xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 4f3db074)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/bootmem.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 /*
14  * DMI stands for "Desktop Management Interface".  It is part
15  * of and an antecedent to, SMBIOS, which stands for System
16  * Management BIOS.  See further: http://www.dmtf.org/standards
17  */
18 static const char dmi_empty_string[] = "        ";
19 
20 static u32 dmi_ver __initdata;
21 static u32 dmi_len;
22 static u16 dmi_num;
23 /*
24  * Catch too early calls to dmi_check_system():
25  */
26 static int dmi_initialized;
27 
28 /* DMI system identification string used during boot */
29 static char dmi_ids_string[128] __initdata;
30 
31 static struct dmi_memdev_info {
32 	const char *device;
33 	const char *bank;
34 	u16 handle;
35 } *dmi_memdev;
36 static int dmi_memdev_nr;
37 
38 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
39 {
40 	const u8 *bp = ((u8 *) dm) + dm->length;
41 
42 	if (s) {
43 		s--;
44 		while (s > 0 && *bp) {
45 			bp += strlen(bp) + 1;
46 			s--;
47 		}
48 
49 		if (*bp != 0) {
50 			size_t len = strlen(bp)+1;
51 			size_t cmp_len = len > 8 ? 8 : len;
52 
53 			if (!memcmp(bp, dmi_empty_string, cmp_len))
54 				return dmi_empty_string;
55 			return bp;
56 		}
57 	}
58 
59 	return "";
60 }
61 
62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63 {
64 	const char *bp = dmi_string_nosave(dm, s);
65 	char *str;
66 	size_t len;
67 
68 	if (bp == dmi_empty_string)
69 		return dmi_empty_string;
70 
71 	len = strlen(bp) + 1;
72 	str = dmi_alloc(len);
73 	if (str != NULL)
74 		strcpy(str, bp);
75 
76 	return str;
77 }
78 
79 /*
80  *	We have to be cautious here. We have seen BIOSes with DMI pointers
81  *	pointing to completely the wrong place for example
82  */
83 static void dmi_table(u8 *buf,
84 		      void (*decode)(const struct dmi_header *, void *),
85 		      void *private_data)
86 {
87 	u8 *data = buf;
88 	int i = 0;
89 
90 	/*
91 	 * Stop when we have seen all the items the table claimed to have
92 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker OR we run
93 	 * off the end of the table (should never happen but sometimes does
94 	 * on bogus implementations.)
95 	 */
96 	while ((!dmi_num || i < dmi_num) &&
97 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98 		const struct dmi_header *dm = (const struct dmi_header *)data;
99 
100 		/*
101 		 *  We want to know the total length (formatted area and
102 		 *  strings) before decoding to make sure we won't run off the
103 		 *  table in dmi_decode or dmi_string
104 		 */
105 		data += dm->length;
106 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107 			data++;
108 		if (data - buf < dmi_len - 1)
109 			decode(dm, private_data);
110 
111 		/*
112 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113 		 */
114 		if (dm->type == DMI_ENTRY_END_OF_TABLE)
115 			break;
116 
117 		data += 2;
118 		i++;
119 	}
120 }
121 
122 static phys_addr_t dmi_base;
123 
124 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
125 		void *))
126 {
127 	u8 *buf;
128 
129 	buf = dmi_early_remap(dmi_base, dmi_len);
130 	if (buf == NULL)
131 		return -1;
132 
133 	dmi_table(buf, decode, NULL);
134 
135 	add_device_randomness(buf, dmi_len);
136 
137 	dmi_early_unmap(buf, dmi_len);
138 	return 0;
139 }
140 
141 static int __init dmi_checksum(const u8 *buf, u8 len)
142 {
143 	u8 sum = 0;
144 	int a;
145 
146 	for (a = 0; a < len; a++)
147 		sum += buf[a];
148 
149 	return sum == 0;
150 }
151 
152 static const char *dmi_ident[DMI_STRING_MAX];
153 static LIST_HEAD(dmi_devices);
154 int dmi_available;
155 
156 /*
157  *	Save a DMI string
158  */
159 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
160 		int string)
161 {
162 	const char *d = (const char *) dm;
163 	const char *p;
164 
165 	if (dmi_ident[slot])
166 		return;
167 
168 	p = dmi_string(dm, d[string]);
169 	if (p == NULL)
170 		return;
171 
172 	dmi_ident[slot] = p;
173 }
174 
175 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
176 		int index)
177 {
178 	const u8 *d = (u8 *) dm + index;
179 	char *s;
