xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 15e3ae36)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/types.h>
3 #include <linux/string.h>
4 #include <linux/init.h>
5 #include <linux/module.h>
6 #include <linux/ctype.h>
7 #include <linux/dmi.h>
8 #include <linux/efi.h>
9 #include <linux/memblock.h>
10 #include <linux/random.h>
11 #include <asm/dmi.h>
12 #include <asm/unaligned.h>
13 
14 #ifndef SMBIOS_ENTRY_POINT_SCAN_START
15 #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
16 #endif
17 
18 struct kobject *dmi_kobj;
19 EXPORT_SYMBOL_GPL(dmi_kobj);
20 
21 /*
22  * DMI stands for "Desktop Management Interface".  It is part
23  * of and an antecedent to, SMBIOS, which stands for System
24  * Management BIOS.  See further: http://www.dmtf.org/standards
25  */
26 static const char dmi_empty_string[] = "";
27 
28 static u32 dmi_ver __initdata;
29 static u32 dmi_len;
30 static u16 dmi_num;
31 static u8 smbios_entry_point[32];
32 static int smbios_entry_point_size;
33 
34 /* DMI system identification string used during boot */
35 static char dmi_ids_string[128] __initdata;
36 
37 static struct dmi_memdev_info {
38 	const char *device;
39 	const char *bank;
40 	u64 size;		/* bytes */
41 	u16 handle;
42 	u8 type;		/* DDR2, DDR3, DDR4 etc */
43 } *dmi_memdev;
44 static int dmi_memdev_nr;
45 
46 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
47 {
48 	const u8 *bp = ((u8 *) dm) + dm->length;
49 	const u8 *nsp;
50 
51 	if (s) {
52 		while (--s > 0 && *bp)
53 			bp += strlen(bp) + 1;
54 
55 		/* Strings containing only spaces are considered empty */
56 		nsp = bp;
57 		while (*nsp == ' ')
58 			nsp++;
59 		if (*nsp != '\0')
60 			return bp;
61 	}
62 
63 	return dmi_empty_string;
64 }
65 
66 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
67 {
68 	const char *bp = dmi_string_nosave(dm, s);
69 	char *str;
70 	size_t len;
71 
72 	if (bp == dmi_empty_string)
73 		return dmi_empty_string;
74 
75 	len = strlen(bp) + 1;
76 	str = dmi_alloc(len);
77 	if (str != NULL)
78 		strcpy(str, bp);
79 
80 	return str;
81 }
82 
83 /*
84  *	We have to be cautious here. We have seen BIOSes with DMI pointers
85  *	pointing to completely the wrong place for example
86  */
87 static void dmi_decode_table(u8 *buf,
88 			     void (*decode)(const struct dmi_header *, void *),
89 			     void *private_data)
90 {
91 	u8 *data = buf;
92 	int i = 0;
93 
94 	/*
95 	 * Stop when we have seen all the items the table claimed to have
96 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
97 	 * >= 3.0 only) OR we run off the end of the table (should never
98 	 * happen but sometimes does on bogus implementations.)
99 	 */
100 	while ((!dmi_num || i < dmi_num) &&
101 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
102 		const struct dmi_header *dm = (const struct dmi_header *)data;
103 
104 		/*
105 		 *  We want to know the total length (formatted area and
106 		 *  strings) before decoding to make sure we won't run off the
107 		 *  table in dmi_decode or dmi_string
108 		 */
109 		data += dm->length;
110 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
111 			data++;
112 		if (data - buf < dmi_len - 1)
113 			decode(dm, private_data);
114 
115 		data += 2;
116 		i++;
117 
118 		/*
119 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
120 		 * For tables behind a 64-bit entry point, we have no item
121 		 * count and no exact table length, so stop on end-of-table
122 		 * marker. For tables behind a 32-bit entry point, we have
123 		 * seen OEM structures behind the end-of-table marker on
124 		 * some systems, so don't trust it.
