1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/bootmem.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 /* 14 * DMI stands for "Desktop Management Interface". It is part 15 * of and an antecedent to, SMBIOS, which stands for System 16 * Management BIOS. See further: http://www.dmtf.org/standards 17 */ 18 static const char dmi_empty_string[] = " "; 19 20 static u32 dmi_ver __initdata; 21 static u32 dmi_len; 22 static u16 dmi_num; 23 /* 24 * Catch too early calls to dmi_check_system(): 25 */ 26 static int dmi_initialized; 27 28 /* DMI system identification string used during boot */ 29 static char dmi_ids_string[128] __initdata; 30 31 static struct dmi_memdev_info { 32 const char *device; 33 const char *bank; 34 u16 handle; 35 } *dmi_memdev; 36 static int dmi_memdev_nr; 37 38 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 39 { 40 const u8 *bp = ((u8 *) dm) + dm->length; 41 42 if (s) { 43 s--; 44 while (s > 0 && *bp) { 45 bp += strlen(bp) + 1; 46 s--; 47 } 48 49 if (*bp != 0) { 50 size_t len = strlen(bp)+1; 51 size_t cmp_len = len > 8 ? 8 : len; 52 53 if (!memcmp(bp, dmi_empty_string, cmp_len)) 54 return dmi_empty_string; 55 return bp; 56 } 57 } 58 59 return ""; 60 } 61 62 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 63 { 64 const char *bp = dmi_string_nosave(dm, s); 65 char *str; 66 size_t len; 67 68 if (bp == dmi_empty_string) 69 return dmi_empty_string; 70 71 len = strlen(bp) + 1; 72 str = dmi_alloc(len); 73 if (str != NULL) 74 strcpy(str, bp); 75 76 return str; 77 } 78 79 /* 80 * We have to be cautious here. We have seen BIOSes with DMI pointers 81 * pointing to completely the wrong place for example 82 */ 83 static void dmi_table(u8 *buf, 84 void (*decode)(const struct dmi_header *, void *), 85 void *private_data) 86 { 87 u8 *data = buf; 88 int i = 0; 89 90 /* 91 * Stop when we have seen all the items the table claimed to have 92 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker OR we run 93 * off the end of the table (should never happen but sometimes does 94 * on bogus implementations.) 95 */ 96 while ((!dmi_num || i < dmi_num) && 97 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 98 const struct dmi_header *dm = (const struct dmi_header *)data; 99 100 /* 101 * We want to know the total length (formatted area and 102 * strings) before decoding to make sure we won't run off the 103 * table in dmi_decode or dmi_string 104 */ 105 data += dm->length; 106 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 107 data++; 108 if (data - buf < dmi_len - 1) 109 decode(dm, private_data); 110 111 /* 112 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 113 */ 114 if (dm->type == DMI_ENTRY_END_OF_TABLE) 115 break; 116 117 data += 2; 118 i++; 119 } 120 } 121 122 static phys_addr_t dmi_base; 123 124 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 125 void *)) 126 { 127 u8 *buf; 128 129 buf = dmi_early_remap(dmi_base, dmi_len); 130 if (buf == NULL) 131 return -1; 132 133 dmi_table(buf, decode, NULL); 134 135 add_device_randomness(buf, dmi_len); 136 137 dmi_early_unmap(buf, dmi_len); 138 return 0; 139 } 140 141 static int __init dmi_checksum(const u8 *buf, u8 len) 142 { 143 u8 sum = 0; 144 int a; 145 146 for (a = 0; a < len; a++) 147 sum += buf[a]; 148 149 return sum == 0; 150 } 151 152 static const char *dmi_ident[DMI_STRING_MAX]; 153 static LIST_HEAD(dmi_devices); 154 int dmi_available; 155 156 /* 157 * Save a DMI string 158 */ 159 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 160 int string) 161 { 162 const char *d = (const char *) dm; 163 const char *p; 164 165 if (dmi_ident[slot]) 166 return; 167 168 p = dmi_string(dm, d[string]); 169 if (p == NULL) 170 return; 171 172 dmi_ident[slot] = p; 173 } 174 175 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 176 int index) 177 { 178 const u8 *d = (u8 *) dm + index; 179 char *s; 180 int is_ff = 1, is_00 = 1, i; 181 182 if (dmi_ident[slot]) 183 return; 184 185 for (i = 0; i < 16 && (is_ff || is_00); i++) { 186 if (d[i] != 0x00) 187 is_00 = 0; 188 if (d[i] != 0xFF) 189 is_ff = 0; 190 } 191 192 if (is_ff || is_00) 193 return; 194 195 s = dmi_alloc(16*2+4+1); 196 if (!s) 197 return; 198 199 /* 200 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 201 * the UUID are supposed to be little-endian encoded. The specification 202 * says that this is the defacto standard. 