180 	int is_ff = 1, is_00 = 1, i;
181 
182 	if (dmi_ident[slot])
183 		return;
184 
185 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
186 		if (d[i] != 0x00)
187 			is_00 = 0;
188 		if (d[i] != 0xFF)
189 			is_ff = 0;
190 	}
191 
192 	if (is_ff || is_00)
193 		return;
194 
195 	s = dmi_alloc(16*2+4+1);
196 	if (!s)
197 		return;
198 
199 	/*
200 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
201 	 * the UUID are supposed to be little-endian encoded.  The specification
202 	 * says that this is the defacto standard.
203 	 */
204 	if (dmi_ver >= 0x020600)
205 		sprintf(s, "%pUL", d);
206 	else
207 		sprintf(s, "%pUB", d);
208 
209 	dmi_ident[slot] = s;
210 }
211 
212 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
213 		int index)
214 {
215 	const u8 *d = (u8 *) dm + index;
216 	char *s;
217 
218 	if (dmi_ident[slot])
219 		return;
220 
221 	s = dmi_alloc(4);
222 	if (!s)
223 		return;
224 
225 	sprintf(s, "%u", *d & 0x7F);
226 	dmi_ident[slot] = s;
227 }
228 
229 static void __init dmi_save_one_device(int type, const char *name)
230 {
231 	struct dmi_device *dev;
232 
233 	/* No duplicate device */
234 	if (dmi_find_device(type, name, NULL))
235 		return;
236 
237 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
238 	if (!dev)
239 		return;
240 
241 	dev->type = type;
242 	strcpy((char *)(dev + 1), name);
243 	dev->name = (char *)(dev + 1);
244 	dev->device_data = NULL;
245 	list_add(&dev->list, &dmi_devices);
246 }
247 
248 static void __init dmi_save_devices(const struct dmi_header *dm)
249 {
250 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
251 
252 	for (i = 0; i < count; i++) {
253 		const char *d = (char *)(dm + 1) + (i * 2);
254 
255 		/* Skip disabled device */
256 		if ((*d & 0x80) == 0)
257 			continue;
258 
259 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
260 	}
261 }
262 
263 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
264 {
265 	int i, count = *(u8 *)(dm + 1);
266 	struct dmi_device *dev;
267 
268 	for (i = 1; i <= count; i++) {
269 		const char *devname = dmi_string(dm, i);
270 
271 		if (devname == dmi_empty_string)
272 			continue;
273 
274 		dev = dmi_alloc(sizeof(*dev));
275 		if (!dev)
276 			break;
277 
278 		dev->type = DMI_DEV_TYPE_OEM_STRING;
279 		dev->name = devname;
280 		dev->device_data = NULL;
281 
282 		list_add(&dev->list, &dmi_devices);
283 	}
284 }
285 
286 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
287 {
288 	struct dmi_device *dev;
289 	void *data;
290 
291 	data = dmi_alloc(dm->length);
292 	if (data == NULL)
293 		return;
294 
295 	memcpy(data, dm, dm->length);
296 
297 	dev = dmi_alloc(sizeof(*dev));
298 	if (!dev)
299 		return;
300 
301 	dev->type = DMI_DEV_TYPE_IPMI;
302 	dev->name = "IPMI controller";
303 	dev->device_data = data;
304 
305 	list_add_tail(&dev->list, &dmi_devices);
306 }
307 
308 static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
309 					int devfn, const char *name)
310 {
311 	struct dmi_dev_onboard *onboard_dev;
312 
313 	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
314 	if (!onboard_dev)
315 		return;
316 
317 	onboard_dev->instance = instance;
318 	onboard_dev->segment = segment;
319 	onboard_dev->bus = bus;
320 	onboard_dev->devfn = devfn;
321 
322 	strcpy((char *)&onboard_dev[1], name);
323 	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
324 	onboard_dev->dev.name = (char *)&onboard_dev[1];
325 	onboard_dev->dev.device_data = onboard_dev;
326 
327 	list_add(&onboard_dev->dev.list, &dmi_devices);
328 }
329 
330 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
331 {
332 	const u8 *d = (u8 *) dm + 5;
333 
334 	/* Skip disabled device */
335 	if ((*d & 0x80) == 0)
336 		return;
337 
338 	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
339 			     dmi_string_nosave(dm, *(d-1)));
340 	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
341 }
342 
343 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
344 {
345 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
346 		return;
347 	dmi_memdev_nr++;
348 }
349 
350 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
351 {
352 	const char *d = (const char *)dm;
