1 #include <linux/types.h> 2 #include <linux/string.h> 3 #include <linux/init.h> 4 #include <linux/module.h> 5 #include <linux/ctype.h> 6 #include <linux/dmi.h> 7 #include <linux/efi.h> 8 #include <linux/memblock.h> 9 #include <linux/random.h> 10 #include <asm/dmi.h> 11 #include <asm/unaligned.h> 12 13 struct kobject *dmi_kobj; 14 EXPORT_SYMBOL_GPL(dmi_kobj); 15 16 /* 17 * DMI stands for "Desktop Management Interface". It is part 18 * of and an antecedent to, SMBIOS, which stands for System 19 * Management BIOS. See further: http://www.dmtf.org/standards 20 */ 21 static const char dmi_empty_string[] = ""; 22 23 static u32 dmi_ver __initdata; 24 static u32 dmi_len; 25 static u16 dmi_num; 26 static u8 smbios_entry_point[32]; 27 static int smbios_entry_point_size; 28 29 /* DMI system identification string used during boot */ 30 static char dmi_ids_string[128] __initdata; 31 32 static struct dmi_memdev_info { 33 const char *device; 34 const char *bank; 35 u64 size; /* bytes */ 36 u16 handle; 37 } *dmi_memdev; 38 static int dmi_memdev_nr; 39 40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) 41 { 42 const u8 *bp = ((u8 *) dm) + dm->length; 43 const u8 *nsp; 44 45 if (s) { 46 while (--s > 0 && *bp) 47 bp += strlen(bp) + 1; 48 49 /* Strings containing only spaces are considered empty */ 50 nsp = bp; 51 while (*nsp == ' ') 52 nsp++; 53 if (*nsp != '\0') 54 return bp; 55 } 56 57 return dmi_empty_string; 58 } 59 60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s) 61 { 62 const char *bp = dmi_string_nosave(dm, s); 63 char *str; 64 size_t len; 65 66 if (bp == dmi_empty_string) 67 return dmi_empty_string; 68 69 len = strlen(bp) + 1; 70 str = dmi_alloc(len); 71 if (str != NULL) 72 strcpy(str, bp); 73 74 return str; 75 } 76 77 /* 78 * We have to be cautious here. We have seen BIOSes with DMI pointers 79 * pointing to completely the wrong place for example 80 */ 81 static void dmi_decode_table(u8 *buf, 82 void (*decode)(const struct dmi_header *, void *), 83 void *private_data) 84 { 85 u8 *data = buf; 86 int i = 0; 87 88 /* 89 * Stop when we have seen all the items the table claimed to have 90 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS 91 * >= 3.0 only) OR we run off the end of the table (should never 92 * happen but sometimes does on bogus implementations.) 93 */ 94 while ((!dmi_num || i < dmi_num) && 95 (data - buf + sizeof(struct dmi_header)) <= dmi_len) { 96 const struct dmi_header *dm = (const struct dmi_header *)data; 97 98 /* 99 * We want to know the total length (formatted area and 100 * strings) before decoding to make sure we won't run off the 101 * table in dmi_decode or dmi_string 102 */ 103 data += dm->length; 104 while ((data - buf < dmi_len - 1) && (data[0] || data[1])) 105 data++; 106 if (data - buf < dmi_len - 1) 107 decode(dm, private_data); 108 109 data += 2; 110 i++; 111 112 /* 113 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] 114 * For tables behind a 64-bit entry point, we have no item 115 * count and no exact table length, so stop on end-of-table 116 * marker. For tables behind a 32-bit entry point, we have 117 * seen OEM structures behind the end-of-table marker on 118 * some systems, so don't trust it. 119 */ 120 if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) 121 break; 122 } 123 124 /* Trim DMI table length if needed */ 125 if (dmi_len > data - buf) 126 dmi_len = data - buf; 127 } 128 129 static phys_addr_t dmi_base; 130 131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, 132 void *)) 133 { 134 u8 *buf; 135 u32 orig_dmi_len = dmi_len; 136 137 buf = dmi_early_remap(dmi_base, orig_dmi_len); 138 if (buf == NULL) 139 return -ENOMEM; 140 141 dmi_decode_table(buf, decode, NULL); 142 143 add_device_randomness(buf, dmi_len); 144 145 dmi_early_unmap(buf, orig_dmi_len); 146 return 0; 147 } 148 149 static int __init dmi_checksum(const u8 *buf, u8 len) 150 { 151 u8 sum = 0; 152 int a; 153 154 for (a = 0; a < len; a++) 155 sum += buf[a]; 156 157 return sum == 0; 158 } 159 160 static const char *dmi_ident[DMI_STRING_MAX]; 161 static LIST_HEAD(dmi_devices); 162 int dmi_available; 163 164 /* 165 * Save a DMI string 166 */ 167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot, 168 int string) 169 { 170 const char *d = (const char *) dm; 171 const char *p; 172 173 if (dmi_ident[slot] || dm->length <= string) 174 return; 175 176 p = dmi_string(dm, d[string]); 177 if (p == NULL) 178 return; 179 180 dmi_ident[slot] = p; 181 } 182 183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, 184 int index) 185 { 186 const u8 *d; 187 char *s; 188 int is_ff = 1, is_00 = 1, i; 189 190 if (dmi_ident[slot] || dm->length < index + 16) 191 return; 192 193 d = (u8 *) dm + index; 194 for (i = 0; i < 16 && (is_ff || is_00); i++) { 195 if (d[i] != 0x00) 196 is_00 = 0; 197 if (d[i] != 0xFF) 198 is_ff = 0; 199 } 200 201 if (is_ff || is_00) 202 return; 203 204 s = dmi_alloc(16*2+4+1); 205 if (!s) 206 return; 207 208 /* 209 * As of version 2.6 of the SMBIOS specification, the first 3 fields of 210 * the UUID are supposed to be little-endian encoded. The specification 211 * says that this is the defacto standard. 212 */ 213 if (dmi_ver >= 0x020600) 214 sprintf(s, "%pUl", d); 215 else 216 sprintf(s, "%pUb", d); 217 218 dmi_ident[slot] = s; 219 } 220 221 static void __init dmi_save_type(const struct dmi_header *dm, int slot, 222 int index) 223 { 224 const u8 *d; 225 char *s; 226 227 if (dmi_ident[slot] || dm->length <= index) 228 return; 229 230 s = dmi_alloc(4); 231 if (!s) 232 return; 233 234 d = (u8 *) dm + index; 235 sprintf(s, "%u", *d & 0x7F); 236 dmi_ident[slot] = s; 237 } 238 239 static void __init dmi_save_one_device(int type, const char *name) 240 { 241 struct dmi_device *dev; 242 243 /* No duplicate device */ 244 if (dmi_find_device(type, name, NULL)) 245 return; 246 247 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 248 if (!dev) 249 return; 250 251 dev->type = type; 252 strcpy((char *)(dev + 1), name); 253 dev->name = (char *)(dev + 1); 254 dev->device_data = NULL; 255 list_add(&dev->list, &dmi_devices); 256 } 257 258 static void __init dmi_save_devices(const struct dmi_header *dm) 259 { 260 int i, count = (dm->length - sizeof(struct dmi_header)) / 2; 261 262 for (i = 0; i < count; i++) { 263 const char *d = (char *)(dm + 1) + (i * 2); 264 265 /* Skip disabled device */ 266 if ((*d & 0x80) == 0) 267 continue; 268 269 dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); 270 } 271 } 272 273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) 274 { 275 int i, count; 276 struct dmi_device *dev; 277 278 if (dm->length < 0x05) 279 return; 280 281 count = *(u8 *)(dm + 1); 282 for (i = 1; i <= count; i++) { 283 const char *devname = dmi_string(dm, i); 284 285 if (devname == dmi_empty_string) 286 continue; 287 288 dev = dmi_alloc(sizeof(*dev)); 289 if (!dev) 290 break; 291 292 dev->type = DMI_DEV_TYPE_OEM_STRING; 293 dev->name = devname; 294 dev->device_data = NULL; 295 296 list_add(&dev->list, &dmi_devices); 297 } 298 } 299 300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm) 301 { 302 struct dmi_device *dev; 303 void *data; 304 305 data = dmi_alloc(dm->length); 