125 		 */
126 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
127 			break;
128 	}
129 
130 	/* Trim DMI table length if needed */
131 	if (dmi_len > data - buf)
132 		dmi_len = data - buf;
133 }
134 
135 static phys_addr_t dmi_base;
136 
137 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
138 		void *))
139 {
140 	u8 *buf;
141 	u32 orig_dmi_len = dmi_len;
142 
143 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
144 	if (buf == NULL)
145 		return -ENOMEM;
146 
147 	dmi_decode_table(buf, decode, NULL);
148 
149 	add_device_randomness(buf, dmi_len);
150 
151 	dmi_early_unmap(buf, orig_dmi_len);
152 	return 0;
153 }
154 
155 static int __init dmi_checksum(const u8 *buf, u8 len)
156 {
157 	u8 sum = 0;
158 	int a;
159 
160 	for (a = 0; a < len; a++)
161 		sum += buf[a];
162 
163 	return sum == 0;
164 }
165 
166 static const char *dmi_ident[DMI_STRING_MAX];
167 static LIST_HEAD(dmi_devices);
168 int dmi_available;
169 
170 /*
171  *	Save a DMI string
172  */
173 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
174 		int string)
175 {
176 	const char *d = (const char *) dm;
177 	const char *p;
178 
179 	if (dmi_ident[slot] || dm->length <= string)
180 		return;
181 
182 	p = dmi_string(dm, d[string]);
183 	if (p == NULL)
184 		return;
185 
186 	dmi_ident[slot] = p;
187 }
188 
189 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
190 		int index)
191 {
192 	const u8 *d;
193 	char *s;
194 	int is_ff = 1, is_00 = 1, i;
195 
196 	if (dmi_ident[slot] || dm->length < index + 16)
197 		return;
198 
199 	d = (u8 *) dm + index;
200 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
201 		if (d[i] != 0x00)
202 			is_00 = 0;
203 		if (d[i] != 0xFF)
204 			is_ff = 0;
205 	}
206 
207 	if (is_ff || is_00)
208 		return;
209 
210 	s = dmi_alloc(16*2+4+1);
211 	if (!s)
212 		return;
213 
214 	/*
215 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
216 	 * the UUID are supposed to be little-endian encoded.  The specification
217 	 * says that this is the defacto standard.
218 	 */
219 	if (dmi_ver >= 0x020600)
220 		sprintf(s, "%pUl", d);
221 	else
222 		sprintf(s, "%pUb", d);
223 
224 	dmi_ident[slot] = s;
225 }
226 
227 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
228 		int index)
229 {
230 	const u8 *d;
231 	char *s;
232 
233 	if (dmi_ident[slot] || dm->length <= index)
234 		return;
235 
236 	s = dmi_alloc(4);
237 	if (!s)
238 		return;
239 
240 	d = (u8 *) dm + index;
241 	sprintf(s, "%u", *d & 0x7F);
242 	dmi_ident[slot] = s;
243 }
244 
245 static void __init dmi_save_one_device(int type, const char *name)
246 {
247 	struct dmi_device *dev;
248 
249 	/* No duplicate device */
250 	if (dmi_find_device(type, name, NULL))
251 		return;
252 
253 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
254 	if (!dev)
255 		return;
256 
257 	dev->type = type;
258 	strcpy((char *)(dev + 1), name);
259 	dev->name = (char *)(dev + 1);
260 	dev->device_data = NULL;
261 	list_add(&dev->list, &dmi_devices);
262 }
263 
264 static void __init dmi_save_devices(const struct dmi_header *dm)
265 {
266 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
267 
268 	for (i = 0; i < count; i++) {
269 		const char *d = (char *)(dm + 1) + (i * 2);
270 
271 		/* Skip disabled device */
272 		if ((*d & 0x80) == 0)
273 			continue;
274 
275 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
276 	}
277 }
278 
279 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
280 {
281 	int i, count;
282 	struct dmi_device *dev;
283 
284 	if (dm->length < 0x05)
285 		return;
286 
287 	count = *(u8 *)(dm + 1);
288 	for (i = 1; i <= count; i++) {
289 		const char *devname = dmi_string(dm, i);
290 
291 		if (devname == dmi_empty_string)
292 			continue;
293 
294 		dev = dmi_alloc(sizeof(*dev));