353 	static int nr;
354 
355 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
356 		return;
357 	if (nr >= dmi_memdev_nr) {
358 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
359 		return;
360 	}
361 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
362 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
363 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
364 	nr++;
365 }
366 
367 void __init dmi_memdev_walk(void)
368 {
369 	if (!dmi_available)
370 		return;
371 
372 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
373 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
374 		if (dmi_memdev)
375 			dmi_walk_early(save_mem_devices);
376 	}
377 }
378 
379 /*
380  *	Process a DMI table entry. Right now all we care about are the BIOS
381  *	and machine entries. For 2.5 we should pull the smbus controller info
382  *	out of here.
383  */
384 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
385 {
386 	switch (dm->type) {
387 	case 0:		/* BIOS Information */
388 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
389 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
390 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
391 		break;
392 	case 1:		/* System Information */
393 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
394 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
395 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
396 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
397 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
398 		break;
399 	case 2:		/* Base Board Information */
400 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
401 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
402 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
403 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
404 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
405 		break;
406 	case 3:		/* Chassis Information */
407 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
408 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
409 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
410 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
411 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
412 		break;
413 	case 10:	/* Onboard Devices Information */
414 		dmi_save_devices(dm);
415 		break;
416 	case 11:	/* OEM Strings */
417 		dmi_save_oem_strings_devices(dm);
418 		break;
419 	case 38:	/* IPMI Device Information */
420 		dmi_save_ipmi_device(dm);
421 		break;
422 	case 41:	/* Onboard Devices Extended Information */
423 		dmi_save_extended_devices(dm);
424 	}
425 }
426 
427 static int __init print_filtered(char *buf, size_t len, const char *info)
428 {
429 	int c = 0;
430 	const char *p;
431 
432 	if (!info)
433 		return c;
434 
435 	for (p = info; *p; p++)
436 		if (isprint(*p))
437 			c += scnprintf(buf + c, len - c, "%c", *p);
438 		else
439 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
440 	return c;
441 }
442 
443 static void __init dmi_format_ids(char *buf, size_t len)
444 {
445 	int c = 0;
446 	const char *board;	/* Board Name is optional */
447 
448 	c += print_filtered(buf + c, len - c,
449 			    dmi_get_system_info(DMI_SYS_VENDOR));
450 	c += scnprintf(buf + c, len - c, " ");
451 	c += print_filtered(buf + c, len - c,
452 			    dmi_get_system_info(DMI_PRODUCT_NAME));
453 
454 	board = dmi_get_system_info(DMI_BOARD_NAME);
455 	if (board) {
456 		c += scnprintf(buf + c, len - c, "/");
457 		c += print_filtered(buf + c, len - c, board);
458 	}
459 	c += scnprintf(buf + c, len - c, ", BIOS ");
460 	c += print_filtered(buf + c, len - c,
461 			    dmi_get_system_info(DMI_BIOS_VERSION));
462 	c += scnprintf(buf + c, len - c, " ");
463 	c += print_filtered(buf + c, len - c,
464 			    dmi_get_system_info(DMI_BIOS_DATE));
465 }
466 
467 /*
468  * Check for DMI/SMBIOS headers in the system firmware image.  Any
469  * SMBIOS header must start 16 bytes before the DMI header, so take a
470  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
471  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
472  * takes precedence) and return 0.  Otherwise return 1.