203 */ 204 if (dmi_ver >= 0x020600) 205 sprintf(s, "%pUL", d); 206 else 207 sprintf(s, "%pUB", d); 208 209 dmi_ident[slot] = s; 210 } 211 212 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 213 int index) 214 { 215 const u8 *d = (u8 *) dm + index; 216 char *s; 217 218 if (dmi_ident[slot]) 219 return; 220 221 s = dmi_alloc(4); 222 if (!s) 223 return; 224 225 sprintf(s, "%u", *d & 0x7F); 226 dmi_ident[slot] = s; 227 } 228 229 static void __init dmi_save_one_device(int type, const char *name) 230 { 231 struct dmi_device *dev; 232 233 /* No duplicate device */ 234 if (dmi_find_device(type, name, NULL)) 235 return; 236 237 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 238 if (!dev) 239 return; 240 241 dev->type = type; 242 strcpy((char *)(dev + 1), name); 243 dev->name = (char *)(dev + 1); 244 dev->device_data = NULL; 245 list_add(&dev->list, &dmi_devices); 246 } 247 248 static void __init dmi_save_devices(const struct dmi_header *dm) 249 { 250 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 251 252 for (i = 0; i < count; i++) { 253 const char *d = (char *)(dm + 1) + (i * 2); 254 255 /* Skip disabled device */ 256 if ((*d & 0x80) == 0) 257 continue; 258 259 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 260 } 261 } 262 263 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 264 { 265 int i, count = *(u8 *)(dm + 1); 266 struct dmi_device *dev; 267 268 for (i = 1; i <= count; i++) { 269 const char *devname = dmi_string(dm, i); 270 271 if (devname == dmi_empty_string) 272 continue; 273 274 dev = dmi_alloc(sizeof(*dev)); 275 if (!dev) 276 break; 277 278 dev->type = DMI_DEV_TYPE_OEM_STRING; 279 dev->name = devname; 280 dev->device_data = NULL; 281 282 list_add(&dev->list, &dmi_devices); 283 } 284 } 285 286 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 287 { 288 struct dmi_device *dev; 289 void *data; 290 291 data = dmi_alloc(dm->length); 292 if (data == NULL) 293 return; 294 295 memcpy(data, dm, dm->length); 296 297 dev = dmi_alloc(sizeof(*dev)); 298 if (!dev) 299 return; 300 301 dev->type = DMI_DEV_TYPE_IPMI; 302 dev->name = "IPMI controller"; 303 dev->device_data = data; 304 305 list_add_tail(&dev->list, &dmi_devices); 306 } 307 308 static void __init dmi_save_dev_onboard(int instance, int segment, int bus, 309 int devfn, const char *name) 310 { 311 struct dmi_dev_onboard *onboard_dev; 312 313 onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1); 314 if (!onboard_dev) 315 return; 316 317 onboard_dev->instance = instance; 318 onboard_dev->segment = segment; 319 onboard_dev->bus = bus; 320 onboard_dev->devfn = devfn; 321 322 strcpy((char *)&onboard_dev[1], name); 323 onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD; 324 onboard_dev->dev.name = (char *)&onboard_dev[1]; 325 onboard_dev->dev.device_data = onboard_dev; 326 327 list_add(&onboard_dev->dev.list, &dmi_devices); 328 } 329 330 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 331 { 332 const u8 *d = (u8 *) dm + 5; 333 334 /* Skip disabled device */ 335 if ((*d & 0x80) == 0) 336 return; 337 338 dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5), 339 dmi_string_nosave(dm, *(d-1))); 340 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 341 } 342 343 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 344 { 345 if (dm->type != DMI_ENTRY_MEM_DEVICE) 346 return; 347 dmi_memdev_nr++; 348 } 349 350 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 351 { 352 const char *d = (const char *)dm; 353 static int nr; 354 355 if (dm->type != DMI_ENTRY_MEM_DEVICE) 356 return; 357 if (nr >= dmi_memdev_nr) { 358 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 359 return; 360 } 361 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 362 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 363 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 364 nr++; 365 } 366 367 void __init dmi_memdev_walk(void) 368 { 369 if (!dmi_available) 370 return; 371 372 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 373 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 374 if (dmi_memdev) 375 dmi_walk_early(save_mem_devices); 376 } 377 } 378 379 /* 380 * Process a DMI table entry. Right now all we care about are the BIOS 381 * and machine entries. For 2.5 we should pull the smbus controller info 382 * out of here. 383 */ 384 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 385 { 386 switch (dm->type) { 387 case 0: /* BIOS Information */ 388 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 389 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 390 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 391 break; 392 case 1: /* System Information */ 393 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 394 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 395 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 396 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 397 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 398 break; 399 case 2: /* Base Board Information */ 400 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 401 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 402 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 403 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 404 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 405 break; 406 case 3: /* Chassis Information */ 407 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 408 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 409 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 410 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 411 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 412 break; 413 case 10: /* Onboard Devices Information */ 414 dmi_save_devices(dm); 415 break; 416 case 11: /* OEM Strings */ 417 dmi_save_oem_strings_devices(dm); 418 break; 419 case 38: /* IPMI Device Information */ 420 dmi_save_ipmi_device(dm); 421 break; 422 case 41: /* Onboard Devices Extended Information */ 423 dmi_save_extended_devices(dm); 424 } 425 } 426 427 static int __init print_filtered(char *buf, size_t len, const char *info) 428 { 429 int c = 0; 430 const char *p; 431 432 if (!info) 433 return c; 434 435 for (p = info; *p; p++) 436 if (isprint(*p)) 437 c += scnprintf(buf + c, len - c, "%c", *p); 438 else 439 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 440 return c; 441 } 442 443 static void __init dmi_format_ids(char *buf, size_t len) 444 { 445 int c = 0; 446 const char *board; /* Board Name is optional */ 447 448 c += print_filtered(buf + c, len - c, 449 dmi_get_system_info(DMI_SYS_VENDOR)); 450 c += scnprintf(buf + c, len - c, " "); 451 c += print_filtered(buf + c, len - c, 452 dmi_get_system_info(DMI_PRODUCT_NAME)); 453 454 board = dmi_get_system_info(DMI_BOARD_NAME); 455 if (board) { 456 c += scnprintf(buf + c, len - c, "/"); 457 c += print_filtered(buf + c, len - c, board); 458 } 459 c += scnprintf(buf + c, len - c, ", BIOS "); 460 c += print_filtered(buf + c, len - c, 461 dmi_get_system_info(DMI_BIOS_VERSION)); 462 c += scnprintf(buf + c, len - c, " "); 463 c += print_filtered(buf + c, len - c, 464 dmi_get_system_info(DMI_BIOS_DATE)); 465 } 466 467 /* 468 * Check for DMI/SMBIOS headers in the system firmware image. Any 469 * SMBIOS header must start 16 bytes before the DMI header, so take a 470 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 471 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 472 * takes precedence) and return 0. Otherwise return 1. 473 */ 474 static int __init dmi_present(const u8 *buf) 475 { 476 u32 smbios_ver; 477 478 if (memcmp(buf, "_SM_", 4) == 0 && 479 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 480 smbios_ver = get_unaligned_be16(buf + 6); 481 482 /* Some BIOS report weird SMBIOS version, fix that up */ 483 switch (smbios_ver) { 484 case 0x021F: 485 case 0x0221: 486 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 487 smbios_ver & 0xFF, 3); 488 smbios_ver = 0x0203; 489 break; 490 case 0x0233: 491 pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6); 492 smbios_ver = 0x0206; 493 break; 494 } 495 } else { 496 smbios_ver = 0; 497 } 498 499 buf += 16; 500 501 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 502 dmi_num = get_unaligned_le16(buf + 12); 503 dmi_len = get_unaligned_le16(buf + 6); 504 dmi_base = get_unaligned_le32(buf + 8); 505 506 if (dmi_walk_early(dmi_decode) == 0) { 507 if (smbios_ver) { 508 dmi_ver = smbios_ver; 509 pr_info("SMBIOS %d.