295 		if (!dev)
296 			break;
297 
298 		dev->type = DMI_DEV_TYPE_OEM_STRING;
299 		dev->name = devname;
300 		dev->device_data = NULL;
301 
302 		list_add(&dev->list, &dmi_devices);
303 	}
304 }
305 
306 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
307 {
308 	struct dmi_device *dev;
309 	void *data;
310 
311 	data = dmi_alloc(dm->length);
312 	if (data == NULL)
313 		return;
314 
315 	memcpy(data, dm, dm->length);
316 
317 	dev = dmi_alloc(sizeof(*dev));
318 	if (!dev)
319 		return;
320 
321 	dev->type = DMI_DEV_TYPE_IPMI;
322 	dev->name = "IPMI controller";
323 	dev->device_data = data;
324 
325 	list_add_tail(&dev->list, &dmi_devices);
326 }
327 
328 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
329 					int devfn, const char *name, int type)
330 {
331 	struct dmi_dev_onboard *dev;
332 
333 	/* Ignore invalid values */
334 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
335 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
336 		return;
337 
338 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
339 	if (!dev)
340 		return;
341 
342 	dev->instance = instance;
343 	dev->segment = segment;
344 	dev->bus = bus;
345 	dev->devfn = devfn;
346 
347 	strcpy((char *)&dev[1], name);
348 	dev->dev.type = type;
349 	dev->dev.name = (char *)&dev[1];
350 	dev->dev.device_data = dev;
351 
352 	list_add(&dev->dev.list, &dmi_devices);
353 }
354 
355 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
356 {
357 	const char *name;
358 	const u8 *d = (u8 *)dm;
359 
360 	if (dm->length < 0x0B)
361 		return;
362 
363 	/* Skip disabled device */
364 	if ((d[0x5] & 0x80) == 0)
365 		return;
366 
367 	name = dmi_string_nosave(dm, d[0x4]);
368 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
369 			     DMI_DEV_TYPE_DEV_ONBOARD);
370 	dmi_save_one_device(d[0x5] & 0x7f, name);
371 }
372 
373 static void __init dmi_save_system_slot(const struct dmi_header *dm)
374 {
375 	const u8 *d = (u8 *)dm;
376 
377 	/* Need SMBIOS 2.6+ structure */
378 	if (dm->length < 0x11)
379 		return;
380 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
381 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
382 			     DMI_DEV_TYPE_DEV_SLOT);
383 }
384 
385 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
386 {
387 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
388 		return;
389 	dmi_memdev_nr++;
390 }
391 
392 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
393 {
394 	const char *d = (const char *)dm;
395 	static int nr;
396 	u64 bytes;
397 	u16 size;
398 
399 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
400 		return;
401 	if (nr >= dmi_memdev_nr) {
402 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
403 		return;
404 	}
405 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
406 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
407 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
408 	dmi_memdev[nr].type = d[0x12];
409 
410 	size = get_unaligned((u16 *)&d[0xC]);
411 	if (size == 0)
412 		bytes = 0;
413 	else if (size == 0xffff)
414 		bytes = ~0ull;
415 	else if (size & 0x8000)
416 		bytes = (u64)(size & 0x7fff) << 10;
417 	else if (size != 0x7fff || dm->length < 0x20)
418 		bytes = (u64)size << 20;
419 	else
420 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
421 
422 	dmi_memdev[nr].size = bytes;
423 	nr++;
424 }
425 
426 static void __init dmi_memdev_walk(void)
427 {
428 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
429 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
430 		if (dmi_memdev)
431 			dmi_walk_early(save_mem_devices);
432 	}
433 }
434 
435 /*
436  *	Process a DMI table entry. Right now all we care about are the BIOS
437  *	and machine entries. For 2.5 we should pull the smbus controller info
438  *	out of here.