473  */
474 static int __init dmi_present(const u8 *buf)
475 {
476 	u32 smbios_ver;
477 
478 	if (memcmp(buf, "_SM_", 4) == 0 &&
479 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
480 		smbios_ver = get_unaligned_be16(buf + 6);
481 
482 		/* Some BIOS report weird SMBIOS version, fix that up */
483 		switch (smbios_ver) {
484 		case 0x021F:
485 		case 0x0221:
486 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
487 				 smbios_ver & 0xFF, 3);
488 			smbios_ver = 0x0203;
489 			break;
490 		case 0x0233:
491 			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
492 			smbios_ver = 0x0206;
493 			break;
494 		}
495 	} else {
496 		smbios_ver = 0;
497 	}
498 
499 	buf += 16;
500 
501 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
502 		dmi_num = get_unaligned_le16(buf + 12);
503 		dmi_len = get_unaligned_le16(buf + 6);
504 		dmi_base = get_unaligned_le32(buf + 8);
505 
506 		if (dmi_walk_early(dmi_decode) == 0) {
507 			if (smbios_ver) {
508 				dmi_ver = smbios_ver;
509 				pr_info("SMBIOS %d.%d%s present.\n",
510 					dmi_ver >> 8, dmi_ver & 0xFF,
511 					(dmi_ver < 0x0300) ? "" : ".x");
512 			} else {
513 				dmi_ver = (buf[14] & 0xF0) << 4 |
514 					   (buf[14] & 0x0F);
515 				pr_info("Legacy DMI %d.%d present.\n",
516 				       dmi_ver >> 8, dmi_ver & 0xFF);
517 			}
518 			dmi_ver <<= 8;
519 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
520 			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
521 			return 0;
522 		}
523 	}
524 
525 	return 1;
526 }
527 
528 /*
529  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
530  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
531  */
532 static int __init dmi_smbios3_present(const u8 *buf)
533 {
534 	if (memcmp(buf, "_SM3_", 5) == 0 &&
535 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
536 		dmi_ver = get_unaligned_be32(buf + 6);
537 		dmi_ver &= 0xFFFFFF;
538 		dmi_num = 0;			/* No longer specified */
539 		dmi_len = get_unaligned_le32(buf + 12);
540 		dmi_base = get_unaligned_le64(buf + 16);
541 
542 		if (dmi_walk_early(dmi_decode) == 0) {
543 			pr_info("SMBIOS %d.%d.%d present.\n",
544 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
545 				dmi_ver & 0xFF);
546 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
547 			pr_debug("DMI: %s\n", dmi_ids_string);
548 			return 0;
549 		}
550 	}
551 	return 1;
552 }
553 
554 void __init dmi_scan_machine(void)
555 {
556 	char __iomem *p, *q;
557 	char buf[32];
558 
559 	if (efi_enabled(EFI_CONFIG_TABLES)) {
560 		/*
561 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
562 		 * allowed to define both the 64-bit entry point (smbios3) and
563 		 * the 32-bit entry point (smbios), in which case they should
564 		 * either both point to the same SMBIOS structure table, or the
565 		 * table pointed to by the 64-bit entry point should contain a
566 		 * superset of the table contents pointed to by the 32-bit entry
567 		 * point (section 5.2)
568 		 * This implies that the 64-bit entry point should have
569 		 * precedence if it is defined and supported by the OS. If we
570 		 * have the 64-bit entry point, but fail to decode it, fall
571 		 * back to the legacy one (if available)
572 		 */
573 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
574 			p = dmi_early_remap(efi.smbios3, 32);
575 			if (p == NULL)
576 				goto error;
577 			memcpy_fromio(buf, p, 32);
578 			dmi_early_unmap(p, 32);
579 
580 			if (!dmi_smbios3_present(buf)) {
581 				dmi_available = 1;
582 				goto out;
583 			}
584 		}
585 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
586 			goto error;
587 
588 		/* This is called as a core_initcall() because it isn't
589 		 * needed during early boot.  This also means we can
590 		 * iounmap the space when we're done with it.