%d%s present.\n", 510 dmi_ver >> 8, dmi_ver & 0xFF, 511 (dmi_ver < 0x0300) ? "" : ".x"); 512 } else { 513 dmi_ver = (buf[14] & 0xF0) << 4 | 514 (buf[14] & 0x0F); 515 pr_info("Legacy DMI %d.%d present.\n", 516 dmi_ver >> 8, dmi_ver & 0xFF); 517 } 518 dmi_ver <<= 8; 519 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 520 printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string); 521 return 0; 522 } 523 } 524 525 return 1; 526 } 527 528 /* 529 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 530 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 531 */ 532 static int __init dmi_smbios3_present(const u8 *buf) 533 { 534 if (memcmp(buf, "_SM3_", 5) == 0 && 535 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 536 dmi_ver = get_unaligned_be32(buf + 6); 537 dmi_ver &= 0xFFFFFF; 538 dmi_num = 0; /* No longer specified */ 539 dmi_len = get_unaligned_le32(buf + 12); 540 dmi_base = get_unaligned_le64(buf + 16); 541 542 if (dmi_walk_early(dmi_decode) == 0) { 543 pr_info("SMBIOS %d.%d.%d present.\n", 544 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 545 dmi_ver & 0xFF); 546 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 547 pr_debug("DMI: %s\n", dmi_ids_string); 548 return 0; 549 } 550 } 551 return 1; 552 } 553 554 void __init dmi_scan_machine(void) 555 { 556 char __iomem *p, *q; 557 char buf[32]; 558 559 if (efi_enabled(EFI_CONFIG_TABLES)) { 560 /* 561 * According to the DMTF SMBIOS reference spec v3.0.0, it is 562 * allowed to define both the 64-bit entry point (smbios3) and 563 * the 32-bit entry point (smbios), in which case they should 564 * either both point to the same SMBIOS structure table, or the 565 * table pointed to by the 64-bit entry point should contain a 566 * superset of the table contents pointed to by the 32-bit entry 567 * point (section 5.2) 568 * This implies that the 64-bit entry point should have 569 * precedence if it is defined and supported by the OS. If we 570 * have the 64-bit entry point, but fail to decode it, fall 571 * back to the legacy one (if available) 572 */ 573 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 574 p = dmi_early_remap(efi.smbios3, 32); 575 if (p == NULL) 576 goto error; 577 memcpy_fromio(buf, p, 32); 578 dmi_early_unmap(p, 32); 579 580 if (!dmi_smbios3_present(buf)) { 581 dmi_available = 1; 582 goto out; 583 } 584 } 585 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 586 goto error; 587 588 /* This is called as a core_initcall() because it isn't 589 * needed during early boot. This also means we can 590 * iounmap the space when we're done with it. 591 */ 592 p = dmi_early_remap(efi.smbios, 32); 593 if (p == NULL) 594 goto error; 595 memcpy_fromio(buf, p, 32); 596 dmi_early_unmap(p, 32); 597 598 if (!dmi_present(buf)) { 599 dmi_available = 1; 600 goto out; 601 } 602 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 603 p = dmi_early_remap(0xF0000, 0x10000); 604 if (p == NULL) 605 goto error; 606 607 /* 608 * Iterate over all possible DMI header addresses q. 609 * Maintain the 32 bytes around q in buf. On the 610 * first iteration, substitute zero for the 611 * out-of-range bytes so there is no chance of falsely 612 * detecting an SMBIOS header. 613 */ 614 memset(buf, 0, 16); 615 for (q = p; q < p + 0x10000; q += 16) { 616 memcpy_fromio(buf + 16, q, 16); 617 if (!dmi_smbios3_present(buf) || !dmi_present(buf)) { 618 dmi_available = 1; 619 dmi_early_unmap(p, 0x10000); 620 goto out; 621 } 622 memcpy(buf, buf + 16, 16); 623 } 624 dmi_early_unmap(p, 0x10000); 625 } 626 error: 627 pr_info("DMI not present or invalid.\n"); 628 out: 629 dmi_initialized = 1; 630 } 631 632 /** 633 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack() 634 * 635 * Invoke dump_stack_set_arch_desc() with DMI system information so that 636 * DMI identifiers are printed out on task dumps. Arch boot code should 637 * call this function after dmi_scan_machine() if it wants to print out DMI 638 * identifiers on task dumps. 