439  */
440 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
441 {
442 	switch (dm->type) {
443 	case 0:		/* BIOS Information */
444 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
445 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
446 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
447 		break;
448 	case 1:		/* System Information */
449 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
450 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
451 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
452 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
453 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
454 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
455 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
456 		break;
457 	case 2:		/* Base Board Information */
458 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
459 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
460 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
461 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
462 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
463 		break;
464 	case 3:		/* Chassis Information */
465 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
466 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
467 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
468 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
469 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
470 		break;
471 	case 9:		/* System Slots */
472 		dmi_save_system_slot(dm);
473 		break;
474 	case 10:	/* Onboard Devices Information */
475 		dmi_save_devices(dm);
476 		break;
477 	case 11:	/* OEM Strings */
478 		dmi_save_oem_strings_devices(dm);
479 		break;
480 	case 38:	/* IPMI Device Information */
481 		dmi_save_ipmi_device(dm);
482 		break;
483 	case 41:	/* Onboard Devices Extended Information */
484 		dmi_save_extended_devices(dm);
485 	}
486 }
487 
488 static int __init print_filtered(char *buf, size_t len, const char *info)
489 {
490 	int c = 0;
491 	const char *p;
492 
493 	if (!info)
494 		return c;
495 
496 	for (p = info; *p; p++)
497 		if (isprint(*p))
498 			c += scnprintf(buf + c, len - c, "%c", *p);
499 		else
500 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
501 	return c;
502 }
503 
504 static void __init dmi_format_ids(char *buf, size_t len)
505 {
506 	int c = 0;
507 	const char *board;	/* Board Name is optional */
508 
509 	c += print_filtered(buf + c, len - c,
510 			    dmi_get_system_info(DMI_SYS_VENDOR));
511 	c += scnprintf(buf + c, len - c, " ");
512 	c += print_filtered(buf + c, len - c,
513 			    dmi_get_system_info(DMI_PRODUCT_NAME));
514 
515 	board = dmi_get_system_info(DMI_BOARD_NAME);
516 	if (board) {
517 		c += scnprintf(buf + c, len - c, "/");
518 		c += print_filtered(buf + c, len - c, board);
519 	}
520 	c += scnprintf(buf + c, len - c, ", BIOS ");
521 	c += print_filtered(buf + c, len - c,
522 			    dmi_get_system_info(DMI_BIOS_VERSION));
523 	c += scnprintf(buf + c, len - c, " ");
524 	c += print_filtered(buf + c, len - c,
525 			    dmi_get_system_info(DMI_BIOS_DATE));
526 }
527 
528 /*
529  * Check for DMI/SMBIOS headers in the system firmware image.  Any
530  * SMBIOS header must start 16 bytes before the DMI header, so take a
531  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
532  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
533  * takes precedence) and return 0.  Otherwise return 1.
534  */
535 static int __init dmi_present(const u8 *buf)
536 {
537 	u32 smbios_ver;
538 
539 	if (memcmp(buf, "_SM_", 4) == 0 &&
540 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
541 		smbios_ver = get_unaligned_be16(buf + 6);
542 		smbios_entry_point_size = buf[5];
543 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
544 
545 		/* Some BIOS report weird SMBIOS version, fix that up */
546 		switch (smbios_ver) {
547 		case 0x021F:
548 		case 0x0221:
549 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
550 				 smbios_ver & 0xFF, 3);
551 			smbios_ver = 0x0203;
552 			break;
553 		case 0x0233:
554 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
555 			smbios_ver = 0x0206;
556 			break;
557 		}
558 	} else {
559 		smbios_ver = 0;
560 	}
561 
562 	buf += 16;
563 
564 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
565 		if (smbios_ver)
566 			dmi_ver = smbios_ver;
567 		else
568 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
569 		dmi_ver <<= 8;
570 		dmi_num = get_unaligned_le16(buf + 12);
571 		dmi_len = get_unaligned_le16(buf + 6);
572 		dmi_base = get_unaligned_le32(buf + 8);
573 
574 		if (dmi_walk_early(dmi_decode) == 0) {
575 			if (smbios_ver) {
576 				pr_info("SMBIOS %d.%d present.\n",
577 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
578 			} else {
579 				smbios_entry_point_size = 15;
580 				memcpy(smbios_entry_point, buf,
