546 dmi_ver <<= 8; 547 dmi_num = get_unaligned_le16(buf + 12); 548 dmi_len = get_unaligned_le16(buf + 6); 549 dmi_base = get_unaligned_le32(buf + 8); 550 551 if (dmi_walk_early(dmi_decode) == 0) { 552 if (smbios_ver) { 553 pr_info("SMBIOS %d.%d present.\n", 554 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 555 } else { 556 smbios_entry_point_size = 15; 557 memcpy(smbios_entry_point, buf, 558 smbios_entry_point_size); 559 pr_info("Legacy DMI %d.%d present.\n", 560 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 561 } 562 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 563 pr_info("DMI: %s\n", dmi_ids_string); 564 return 0; 565 } 566 } 567 568 return 1; 569 } 570 571 /* 572 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 573 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 574 */ 575 static int __init dmi_smbios3_present(const u8 *buf) 576 { 577 if (memcmp(buf, "_SM3_", 5) == 0 && 578 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 579 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 580 dmi_num = 0; /* No longer specified */ 581 dmi_len = get_unaligned_le32(buf + 12); 582 dmi_base = get_unaligned_le64(buf + 16); 583 smbios_entry_point_size = buf[6]; 584 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 585 586 if (dmi_walk_early(dmi_decode) == 0) { 587 pr_info("SMBIOS %d.%d.%d present.\n", 588 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 589 dmi_ver & 0xFF); 590 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 591 pr_info("DMI: %s\n", dmi_ids_string); 592 return 0; 593 } 594 } 595 return 1; 596 } 597 598 void __init dmi_scan_machine(void) 599 { 600 char __iomem *p, *q; 601 char buf[32]; 602 603 if (efi_enabled(EFI_CONFIG_TABLES)) { 604 /* 605 * According to the DMTF SMBIOS reference spec v3.0.0, it is 606 * allowed to define both the 64-bit entry point (smbios3) and 607 * the 32-bit entry point (smbios), in which case they should 608 * either both point to the same SMBIOS structure table, or the 609 * table pointed to by the 64-bit entry point should contain a 610 * superset of the table contents pointed to by the 32-bit entry 611 * point (section 5.2) 612 * This implies that the 64-bit entry point should have 613 * precedence if it is defined and supported by the OS. If we 614 * have the 64-bit entry point, but fail to decode it, fall 615 * back to the legacy one (if available) 616 */ 617 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 618 p = dmi_early_remap(efi.smbios3, 32); 619 if (p == NULL) 620 goto error; 621 memcpy_fromio(buf, p, 32); 622 dmi_early_unmap(p, 32); 623 624 if (!dmi_smbios3_present(buf)) { 625 dmi_available = 1; 626 goto out; 627 } 628 } 629 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 630 goto error; 631 632 /* This is called as a core_initcall() because it isn't 633 * needed during early boot. This also means we can 634 * iounmap the space when we're done with it. 635 */ 636 p = dmi_early_remap(efi.smbios, 32); 637 if (p == NULL) 638 goto error; 639 memcpy_fromio(buf, p, 32); 640 dmi_early_unmap(p, 32); 641 642 if (!dmi_present(buf)) { 643 dmi_available = 1; 644 goto out; 645 } 646 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 647 p = dmi_early_remap(0xF0000, 0x10000); 648 if (p == NULL) 649 goto error; 650 651 /* 652 * Iterate over all possible DMI header addresses q. 653 * Maintain the 32 bytes around q in buf. On the 654 * first iteration, substitute zero for the 655 * out-of-range bytes so there is no chance of falsely 656 * detecting an SMBIOS header. 657 */ 658 memset(buf, 0, 16); 659 for (q = p; q < p + 0x10000; q += 16) { 660 memcpy_fromio(buf + 16, q, 16); 661 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 662 dmi_available = 1; 663 dmi_early_unmap(p, 0x10000); 664 goto out; 665 } 666 memcpy(buf, buf + 16, 16); 667 } 668 dmi_early_unmap(p, 0x10000); 669 } 670 error: 671 pr_info("DMI not present or invalid.\n"); 672 out: 673 dmi_initialized = 1; 674 } 675 676 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 677 struct bin_attribute *attr, char *buf, 678 loff_t pos, size_t count) 679 { 680 memcpy(buf, attr->private + pos, count); 681 return count; 682 } 683 684 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 685 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 686 687 static int __init dmi_init(void) 688 { 689 struct kobject *tables_kobj; 690 u8 *dmi_table; 691 int ret = -ENOMEM; 692 693 if (!dmi_available) { 694 ret = -ENODATA; 695 goto err; 696 } 697 698 /* 699 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 700 * even after farther error, as it can be used by other modules like 701 * dmi-sysfs. 