591 		 */
592 		p = dmi_early_remap(efi.smbios, 32);
593 		if (p == NULL)
594 			goto error;
595 		memcpy_fromio(buf, p, 32);
596 		dmi_early_unmap(p, 32);
597 
598 		if (!dmi_present(buf)) {
599 			dmi_available = 1;
600 			goto out;
601 		}
602 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
603 		p = dmi_early_remap(0xF0000, 0x10000);
604 		if (p == NULL)
605 			goto error;
606 
607 		/*
608 		 * Iterate over all possible DMI header addresses q.
609 		 * Maintain the 32 bytes around q in buf.  On the
610 		 * first iteration, substitute zero for the
611 		 * out-of-range bytes so there is no chance of falsely
612 		 * detecting an SMBIOS header.
613 		 */
614 		memset(buf, 0, 16);
615 		for (q = p; q < p + 0x10000; q += 16) {
616 			memcpy_fromio(buf + 16, q, 16);
617 			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
618 				dmi_available = 1;
619 				dmi_early_unmap(p, 0x10000);
620 				goto out;
621 			}
622 			memcpy(buf, buf + 16, 16);
623 		}
624 		dmi_early_unmap(p, 0x10000);
625 	}
626  error:
627 	pr_info("DMI not present or invalid.\n");
628  out:
629 	dmi_initialized = 1;
630 }
631 
632 /**
633  * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
634  *
635  * Invoke dump_stack_set_arch_desc() with DMI system information so that
636  * DMI identifiers are printed out on task dumps.  Arch boot code should
637  * call this function after dmi_scan_machine() if it wants to print out DMI
638  * identifiers on task dumps.
639  */
640 void __init dmi_set_dump_stack_arch_desc(void)
641 {
642 	dump_stack_set_arch_desc("%s", dmi_ids_string);
643 }
644 
645 /**
646  *	dmi_matches - check if dmi_system_id structure matches system DMI data
647  *	@dmi: pointer to the dmi_system_id structure to check
648  */
649 static bool dmi_matches(const struct dmi_system_id *dmi)
650 {
651 	int i;
652 
653 	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
654 
655 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
656 		int s = dmi->matches[i].slot;
657 		if (s == DMI_NONE)
658 			break;
659 		if (dmi_ident[s]) {
660 			if (!dmi->matches[i].exact_match &&
661 			    strstr(dmi_ident[s], dmi->matches[i].substr))
662 				continue;
663 			else if (dmi->matches[i].exact_match &&
664 				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
665 				continue;
666 		}
667 
668 		/* No match */
669 		return false;
670 	}
671 	return true;
672 }
673 
674 /**
675  *	dmi_is_end_of_table - check for end-of-table marker
676  *	@dmi: pointer to the dmi_system_id structure to check
677  */
678 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
679 {
680 	return dmi->matches[0].slot == DMI_NONE;
681 }
682 
683 /**
684  *	dmi_check_system - check system DMI data
685  *	@list: array of dmi_system_id structures to match against
686  *		All non-null elements of the list must match
687  *		their slot's (field index's) data (i.e., each
688  *		list string must be a substring of the specified
689  *		DMI slot's string data) to be considered a
690  *		successful match.