581 				       smbios_entry_point_size);
582 				pr_info("Legacy DMI %d.%d present.\n",
583 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
584 			}
585 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
586 			pr_info("DMI: %s\n", dmi_ids_string);
587 			return 0;
588 		}
589 	}
590 
591 	return 1;
592 }
593 
594 /*
595  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
596  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
597  */
598 static int __init dmi_smbios3_present(const u8 *buf)
599 {
600 	if (memcmp(buf, "_SM3_", 5) == 0 &&
601 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
602 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
603 		dmi_num = 0;			/* No longer specified */
604 		dmi_len = get_unaligned_le32(buf + 12);
605 		dmi_base = get_unaligned_le64(buf + 16);
606 		smbios_entry_point_size = buf[6];
607 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
608 
609 		if (dmi_walk_early(dmi_decode) == 0) {
610 			pr_info("SMBIOS %d.%d.%d present.\n",
611 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
612 				dmi_ver & 0xFF);
613 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
614 			pr_info("DMI: %s\n", dmi_ids_string);
615 			return 0;
616 		}
617 	}
618 	return 1;
619 }
620 
621 static void __init dmi_scan_machine(void)
622 {
623 	char __iomem *p, *q;
624 	char buf[32];
625 
626 	if (efi_enabled(EFI_CONFIG_TABLES)) {
627 		/*
628 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
629 		 * allowed to define both the 64-bit entry point (smbios3) and
630 		 * the 32-bit entry point (smbios), in which case they should
631 		 * either both point to the same SMBIOS structure table, or the
632 		 * table pointed to by the 64-bit entry point should contain a
633 		 * superset of the table contents pointed to by the 32-bit entry
634 		 * point (section 5.2)
635 		 * This implies that the 64-bit entry point should have
636 		 * precedence if it is defined and supported by the OS. If we
637 		 * have the 64-bit entry point, but fail to decode it, fall
638 		 * back to the legacy one (if available)
639 		 */
640 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
641 			p = dmi_early_remap(efi.smbios3, 32);
642 			if (p == NULL)
643 				goto error;
644 			memcpy_fromio(buf, p, 32);
645 			dmi_early_unmap(p, 32);
646 
647 			if (!dmi_smbios3_present(buf)) {
648 				dmi_available = 1;
649 				return;
650 			}
651 		}
652 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
653 			goto error;
654 
655 		/* This is called as a core_initcall() because it isn't
656 		 * needed during early boot.  This also means we can
657 		 * iounmap the space when we're done with it.
658 		 */
659 		p = dmi_early_remap(efi.smbios, 32);
660 		if (p == NULL)
661 			goto error;
662 		memcpy_fromio(buf, p, 32);
663 		dmi_early_unmap(p, 32);
664 
665 		if (!dmi_present(buf)) {
666 			dmi_available = 1;
667 			return;
668 		}
669 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
670 		p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
671 		if (p == NULL)
672 			goto error;
673 
674 		/*
675 		 * Same logic as above, look for a 64-bit entry point
676 		 * first, and if not found, fall back to 32-bit entry point.
677 		 */
678 		memcpy_fromio(buf, p, 16);
679 		for (q = p + 16; q < p + 0x10000; q += 16) {
680 			memcpy_fromio(buf + 16, q, 16);
681 			if (!dmi_smbios3_present(buf)) {
682 				dmi_available = 1;
683 				dmi_early_unmap(p, 0x10000);
684 				return;
685 			}
686 			memcpy(buf, buf + 16, 16);
687 		}
688 
689 		/*
690 		 * Iterate over all possible DMI header addresses q.
691 		 * Maintain the 32 bytes around q in buf.  On the
692 		 * first iteration, substitute zero for the
693 		 * out-of-range bytes so there is no chance of falsely
694 		 * detecting an SMBIOS header.
695 		 */
696 		memset(buf, 0, 16);
697 		for (q = p; q < p + 0x10000; q += 16) {
698 			memcpy_fromio(buf + 16, q, 16);
699 			if (!dmi_present(buf)) {
700 				dmi_available = 1;
701 				dmi_early_unmap(p, 0x10000);
702 				return;
703 			}
704 			memcpy(buf, buf + 16, 16);
705 		}
706 		dmi_early_unmap(p, 0x10000);
707 	}
708  error:
709 	pr_info("DMI not present or invalid.\n");
710 }
711 
712 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
713 			      struct bin_attribute *attr, char *buf,
714 			      loff_t pos, size_t count)
715 {
716 	memcpy(buf, attr->private + pos, count);
717 	return count;
718 }
719 
720 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
721 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
722 
723 static int __init dmi_init(void)
724 {
725 	struct kobject *tables_kobj;
726 	u8 *dmi_table;
727 	int ret = -ENOMEM;
728 
729 	if (!dmi_available)
730 		return 0;
731 
732 	/*
733 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
734 	 * even after farther error, as it can be used by other modules like
735 	 * dmi-sysfs.