702 */ 703 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 704 if (!dmi_kobj) 705 goto err; 706 707 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 708 if (!tables_kobj) 709 goto err; 710 711 dmi_table = dmi_remap(dmi_base, dmi_len); 712 if (!dmi_table) 713 goto err_tables; 714 715 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 716 bin_attr_smbios_entry_point.private = smbios_entry_point; 717 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 718 if (ret) 719 goto err_unmap; 720 721 bin_attr_DMI.size = dmi_len; 722 bin_attr_DMI.private = dmi_table; 723 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 724 if (!ret) 725 return 0; 726 727 sysfs_remove_bin_file(tables_kobj, 728 &bin_attr_smbios_entry_point); 729 err_unmap: 730 dmi_unmap(dmi_table); 731 err_tables: 732 kobject_del(tables_kobj); 733 kobject_put(tables_kobj); 734 err: 735 pr_err("dmi: Firmware registration failed.\n"); 736 737 return ret; 738 } 739 subsys_initcall(dmi_init); 740 741 /** 742 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 743 * 744 * Invoke dump_stack_set_arch_desc() with DMI system information so that 745 * DMI identifiers are printed out on task dumps. Arch boot code should 746 * call this function after dmi_scan_machine() if it wants to print out DMI 747 * identifiers on task dumps. 748 */ 749 void __init dmi_set_dump_stack_arch_desc(void) 750 { 751 dump_stack_set_arch_desc("%s", dmi_ids_string); 752 } 753 754 /** 755 * dmi_matches - check if dmi_system_id structure matches system DMI data 756 * @dmi: pointer to the dmi_system_id structure to check 757 */ 758 static bool dmi_matches(const struct dmi_system_id *dmi) 759 { 760 int i; 761 762 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 763 764 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 765 int s = dmi->matches[i].slot; 766 if (s == DMI_NONE) 767 break; 768 if (dmi_ident[s]) { 769 if (!dmi->matches[i].exact_match && 770 strstr(dmi_ident[s], dmi->matches[i].substr)) 771 continue; 772 else if (dmi->matches[i].exact_match && 773 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 774 continue; 775 } 776 777 /* No match */ 778 return false; 779 } 780 return true; 781 } 782 783 /** 784 * dmi_is_end_of_table - check for end-of-table marker 785 * @dmi: pointer to the dmi_system_id structure to check 786 */ 787 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 788 { 789 return dmi->matches[0].slot == DMI_NONE; 790 } 791 792 /** 793 * dmi_check_system - check system DMI data 794 * @list: array of dmi_system_id structures to match against 795 * All non-null elements of the list must match 796 * their slot's (field index's) data (i.e., each 797 * list string must be a substring of the specified 798 * DMI slot's string data) to be considered a 799 * successful match. 800 * 801 * Walk the blacklist table running matching functions until someone 802 * returns non zero or we hit the end. Callback function is called for 803 * each successful match. Returns the number of matches. 804 */ 805 int dmi_check_system(const struct dmi_system_id *list) 806 { 807 int count = 0; 808 const struct dmi_system_id *d; 809 810 for (d = list; !dmi_is_end_of_table(d); d++) 811 if (dmi_matches(d)) { 812 count++; 813 if (d->callback && d->callback(d)) 814 break; 815 } 816 817 return count; 818 } 819 EXPORT_SYMBOL(dmi_check_system); 820 821 /** 822 * dmi_first_match - find dmi_system_id structure matching system DMI data 823 * @list: array of dmi_system_id structures to match against 824 * All non-null elements of the list must match 825 * their slot's (field index's) data (i.e., each 826 * list string must be a substring of the specified 827 * DMI slot's string data) to be considered a 828 * successful match. 829 * 830 * Walk the blacklist table until the first match is found. Return the 831 * pointer to the matching entry or NULL if there's no match. 832 */ 833 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 834 { 835 const struct dmi_system_id *d; 836 837 for (d = list; !dmi_is_end_of_table(d); d++) 838 if (dmi_matches(d)) 839 return d; 840 841 return NULL; 842 } 843 EXPORT_SYMBOL(dmi_first_match); 844 845 /** 846 * dmi_get_system_info - return DMI data value 847 * @field: data index (see enum dmi_field) 848 * 849 * Returns one DMI data value, can be used to perform 850 * complex DMI data checks. 851 */ 852 const char *dmi_get_system_info(int field) 853 { 854 return dmi_ident[field]; 855 } 856 EXPORT_SYMBOL(dmi_get_system_info); 857 858 /** 859 * dmi_name_in_serial - Check if string is in the DMI product serial information 860 * @str: string to check for 861 */ 862 int dmi_name_in_serial(const char *str) 863 { 864 int f = DMI_PRODUCT_SERIAL; 865 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 866 return 1; 867 return 0; 868 } 869 870 /** 871 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 872 * @str: Case sensitive Name 873 */ 874 int dmi_name_in_vendors(const char *str) 875 { 876 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 877 int i; 878 for (i = 0; fields[i] != DMI_NONE; i++) { 879 int f = fields[i]; 880 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 881 return 1; 882 } 883 return 0; 884 } 885 EXPORT_SYMBOL(dmi_name_in_vendors); 886 887 /** 888 * dmi_find_device - find onboard device by type/name 889 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 890 * @name: device name string or %NULL to match all 891 * @from: previous device found in search, or %NULL for new search. 