1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/dmi.h> 6 #include <linux/efi.h> 7 #include <linux/bootmem.h> 8 #include <linux/slab.h> 9 #include <asm/dmi.h> 10 11 static char dmi_empty_string[] = " "; 12 13 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 14 { 15 const u8 *bp = ((u8 *) dm) + dm->length; 16 17 if (s) { 18 s--; 19 while (s > 0 && *bp) { 20 bp += strlen(bp) + 1; 21 s--; 22 } 23 24 if (*bp != 0) { 25 size_t len = strlen(bp)+1; 26 size_t cmp_len = len > 8 ? 8 : len; 27 28 if (!memcmp(bp, dmi_empty_string, cmp_len)) 29 return dmi_empty_string; 30 return bp; 31 } 32 } 33 34 return ""; 35 } 36 37 static char * __init dmi_string(const struct dmi_header *dm, u8 s) 38 { 39 const char *bp = dmi_string_nosave(dm, s); 40 char *str; 41 size_t len; 42 43 if (bp == dmi_empty_string) 44 return dmi_empty_string; 45 46 len = strlen(bp) + 1; 47 str = dmi_alloc(len); 48 if (str != NULL) 49 strcpy(str, bp); 50 else 51 printk(KERN_ERR "dmi_string: cannot allocate %Zu bytes.\n", len); 52 53 return str; 54 } 55 56 /* 57 * We have to be cautious here. We have seen BIOSes with DMI pointers 58 * pointing to completely the wrong place for example 59 */ 60 static void dmi_table(u8 *buf, int len, int num, 61 void (*decode)(const struct dmi_header *)) 62 { 63 u8 *data = buf; 64 int i = 0; 65 66 /* 67 * Stop when we see all the items the table claimed to have 68 * OR we run off the end of the table (also happens) 69 */ 70 while ((i < num) && (data - buf + sizeof(struct dmi_header)) <= len) { 71 const struct dmi_header *dm = (const struct dmi_header *)data; 72 73 /* 74 * We want to know the total length (formated area and strings) 75 * before decoding to make sure we won't run off the table in 76 * dmi_decode or dmi_string 77 */ 78 data += dm->length; 79 while ((data - buf < len - 1) && (data[0] || data[1])) 80 data++; 81 if (data - buf < len - 1) 82 decode(dm); 83 data += 2; 84 i++; 85 } 86 } 87 88 static u32 dmi_base; 89 static u16 dmi_len; 90 static u16 dmi_num; 91 92 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *)) 93 { 94 u8 *buf; 95 96 buf = dmi_ioremap(dmi_base, dmi_len); 97 if (buf == NULL) 98 return -1; 99 100 dmi_table(buf, dmi_len, dmi_num, decode); 101 102 dmi_iounmap(buf, dmi_len); 103 return 0; 104 } 105 106 static int __init dmi_checksum(const u8 *buf) 107 { 108 u8 sum = 0; 109 int a; 110 111 for (a = 0; a < 15; a++) 112 sum += buf[a]; 113 114 return sum == 0; 115 } 116 117 static char *dmi_ident[DMI_STRING_MAX]; 118 static LIST_HEAD(dmi_devices); 119 int dmi_available; 120 121 /* 122 * Save a DMI string 123 */ 124 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) 125 { 126 const char *d = (const char*) dm; 127 char *p; 128 129 if (dmi_ident[slot]) 130 return; 131 132 p = dmi_string(dm, d[string]); 133 if (p == NULL) 134 return; 135 136 dmi_ident[slot] = p; 137 } 138 139 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) 140 { 141 const u8 *d = (u8*) dm + index; 142 char *s; 143 int is_ff = 1, is_00 = 1, i; 144 145 if (dmi_ident[slot]) 146 return; 147 148 for (i = 0; i < 16 && (is_ff || is_00); i++) { 149 if(d[i] != 0x00) is_ff = 0; 150 if(d[i] != 0xFF) is_00 = 0; 151 } 152 153 if (is_ff || is_00) 154 return; 155 156 s = dmi_alloc(16*2+4+1); 157 if (!s) 158 return; 159 160 sprintf(s, 161 "%02X%02X%02X%02X-%02X%02X-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X", 162 d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7], 163 d[8], d[9], d[10], d[11], d[12], d[13], d[14], d[15]); 164 165 dmi_ident[slot] = s; 166 } 167 168 