736 	 */
737 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
738 	if (!dmi_kobj)
739 		goto err;
740 
741 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
742 	if (!tables_kobj)
743 		goto err;
744 
745 	dmi_table = dmi_remap(dmi_base, dmi_len);
746 	if (!dmi_table)
747 		goto err_tables;
748 
749 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
750 	bin_attr_smbios_entry_point.private = smbios_entry_point;
751 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
752 	if (ret)
753 		goto err_unmap;
754 
755 	bin_attr_DMI.size = dmi_len;
756 	bin_attr_DMI.private = dmi_table;
757 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
758 	if (!ret)
759 		return 0;
760 
761 	sysfs_remove_bin_file(tables_kobj,
762 			      &bin_attr_smbios_entry_point);
763  err_unmap:
764 	dmi_unmap(dmi_table);
765  err_tables:
766 	kobject_del(tables_kobj);
767 	kobject_put(tables_kobj);
768  err:
769 	pr_err("dmi: Firmware registration failed.\n");
770 
771 	return ret;
772 }
773 subsys_initcall(dmi_init);
774 
775 /**
776  *	dmi_setup - scan and setup DMI system information
777  *
778  *	Scan the DMI system information. This setups DMI identifiers
779  *	(dmi_system_id) for printing it out on task dumps and prepares
780  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
781  *	for using this when reporting memory errors.
782  */
783 void __init dmi_setup(void)
784 {
785 	dmi_scan_machine();
786 	if (!dmi_available)
787 		return;
788 
789 	dmi_memdev_walk();
790 	dump_stack_set_arch_desc("%s", dmi_ids_string);
791 }
792 
793 /**
794  *	dmi_matches - check if dmi_system_id structure matches system DMI data
795  *	@dmi: pointer to the dmi_system_id structure to check
796  */
797 static bool dmi_matches(const struct dmi_system_id *dmi)
798 {
799 	int i;
800 
801 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
802 		int s = dmi->matches[i].slot;
803 		if (s == DMI_NONE)
804 			break;
805 		if (s == DMI_OEM_STRING) {
806 			/* DMI_OEM_STRING must be exact match */
807 			const struct dmi_device *valid;
808 
809 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
810 						dmi->matches[i].substr, NULL);
811 			if (valid)
812 				continue;
813 		} else if (dmi_ident[s]) {
814 			if (dmi->matches[i].exact_match) {
815 				if (!strcmp(dmi_ident[s],
816 					    dmi->matches[i].substr))
817 					continue;
818 			} else {
819 				if (strstr(dmi_ident[s],
820 					   dmi->matches[i].substr))
821 					continue;
822 			}
823 		}
824 
825 		/* No match */
826 		return false;
827 	}
828 	return true;
829 }
830 
831 /**
832  *	dmi_is_end_of_table - check for end-of-table marker
833  *	@dmi: pointer to the dmi_system_id structure to check
834  */
835 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
836 {
837 	return dmi->matches[0].slot == DMI_NONE;
838 }
839 
840 /**
841  *	dmi_check_system - check system DMI data
842  *	@list: array of dmi_system_id structures to match against
843  *		All non-null elements of the list must match
844  *		their slot's (field index's) data (i.e., each
845  *		list string must be a substring of the specified
846  *		DMI slot's string data) to be considered a
847  *		successful match.
848  *
849  *	Walk the blacklist table running matching functions until someone
850  *	returns non zero or we hit the end. Callback function is called for
851  *	each successful match. Returns the number of matches.
852  *
853  *	dmi_setup must be called before this function is called.
854  */
855 int dmi_check_system(const struct dmi_system_id *list)
856 {
857 	int count = 0;
858 	const struct dmi_system_id *d;
859 
860 	for (d = list; !dmi_is_end_of_table(d); d++)
861 		if (dmi_matches(d)) {
862 			count++;
863 			if (d->callback && d->callback(d))
864 				break;
865 		}
866 
867 	return count;
868 }
869 EXPORT_SYMBOL(dmi_check_system);
870 
871 /**
872  *	dmi_first_match - find dmi_system_id structure matching system DMI data
873  *	@list: array of dmi_system_id structures to match against
874  *		All non-null elements of the list must match
875  *		their slot's (field index's) data (i.e., each
876  *		list string must be a substring of the specified
877  *		DMI slot's string data) to be considered a
878  *		successful match.
879  *
880  *	Walk the blacklist table until the first match is found.  Return the
881  *	pointer to the matching entry or NULL if there's no match.
882  *
883  *	dmi_setup must be called before this function is called.
884  */
885 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
886 {
887 	const struct dmi_system_id *d;
888 
889 	for (d = list; !dmi_is_end_of_table(d); d++)
890 		if (dmi_matches(d))
891 			return d;
892 
893 	return NULL;
894 }
895 EXPORT_SYMBOL(dmi_first_match);
896 
897 /**
898  *	dmi_get_system_info - return DMI data value
899  *	@field: data index (see enum dmi_field)
900  *
901  *	Returns one DMI data value, can be used to perform
902  *	complex DMI data checks.