639 */ 640 void __init dmi_set_dump_stack_arch_desc(void) 641 { 642 dump_stack_set_arch_desc("%s", dmi_ids_string); 643 } 644 645 /** 646 * dmi_matches - check if dmi_system_id structure matches system DMI data 647 * @dmi: pointer to the dmi_system_id structure to check 648 */ 649 static bool dmi_matches(const struct dmi_system_id *dmi) 650 { 651 int i; 652 653 WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n"); 654 655 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 656 int s = dmi->matches[i].slot; 657 if (s == DMI_NONE) 658 break; 659 if (dmi_ident[s]) { 660 if (!dmi->matches[i].exact_match && 661 strstr(dmi_ident[s], dmi->matches[i].substr)) 662 continue; 663 else if (dmi->matches[i].exact_match && 664 !strcmp(dmi_ident[s], dmi->matches[i].substr)) 665 continue; 666 } 667 668 /* No match */ 669 return false; 670 } 671 return true; 672 } 673 674 /** 675 * dmi_is_end_of_table - check for end-of-table marker 676 * @dmi: pointer to the dmi_system_id structure to check 677 */ 678 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 679 { 680 return dmi->matches[0].slot == DMI_NONE; 681 } 682 683 /** 684 * dmi_check_system - check system DMI data 685 * @list: array of dmi_system_id structures to match against 686 * All non-null elements of the list must match 687 * their slot's (field index's) data (i.e., each 688 * list string must be a substring of the specified 689 * DMI slot's string data) to be considered a 690 * successful match. 691 * 692 * Walk the blacklist table running matching functions until someone 693 * returns non zero or we hit the end. Callback function is called for 694 * each successful match. Returns the number of matches. 695 */ 696 int dmi_check_system(const struct dmi_system_id *list) 697 { 698 int count = 0; 699 const struct dmi_system_id *d; 700 701 for (d = list; !dmi_is_end_of_table(d); d++) 702 if (dmi_matches(d)) { 703 count++; 704 if (d->callback && d->callback(d)) 705 break; 706 } 707 708 return count; 709 } 710 EXPORT_SYMBOL(dmi_check_system); 711 712 /** 713 * dmi_first_match - find dmi_system_id structure matching system DMI data 714 * @list: array of dmi_system_id structures to match against 715 * All non-null elements of the list must match 716 * their slot's (field index's) data (i.e., each 717 * list string must be a substring of the specified 718 * DMI slot's string data) to be considered a 719 * successful match. 720 * 721 * Walk the blacklist table until the first match is found. Return the 722 * pointer to the matching entry or NULL if there's no match. 723 */ 724 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 725 { 726 const struct dmi_system_id *d; 727 728 for (d = list; !dmi_is_end_of_table(d); d++) 729 if (dmi_matches(d)) 730 return d; 731 732 return NULL; 733 } 734 EXPORT_SYMBOL(dmi_first_match); 735 736 /** 737 * dmi_get_system_info - return DMI data value 738 * @field: data index (see enum dmi_field) 739 * 740 * Returns one DMI data value, can be used to perform 741 * complex DMI data checks. 742 */ 743 const char *dmi_get_system_info(int field) 744 { 745 return dmi_ident[field]; 746 } 747 EXPORT_SYMBOL(dmi_get_system_info); 748 749 /** 750 * dmi_name_in_serial - Check if string is in the DMI product serial information 751 * @str: string to check for 752 */ 753 int dmi_name_in_serial(const char *str) 754 { 755 int f = DMI_PRODUCT_SERIAL; 756 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 757 return 1; 758 return 0; 759 } 760 761 /** 762 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 763 * @str: Case sensitive Name 764 */ 765 int dmi_name_in_vendors(const char *str) 766 { 767 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 768 int i; 769 for (i = 0; fields[i] != DMI_NONE; i++) { 770 int f = fields[i]; 771 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 772 return 1; 773 } 774 return 0; 775 } 776 EXPORT_SYMBOL(dmi_name_in_vendors); 777 778 /** 779 * dmi_find_device - find onboard device by type/name 780 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 781 * @name: device name string or %NULL to match all 782 * @from: previous device found in search, or %NULL for new search. 783 * 784 * Iterates through the list of known onboard devices. If a device is 785 * found with a matching @vendor and @device, a pointer to its device 786 * structure is returned. Otherwise, %NULL is returned. 