static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) 169 { 170 const u8 *d = (u8*) dm + index; 171 char *s; 172 173 if (dmi_ident[slot]) 174 return; 175 176 s = dmi_alloc(4); 177 if (!s) 178 return; 179 180 sprintf(s, "%u", *d & 0x7F); 181 dmi_ident[slot] = s; 182 } 183 184 static void __init dmi_save_one_device(int type, const char *name) 185 { 186 struct dmi_device *dev; 187 188 /* No duplicate device */ 189 if (dmi_find_device(type, name, NULL)) 190 return; 191 192 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 193 if (!dev) { 194 printk(KERN_ERR "dmi_save_one_device: out of memory.\n"); 195 return; 196 } 197 198 dev->type = type; 199 strcpy((char *)(dev + 1), name); 200 dev->name = (char *)(dev + 1); 201 dev->device_data = NULL; 202 list_add(&dev->list, &dmi_devices); 203 } 204 205 static void __init dmi_save_devices(const struct dmi_header *dm) 206 { 207 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 208 209 for (i = 0; i < count; i++) { 210 const char *d = (char *)(dm + 1) + (i * 2); 211 212 /* Skip disabled device */ 213 if ((*d & 0x80) == 0) 214 continue; 215 216 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 217 } 218 } 219 220 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 221 { 222 int i, count = *(u8 *)(dm + 1); 223 struct dmi_device *dev; 224 225 for (i = 1; i <= count; i++) { 226 char *devname = dmi_string(dm, i); 227 228 if (devname == dmi_empty_string) 229 continue; 230 231 dev = dmi_alloc(sizeof(*dev)); 232 if (!dev) { 233 printk(KERN_ERR 234 "dmi_save_oem_strings_devices: out of memory.\n"); 235 break; 236 } 237 238 dev->type = DMI_DEV_TYPE_OEM_STRING; 239 dev->name = devname; 240 dev->device_data = NULL; 241 242 list_add(&dev->list, &dmi_devices); 243 } 244 } 245 246 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 247 { 248 struct dmi_device *dev; 249 void * data; 250 251 data = dmi_alloc(dm->length); 252 if (data == NULL) { 253 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 254 return; 255 } 256 257 memcpy(data, dm, dm->length); 258 259 dev = dmi_alloc(sizeof(*dev)); 260 if (!dev) { 261 printk(KERN_ERR "dmi_save_ipmi_device: out of memory.\n"); 262 return; 263 } 264 265 dev->type = DMI_DEV_TYPE_IPMI; 266 dev->name = "IPMI controller"; 267 dev->device_data = data; 268 269 list_add_tail(&dev->list, &dmi_devices); 270 } 271 272 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 273 { 274 const u8 *d = (u8*) dm + 5; 275 276 /* Skip disabled device */ 277 if ((*d & 0x80) == 0) 278 return; 279 280 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1))); 281 } 282 283 /* 284 * Process a DMI table entry. Right now all we care about are the BIOS 285 * and machine entries. For 2.5 we should pull the smbus controller info 286 * out of here. 287 */ 288 static void __init dmi_decode(const struct dmi_header *dm) 289 { 290 switch(dm->type) { 291 case 0: /* BIOS Information */ 292 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 293 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 294 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 295 break; 296 case 1: /* System Information */ 297 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 298 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 299 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 300 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 301 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 302 break; 303 case 2: /* Base Board Information */ 304 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 305 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 