903  */
904 const char *dmi_get_system_info(int field)
905 {
906 	return dmi_ident[field];
907 }
908 EXPORT_SYMBOL(dmi_get_system_info);
909 
910 /**
911  * dmi_name_in_serial - Check if string is in the DMI product serial information
912  * @str: string to check for
913  */
914 int dmi_name_in_serial(const char *str)
915 {
916 	int f = DMI_PRODUCT_SERIAL;
917 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
918 		return 1;
919 	return 0;
920 }
921 
922 /**
923  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
924  *	@str: Case sensitive Name
925  */
926 int dmi_name_in_vendors(const char *str)
927 {
928 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
929 	int i;
930 	for (i = 0; fields[i] != DMI_NONE; i++) {
931 		int f = fields[i];
932 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
933 			return 1;
934 	}
935 	return 0;
936 }
937 EXPORT_SYMBOL(dmi_name_in_vendors);
938 
939 /**
940  *	dmi_find_device - find onboard device by type/name
941  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
942  *	@name: device name string or %NULL to match all
943  *	@from: previous device found in search, or %NULL for new search.
944  *
945  *	Iterates through the list of known onboard devices. If a device is
946  *	found with a matching @type and @name, a pointer to its device
947  *	structure is returned.  Otherwise, %NULL is returned.
948  *	A new search is initiated by passing %NULL as the @from argument.
949  *	If @from is not %NULL, searches continue from next device.
950  */
951 const struct dmi_device *dmi_find_device(int type, const char *name,
952 				    const struct dmi_device *from)
953 {
954 	const struct list_head *head = from ? &from->list : &dmi_devices;
955 	struct list_head *d;
956 
957 	for (d = head->next; d != &dmi_devices; d = d->next) {
958 		const struct dmi_device *dev =
959 			list_entry(d, struct dmi_device, list);
960 
961 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
962 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
963 			return dev;
964 	}
965 
966 	return NULL;
967 }
968 EXPORT_SYMBOL(dmi_find_device);
969 
970 /**
971  *	dmi_get_date - parse a DMI date
972  *	@field:	data index (see enum dmi_field)
973  *	@yearp: optional out parameter for the year
974  *	@monthp: optional out parameter for the month
975  *	@dayp: optional out parameter for the day
976  *
977  *	The date field is assumed to be in the form resembling
978  *	[mm[/dd]]/yy[yy] and the result is stored in the out
979  *	parameters any or all of which can be omitted.
980  *
981  *	If the field doesn't exist, all out parameters are set to zero
982  *	and false is returned.  Otherwise, true is returned with any
983  *	invalid part of date set to zero.
984  *
985  *	On return, year, month and day are guaranteed to be in the
986  *	range of [0,9999], [0,12] and [0,31] respectively.
987  */
988 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
989 {
990 	int year = 0, month = 0, day = 0;
991 	bool exists;
992 	const char *s, *y;
993 	char *e;
994 
995 	s = dmi_get_system_info(field);
996 	exists = s;
997 	if (!exists)
998 		goto out;
999 
1000 	/*
1001 	 * Determine year first.  We assume the date string resembles
1002 	 * mm/dd/yy[yy] but the original code extracted only the year
1003 	 * from the end.  Keep the behavior in the spirit of no
1004 	 * surprises.
1005 	 */
1006 	y = strrchr(s, '/');
1007 	if (!y)
1008 		goto out;
1009 
1010 	y++;
1011 	year = simple_strtoul(y, &e, 10);
1012 	if (y != e && year < 100) {	/* 2-digit year */
1013 		year += 1900;
1014 		if (year < 1996)	/* no dates < spec 1.0 */
1015 			year += 100;
1016 	}
1017 	if (year > 9999)		/* year should fit in %04d */
1018 		year = 0;
1019 
1020 	/* parse the mm and dd */
1021 	month = simple_strtoul(s, &e, 10);
1022 	if (s == e || *e != '/' || !month || month > 12) {
1023 		month = 0;
1024 		goto out;
1025 	}
1026 
1027 	s = e + 1;
1028 	day = simple_strtoul(s, &e, 10);
1029 	if (s == y || s == e || *e != '/' || day > 31)
1030 		day = 0;
1031 out:
1032 	if (yearp)
1033 		*yearp = year;
1034 	if (monthp)
1035 		*monthp = month;
1036 	if (dayp)
1037 		*dayp = day;
1038 	return exists;
1039 }
1040 EXPORT_SYMBOL(dmi_get_date);
1041 
1042 /**
1043  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1044  *
1045  *	Returns year on success, -ENXIO if DMI is not selected,
1046  *	or a different negative error code if DMI field is not present
1047  *	or not parseable.