787 * A new search is initiated by passing %NULL as the @from argument. 788 * If @from is not %NULL, searches continue from next device. 789 */ 790 const struct dmi_device *dmi_find_device(int type, const char *name, 791 const struct dmi_device *from) 792 { 793 const struct list_head *head = from ? &from->list : &dmi_devices; 794 struct list_head *d; 795 796 for (d = head->next; d != &dmi_devices; d = d->next) { 797 const struct dmi_device *dev = 798 list_entry(d, struct dmi_device, list); 799 800 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 801 ((name == NULL) || (strcmp(dev->name, name) == 0))) 802 return dev; 803 } 804 805 return NULL; 806 } 807 EXPORT_SYMBOL(dmi_find_device); 808 809 /** 810 * dmi_get_date - parse a DMI date 811 * @field: data index (see enum dmi_field) 812 * @yearp: optional out parameter for the year 813 * @monthp: optional out parameter for the month 814 * @dayp: optional out parameter for the day 815 * 816 * The date field is assumed to be in the form resembling 817 * [mm[/dd]]/yy[yy] and the result is stored in the out 818 * parameters any or all of which can be omitted. 819 * 820 * If the field doesn't exist, all out parameters are set to zero 821 * and false is returned. Otherwise, true is returned with any 822 * invalid part of date set to zero. 823 * 824 * On return, year, month and day are guaranteed to be in the 825 * range of [0,9999], [0,12] and [0,31] respectively. 826 */ 827 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 828 { 829 int year = 0, month = 0, day = 0; 830 bool exists; 831 const char *s, *y; 832 char *e; 833 834 s = dmi_get_system_info(field); 835 exists = s; 836 if (!exists) 837 goto out; 838 839 /* 840 * Determine year first. We assume the date string resembles 841 * mm/dd/yy[yy] but the original code extracted only the year 842 * from the end. Keep the behavior in the spirit of no 843 * surprises. 844 */ 845 y = strrchr(s, '/'); 846 if (!y) 847 goto out; 848 849 y++; 850 year = simple_strtoul(y, &e, 10); 851 if (y != e && year < 100) { /* 2-digit year */ 852 year += 1900; 853 if (year < 1996) /* no dates < spec 1.0 */ 854 year += 100; 855 } 856 if (year > 9999) /* year should fit in %04d */ 857 year = 0; 858 859 /* parse the mm and dd */ 860 month = simple_strtoul(s, &e, 10); 861 if (s == e || *e != '/' || !month || month > 12) { 862 month = 0; 863 goto out; 864 } 865 866 s = e + 1; 867 day = simple_strtoul(s, &e, 10); 868 if (s == y || s == e || *e != '/' || day > 31) 869 day = 0; 870 out: 871 if (yearp) 872 *yearp = year; 873 if (monthp) 874 *monthp = month; 875 if (dayp) 876 *dayp = day; 877 return exists; 878 } 879 EXPORT_SYMBOL(dmi_get_date); 880 881 /** 882 * dmi_walk - Walk the DMI table and get called back for every record 883 * @decode: Callback function 884 * @private_data: Private data to be passed to the callback function 885 * 886 * Returns -1 when the DMI table can't be reached, 0 on success. 887 */ 888 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 889 void *private_data) 890 { 891 u8 *buf; 892 893 if (!dmi_available) 894 return -1; 895 896 buf = dmi_remap(dmi_base, dmi_len); 897 if (buf == NULL) 898 return -1; 899 900 dmi_table(buf, decode, private_data); 901 902 dmi_unmap(buf); 903 return 0; 904 } 905 EXPORT_SYMBOL_GPL(dmi_walk); 906 907 /** 908 * dmi_match - compare a string to the dmi field (if exists) 909 * @f: DMI field identifier 910 * @str: string to compare the DMI field to 911 * 912 * Returns true if the requested field equals to the str (including NULL). 913 */ 914 bool dmi_match(enum dmi_field f, const char *str) 915 { 916 const char *info = dmi_get_system_info(f); 917 918 if (info == NULL || str == NULL) 919 return info == str; 920 921 return !strcmp(info, str); 922 } 923 EXPORT_SYMBOL_GPL(dmi_match); 924 925 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 926 { 927 int n; 928 929 if (dmi_memdev == NULL) 930 return; 931 932 for (n = 0; n < dmi_memdev_nr; n++) { 933 if (handle == dmi_memdev[n].handle) { 934 *bank = dmi_memdev[n].bank; 935 *device = dmi_memdev[n].device; 936 break; 937 } 938 } 939 } 940 EXPORT_SYMBOL_GPL(dmi_memdev_name); 941