306 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 307 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 308 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 309 break; 310 case 3: /* Chassis Information */ 311 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 312 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 313 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 314 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 315 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 316 break; 317 case 10: /* Onboard Devices Information */ 318 dmi_save_devices(dm); 319 break; 320 case 11: /* OEM Strings */ 321 dmi_save_oem_strings_devices(dm); 322 break; 323 case 38: /* IPMI Device Information */ 324 dmi_save_ipmi_device(dm); 325 break; 326 case 41: /* Onboard Devices Extended Information */ 327 dmi_save_extended_devices(dm); 328 } 329 } 330 331 static int __init dmi_present(const char __iomem *p) 332 { 333 u8 buf[15]; 334 335 memcpy_fromio(buf, p, 15); 336 if ((memcmp(buf, "_DMI_", 5) == 0) && dmi_checksum(buf)) { 337 dmi_num = (buf[13] << 8) | buf[12]; 338 dmi_len = (buf[7] << 8) | buf[6]; 339 dmi_base = (buf[11] << 24) | (buf[10] << 16) | 340 (buf[9] << 8) | buf[8]; 341 342 /* 343 * DMI version 0.0 means that the real version is taken from 344 * the SMBIOS version, which we don't know at this point. 345 */ 346 if (buf[14] != 0) 347 printk(KERN_INFO "DMI %d.%d present.\n", 348 buf[14] >> 4, buf[14] & 0xF); 349 else 350 printk(KERN_INFO "DMI present.\n"); 351 if (dmi_walk_early(dmi_decode) == 0) 352 return 0; 353 } 354 return 1; 355 } 356 357 void __init dmi_scan_machine(void) 358 { 359 char __iomem *p, *q; 360 int rc; 361 362 if (efi_enabled) { 363 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 364 goto out; 365 366 /* This is called as a core_initcall() because it isn't 367 * needed during early boot. This also means we can 368 * iounmap the space when we're done with it. 369 */ 370 p = dmi_ioremap(efi.smbios, 32); 371 if (p == NULL) 372 goto out; 373 374 rc = dmi_present(p + 0x10); /* offset of _DMI_ string */ 375 dmi_iounmap(p, 32); 376 if (!rc) { 377 dmi_available = 1; 378 return; 379 } 380 } 381 else { 382 /* 383 * no iounmap() for that ioremap(); it would be a no-op, but 384 * it's so early in setup that sucker gets confused into doing 385 * what it shouldn't if we actually call it. 386 */ 387 p = dmi_ioremap(0xF0000, 0x10000); 388 if (p == NULL) 389 goto out; 390 391 for (q = p; q < p + 0x10000; q += 16) { 392 rc = dmi_present(q); 393 if (!rc) { 394 dmi_available = 1; 395 dmi_iounmap(p, 0x10000); 396 return; 397 } 398 } 399 dmi_iounmap(p, 0x10000); 400 } 401 out: printk(KERN_INFO "DMI not present or invalid.\n"); 402 } 403 404 /** 405 * dmi_check_system - check system DMI data 406 * @list: array of dmi_system_id structures to match against 407 * All non-null elements of the list must match 408 * their slot's (field index's) data (i.e., each 409 * list string must be a substring of the specified 410 * DMI slot's string data) to be considered a 411 * successful match. 412 * 413 * Walk the blacklist table running matching functions until someone 414 * returns non zero or we hit the end. Callback function is called for 415 * each successful match. Returns the number of matches. 