1048  */
1049 int dmi_get_bios_year(void)
1050 {
1051 	bool exists;
1052 	int year;
1053 
1054 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1055 	if (!exists)
1056 		return -ENODATA;
1057 
1058 	return year ? year : -ERANGE;
1059 }
1060 EXPORT_SYMBOL(dmi_get_bios_year);
1061 
1062 /**
1063  *	dmi_walk - Walk the DMI table and get called back for every record
1064  *	@decode: Callback function
1065  *	@private_data: Private data to be passed to the callback function
1066  *
1067  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1068  *	or a different negative error code if DMI walking fails.
1069  */
1070 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1071 	     void *private_data)
1072 {
1073 	u8 *buf;
1074 
1075 	if (!dmi_available)
1076 		return -ENXIO;
1077 
1078 	buf = dmi_remap(dmi_base, dmi_len);
1079 	if (buf == NULL)
1080 		return -ENOMEM;
1081 
1082 	dmi_decode_table(buf, decode, private_data);
1083 
1084 	dmi_unmap(buf);
1085 	return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(dmi_walk);
1088 
1089 /**
1090  * dmi_match - compare a string to the dmi field (if exists)
1091  * @f: DMI field identifier
1092  * @str: string to compare the DMI field to
1093  *
1094  * Returns true if the requested field equals to the str (including NULL).
1095  */
1096 bool dmi_match(enum dmi_field f, const char *str)
1097 {
1098 	const char *info = dmi_get_system_info(f);
1099 
1100 	if (info == NULL || str == NULL)
1101 		return info == str;
1102 
1103 	return !strcmp(info, str);
1104 }
1105 EXPORT_SYMBOL_GPL(dmi_match);
1106 
1107 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1108 {
1109 	int n;
1110 
1111 	if (dmi_memdev == NULL)
1112 		return;
1113 
1114 	for (n = 0; n < dmi_memdev_nr; n++) {
1115 		if (handle == dmi_memdev[n].handle) {
1116 			*bank = dmi_memdev[n].bank;
1117 			*device = dmi_memdev[n].device;
1118 			break;
1119 		}
1120 	}
1121 }
1122 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1123 
1124 u64 dmi_memdev_size(u16 handle)
1125 {
1126 	int n;
1127 
1128 	if (dmi_memdev) {
1129 		for (n = 0; n < dmi_memdev_nr; n++) {
1130 			if (handle == dmi_memdev[n].handle)
1131 				return dmi_memdev[n].size;
1132 		}
1133 	}
1134 	return ~0ull;
1135 }
1136 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1137 
1138 /**
1139  * dmi_memdev_type - get the memory type
1140  * @handle: DMI structure handle
1141  *
1142  * Return the DMI memory type of the module in the slot associated with the
1143  * given DMI handle, or 0x0 if no such DMI handle exists.
1144  */
1145 u8 dmi_memdev_type(u16 handle)
1146 {
1147 	int n;
1148 
1149 	if (dmi_memdev) {
1150 		for (n = 0; n < dmi_memdev_nr; n++) {
1151 			if (handle == dmi_memdev[n].handle)
1152 				return dmi_memdev[n].type;
1153 		}
1154 	}
1155 	return 0x0;	/* Not a valid value */
1156 }
1157 EXPORT_SYMBOL_GPL(dmi_memdev_type);
1158 
1159 /**
1160  *	dmi_memdev_handle - get the DMI handle of a memory slot
1161  *	@slot: slot number
1162  *
1163  *	Return the DMI handle associated with a given memory slot, or %0xFFFF
1164  *      if there is no such slot.
1165  */
1166 u16 dmi_memdev_handle(int slot)
1167 {
1168 	if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
1169 		return dmi_memdev[slot].handle;
1170 
1171 	return 0xffff;	/* Not a valid value */
1172 }
1173 EXPORT_SYMBOL_GPL(dmi_memdev_handle);
1174