691  *
692  *	Walk the blacklist table running matching functions until someone
693  *	returns non zero or we hit the end. Callback function is called for
694  *	each successful match. Returns the number of matches.
695  */
696 int dmi_check_system(const struct dmi_system_id *list)
697 {
698 	int count = 0;
699 	const struct dmi_system_id *d;
700 
701 	for (d = list; !dmi_is_end_of_table(d); d++)
702 		if (dmi_matches(d)) {
703 			count++;
704 			if (d->callback && d->callback(d))
705 				break;
706 		}
707 
708 	return count;
709 }
710 EXPORT_SYMBOL(dmi_check_system);
711 
712 /**
713  *	dmi_first_match - find dmi_system_id structure matching system DMI data
714  *	@list: array of dmi_system_id structures to match against
715  *		All non-null elements of the list must match
716  *		their slot's (field index's) data (i.e., each
717  *		list string must be a substring of the specified
718  *		DMI slot's string data) to be considered a
719  *		successful match.
720  *
721  *	Walk the blacklist table until the first match is found.  Return the
722  *	pointer to the matching entry or NULL if there's no match.
723  */
724 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
725 {
726 	const struct dmi_system_id *d;
727 
728 	for (d = list; !dmi_is_end_of_table(d); d++)
729 		if (dmi_matches(d))
730 			return d;
731 
732 	return NULL;
733 }
734 EXPORT_SYMBOL(dmi_first_match);
735 
736 /**
737  *	dmi_get_system_info - return DMI data value
738  *	@field: data index (see enum dmi_field)
739  *
740  *	Returns one DMI data value, can be used to perform
741  *	complex DMI data checks.
742  */
743 const char *dmi_get_system_info(int field)
744 {
745 	return dmi_ident[field];
746 }
747 EXPORT_SYMBOL(dmi_get_system_info);
748 
749 /**
750  * dmi_name_in_serial - Check if string is in the DMI product serial information
751  * @str: string to check for
752  */
753 int dmi_name_in_serial(const char *str)
754 {
755 	int f = DMI_PRODUCT_SERIAL;
756 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
757 		return 1;
758 	return 0;
759 }
760 
761 /**
762  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
763  *	@str: Case sensitive Name
764  */
765 int dmi_name_in_vendors(const char *str)
766 {
767 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
768 	int i;
769 	for (i = 0; fields[i] != DMI_NONE; i++) {
770 		int f = fields[i];
771 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
772 			return 1;
773 	}
774 	return 0;
775 }
776 EXPORT_SYMBOL(dmi_name_in_vendors);
777 
778 /**
779  *	dmi_find_device - find onboard device by type/name
780  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
781  *	@name: device name string or %NULL to match all
782  *	@from: previous device found in search, or %NULL for new search.
783  *
784  *	Iterates through the list of known onboard devices. If a device is
785  *	found with a matching @vendor and @device, a pointer to its device
786  *	structure is returned.  Otherwise, %NULL is returned.
787  *	A new search is initiated by passing %NULL as the @from argument.
788  *	If @from is not %NULL, searches continue from next device.
789  */
790 const struct dmi_device *dmi_find_device(int type, const char *name,
791 				    const struct dmi_device *from)
792 {
793 	const struct list_head *head = from ? &from->list : &dmi_devices;
794 	struct list_head *d;
795 
796 	for (d = head->next; d != &dmi_devices; d = d->next) {
797 		const struct dmi_device *dev =
798 			list_entry(d, struct dmi_device, list);
799 
800 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
801 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
802 			return dev;
803 	}
804 
805 	return NULL;
806 }
807 EXPORT_SYMBOL(dmi_find_device);
808 
809 /**
810  *	dmi_get_date - parse a DMI date
811  *	@field:	data index (see enum dmi_field)
812  *	@yearp: optional out parameter for the year
813  *	@monthp: optional out parameter for the month
814  *	@dayp: optional out parameter for the day
815  *
816  *	The date field is assumed to be in the form resembling
817  *	[mm[/dd]]/yy[yy] and the result is stored in the out
818  *	parameters any or all of which can be omitted.