892 * 893 * Iterates through the list of known onboard devices. If a device is 894 * found with a matching @type and @name, a pointer to its device 895 * structure is returned. Otherwise, %NULL is returned. 896 * A new search is initiated by passing %NULL as the @from argument. 897 * If @from is not %NULL, searches continue from next device. 898 */ 899 const struct dmi_device *dmi_find_device(int type, const char *name, 900 const struct dmi_device *from) 901 { 902 const struct list_head *head = from ? &from->list : &dmi_devices; 903 struct list_head *d; 904 905 for (d = head->next; d != &dmi_devices; d = d->next) { 906 const struct dmi_device *dev = 907 list_entry(d, struct dmi_device, list); 908 909 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 910 ((name == NULL) || (strcmp(dev->name, name) == 0))) 911 return dev; 912 } 913 914 return NULL; 915 } 916 EXPORT_SYMBOL(dmi_find_device); 917 918 /** 919 * dmi_get_date - parse a DMI date 920 * @field: data index (see enum dmi_field) 921 * @yearp: optional out parameter for the year 922 * @monthp: optional out parameter for the month 923 * @dayp: optional out parameter for the day 924 * 925 * The date field is assumed to be in the form resembling 926 * [mm[/dd]]/yy[yy] and the result is stored in the out 927 * parameters any or all of which can be omitted. 928 * 929 * If the field doesn't exist, all out parameters are set to zero 930 * and false is returned. Otherwise, true is returned with any 931 * invalid part of date set to zero. 932 * 933 * On return, year, month and day are guaranteed to be in the 934 * range of [0,9999], [0,12] and [0,31] respectively. 935 */ 936 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 937 { 938 int year = 0, month = 0, day = 0; 939 bool exists; 940 const char *s, *y; 941 char *e; 942 943 s = dmi_get_system_info(field); 944 exists = s; 945 if (!exists) 946 goto out; 947 948 /* 949 * Determine year first. We assume the date string resembles 950 * mm/dd/yy[yy] but the original code extracted only the year 951 * from the end. Keep the behavior in the spirit of no 952 * surprises. 953 */ 954 y = strrchr(s, '/'); 955 if (!y) 956 goto out; 957 958 y++; 959 year = simple_strtoul(y, &e, 10); 960 if (y != e && year < 100) { /* 2-digit year */ 961 year += 1900; 962 if (year < 1996) /* no dates < spec 1.0 */ 963 year += 100; 964 } 965 if (year > 9999) /* year should fit in %04d */ 966 year = 0; 967 968 /* parse the mm and dd */ 969 month = simple_strtoul(s, &e, 10); 970 if (s == e || *e != '/' || !month || month > 12) { 971 month = 0; 972 goto out; 973 } 974 975 s = e + 1; 976 day = simple_strtoul(s, &e, 10); 977 if (s == y || s == e || *e != '/' || day > 31) 978 day = 0; 979 out: 980 if (yearp) 981 *yearp = year; 982 if (monthp) 983 *monthp = month; 984 if (dayp) 985 *dayp = day; 986 return exists; 987 } 988 EXPORT_SYMBOL(dmi_get_date); 989 990 /** 991 * dmi_walk - Walk the DMI table and get called back for every record 992 * @decode: Callback function 993 * @private_data: Private data to be passed to the callback function 994 * 995 * Returns -1 when the DMI table can't be reached, 0 on success. 996 */ 997 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 998 void *private_data) 999 { 1000 u8 *buf; 1001 1002 if (!dmi_available) 1003 return -1; 1004 1005 buf = dmi_remap(dmi_base, dmi_len); 1006 if (buf == NULL) 1007 return -1; 1008 1009 dmi_decode_table(buf, decode, private_data); 1010 1011 dmi_unmap(buf); 1012 return 0; 1013 } 1014 EXPORT_SYMBOL_GPL(dmi_walk); 1015 1016 /** 1017 * dmi_match - compare a string to the dmi field (if exists) 1018 * @f: DMI field identifier 1019 * @str: string to compare the DMI field to 1020 * 1021 * Returns true if the requested field equals to the str (including NULL). 1022 */ 1023 bool dmi_match(enum dmi_field f, const char *str) 1024 { 1025 const char *info = dmi_get_system_info(f); 1026 1027 if (info == NULL || str == NULL) 1028 return info == str; 1029 1030 return !strcmp(info, str); 1031 } 1032 EXPORT_SYMBOL_GPL(dmi_match); 1033 1034 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1035 { 1036 int n; 1037 1038 if (dmi_memdev == NULL) 1039 return; 1040 1041 for (n = 0; n < dmi_memdev_nr; n++) { 1042 if (handle == dmi_memdev[n].handle) { 1043 *bank = dmi_memdev[n].bank; 1044 *device = dmi_memdev[n].device; 1045 break; 1046 } 1047 } 1048 } 1049 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1050