416 */ 417 int dmi_check_system(const struct dmi_system_id *list) 418 { 419 int i, count = 0; 420 const struct dmi_system_id *d = list; 421 422 while (d->ident) { 423 for (i = 0; i < ARRAY_SIZE(d->matches); i++) { 424 int s = d->matches[i].slot; 425 if (s == DMI_NONE) 426 continue; 427 if (dmi_ident[s] && strstr(dmi_ident[s], d->matches[i].substr)) 428 continue; 429 /* No match */ 430 goto fail; 431 } 432 count++; 433 if (d->callback && d->callback(d)) 434 break; 435 fail: d++; 436 } 437 438 return count; 439 } 440 EXPORT_SYMBOL(dmi_check_system); 441 442 /** 443 * dmi_get_system_info - return DMI data value 444 * @field: data index (see enum dmi_field) 445 * 446 * Returns one DMI data value, can be used to perform 447 * complex DMI data checks. 448 */ 449 const char *dmi_get_system_info(int field) 450 { 451 return dmi_ident[field]; 452 } 453 EXPORT_SYMBOL(dmi_get_system_info); 454 455 456 /** 457 * dmi_name_in_vendors - Check if string is anywhere in the DMI vendor information. 458 * @str: Case sensitive Name 459 */ 460 int dmi_name_in_vendors(const char *str) 461 { 462 static int fields[] = { DMI_BIOS_VENDOR, DMI_BIOS_VERSION, DMI_SYS_VENDOR, 463 DMI_PRODUCT_NAME, DMI_PRODUCT_VERSION, DMI_BOARD_VENDOR, 464 DMI_BOARD_NAME, DMI_BOARD_VERSION, DMI_NONE }; 465 int i; 466 for (i = 0; fields[i] != DMI_NONE; i++) { 467 int f = fields[i]; 468 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 469 return 1; 470 } 471 return 0; 472 } 473 EXPORT_SYMBOL(dmi_name_in_vendors); 474 475 /** 476 * dmi_find_device - find onboard device by type/name 477 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 478 * @name: device name string or %NULL to match all 479 * @from: previous device found in search, or %NULL for new search. 480 * 481 * Iterates through the list of known onboard devices. If a device is 482 * found with a matching @vendor and @device, a pointer to its device 483 * structure is returned. Otherwise, %NULL is returned. 484 * A new search is initiated by passing %NULL as the @from argument. 485 * If @from is not %NULL, searches continue from next device. 486 */ 487 const struct dmi_device * dmi_find_device(int type, const char *name, 488 const struct dmi_device *from) 489 { 490 const struct list_head *head = from ? &from->list : &dmi_devices; 491 struct list_head *d; 492 493 for(d = head->next; d != &dmi_devices; d = d->next) { 494 const struct dmi_device *dev = 495 list_entry(d, struct dmi_device, list); 496 497 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 498 ((name == NULL) || (strcmp(dev->name, name) == 0))) 499 return dev; 500 } 501 502 return NULL; 503 } 504 EXPORT_SYMBOL(dmi_find_device); 505 506 /** 507 * dmi_get_year - Return year of a DMI date 508 * @field: data index (like dmi_get_system_info) 509 * 510 * Returns -1 when the field doesn't exist. 0 when it is broken. 511 */ 512 int dmi_get_year(int field) 513 { 514 int year; 515 const char *s = dmi_get_system_info(field); 516 517 if (!s) 518 return -1; 519 if (*s == '\0') 520 return 0; 521 s = strrchr(s, '/'); 522 if (!s) 523 return 0; 524 525 s += 1; 526 year = simple_strtoul(s, NULL, 0); 527 if (year && year < 100) { /* 2-digit year */ 528 year += 1900; 529 if (year < 1996) /* no dates < spec 1.0 */ 530 year += 100; 531 } 532 533 return year; 534 } 535 536 /** 537 * dmi_walk - Walk the DMI table and get called back for every record 538 * @decode: Callback function 539 * 540 * Returns -1 when the DMI table can't be reached, 0 on success. 541 */ 542 int dmi_walk(void (*decode)(const struct dmi_header *)) 543 { 544 u8 *buf; 545 546 if (!dmi_available) 547 return -1; 548 549 buf = ioremap(dmi_base, dmi_len); 550 if (buf == NULL) 551 return -1; 552 553 dmi_table(buf, dmi_len, dmi_num, decode); 554 555 iounmap(buf); 556 return 0; 557 } 558 EXPORT_SYMBOL_GPL(dmi_walk); 559