819  *
820  *	If the field doesn't exist, all out parameters are set to zero
821  *	and false is returned.  Otherwise, true is returned with any
822  *	invalid part of date set to zero.
823  *
824  *	On return, year, month and day are guaranteed to be in the
825  *	range of [0,9999], [0,12] and [0,31] respectively.
826  */
827 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
828 {
829 	int year = 0, month = 0, day = 0;
830 	bool exists;
831 	const char *s, *y;
832 	char *e;
833 
834 	s = dmi_get_system_info(field);
835 	exists = s;
836 	if (!exists)
837 		goto out;
838 
839 	/*
840 	 * Determine year first.  We assume the date string resembles
841 	 * mm/dd/yy[yy] but the original code extracted only the year
842 	 * from the end.  Keep the behavior in the spirit of no
843 	 * surprises.
844 	 */
845 	y = strrchr(s, '/');
846 	if (!y)
847 		goto out;
848 
849 	y++;
850 	year = simple_strtoul(y, &e, 10);
851 	if (y != e && year < 100) {	/* 2-digit year */
852 		year += 1900;
853 		if (year < 1996)	/* no dates < spec 1.0 */
854 			year += 100;
855 	}
856 	if (year > 9999)		/* year should fit in %04d */
857 		year = 0;
858 
859 	/* parse the mm and dd */
860 	month = simple_strtoul(s, &e, 10);
861 	if (s == e || *e != '/' || !month || month > 12) {
862 		month = 0;
863 		goto out;
864 	}
865 
866 	s = e + 1;
867 	day = simple_strtoul(s, &e, 10);
868 	if (s == y || s == e || *e != '/' || day > 31)
869 		day = 0;
870 out:
871 	if (yearp)
872 		*yearp = year;
873 	if (monthp)
874 		*monthp = month;
875 	if (dayp)
876 		*dayp = day;
877 	return exists;
878 }
879 EXPORT_SYMBOL(dmi_get_date);
880 
881 /**
882  *	dmi_walk - Walk the DMI table and get called back for every record
883  *	@decode: Callback function
884  *	@private_data: Private data to be passed to the callback function
885  *
886  *	Returns -1 when the DMI table can't be reached, 0 on success.
887  */
888 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
889 	     void *private_data)
890 {
891 	u8 *buf;
892 
893 	if (!dmi_available)
894 		return -1;
895 
896 	buf = dmi_remap(dmi_base, dmi_len);
897 	if (buf == NULL)
898 		return -1;
899 
900 	dmi_table(buf, decode, private_data);
901 
902 	dmi_unmap(buf);
903 	return 0;
904 }
905 EXPORT_SYMBOL_GPL(dmi_walk);
906 
907 /**
908  * dmi_match - compare a string to the dmi field (if exists)
909  * @f: DMI field identifier
910  * @str: string to compare the DMI field to
911  *
912  * Returns true if the requested field equals to the str (including NULL).
913  */
914 bool dmi_match(enum dmi_field f, const char *str)
915 {
916 	const char *info = dmi_get_system_info(f);
917 
918 	if (info == NULL || str == NULL)
919 		return info == str;
920 
921 	return !strcmp(info, str);
922 }
923 EXPORT_SYMBOL_GPL(dmi_match);
924 
925 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
926 {
927 	int n;
928 
929 	if (dmi_memdev == NULL)
930 		return;
931 
932 	for (n = 0; n < dmi_memdev_nr; n++) {
933 		if (handle == dmi_memdev[n].handle) {
934 			*bank = dmi_memdev[n].bank;
935 			*device = dmi_memdev[n].device;
936 			break;
937 		}
938 	}
939 }
940 EXPORT_SYMBOL_GPL(dmi_memdev_name);
941