306 if (data == NULL) 307 return; 308 309 memcpy(data, dm, dm->length); 310 311 dev = dmi_alloc(sizeof(*dev)); 312 if (!dev) 313 return; 314 315 dev->type = DMI_DEV_TYPE_IPMI; 316 dev->name = "IPMI controller"; 317 dev->device_data = data; 318 319 list_add_tail(&dev->list, &dmi_devices); 320 } 321 322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, 323 int devfn, const char *name, int type) 324 { 325 struct dmi_dev_onboard *dev; 326 327 /* Ignore invalid values */ 328 if (type == DMI_DEV_TYPE_DEV_SLOT && 329 segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) 330 return; 331 332 dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); 333 if (!dev) 334 return; 335 336 dev->instance = instance; 337 dev->segment = segment; 338 dev->bus = bus; 339 dev->devfn = devfn; 340 341 strcpy((char *)&dev[1], name); 342 dev->dev.type = type; 343 dev->dev.name = (char *)&dev[1]; 344 dev->dev.device_data = dev; 345 346 list_add(&dev->dev.list, &dmi_devices); 347 } 348 349 static void __init dmi_save_extended_devices(const struct dmi_header *dm) 350 { 351 const char *name; 352 const u8 *d = (u8 *)dm; 353 354 if (dm->length < 0x0B) 355 return; 356 357 /* Skip disabled device */ 358 if ((d[0x5] & 0x80) == 0) 359 return; 360 361 name = dmi_string_nosave(dm, d[0x4]); 362 dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, 363 DMI_DEV_TYPE_DEV_ONBOARD); 364 dmi_save_one_device(d[0x5] & 0x7f, name); 365 } 366 367 static void __init dmi_save_system_slot(const struct dmi_header *dm) 368 { 369 const u8 *d = (u8 *)dm; 370 371 /* Need SMBIOS 2.6+ structure */ 372 if (dm->length < 0x11) 373 return; 374 dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], 375 d[0x10], dmi_string_nosave(dm, d[0x4]), 376 DMI_DEV_TYPE_DEV_SLOT); 377 } 378 379 static void __init count_mem_devices(const struct dmi_header *dm, void *v) 380 { 381 if (dm->type != DMI_ENTRY_MEM_DEVICE) 382 return; 383 dmi_memdev_nr++; 384 } 385 386 static void __init save_mem_devices(const struct dmi_header *dm, void *v) 387 { 388 const char *d = (const char *)dm; 389 static int nr; 390 u64 bytes; 391 u16 size; 392 393 if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12) 394 return; 395 if (nr >= dmi_memdev_nr) { 396 pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); 397 return; 398 } 399 dmi_memdev[nr].handle = get_unaligned(&dm->handle); 400 dmi_memdev[nr].device = dmi_string(dm, d[0x10]); 401 dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); 402 403 size = get_unaligned((u16 *)&d[0xC]); 404 if (size == 0) 405 bytes = 0; 406 else if (size == 0xffff) 407 bytes = ~0ull; 408 else if (size & 0x8000) 409 bytes = (u64)(size & 0x7fff) << 10; 410 else if (size != 0x7fff) 411 bytes = (u64)size << 20; 412 else 413 bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; 414 415 dmi_memdev[nr].size = bytes; 416 nr++; 417 } 418 419 static void __init dmi_memdev_walk(void) 420 { 421 if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { 422 dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); 423 if (dmi_memdev) 424 dmi_walk_early(save_mem_devices); 425 } 426 } 427 428 /* 429 * Process a DMI table entry. Right now all we care about are the BIOS 430 * and machine entries. For 2.5 we should pull the smbus controller info 431 * out of here. 432 */ 433 static void __init dmi_decode(const struct dmi_header *dm, void *dummy) 434 { 435 switch (dm->type) { 436 case 0: /* BIOS Information */ 437 dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); 438 dmi_save_ident(dm, DMI_BIOS_VERSION, 5); 439 dmi_save_ident(dm, DMI_BIOS_DATE, 8); 440 break; 441 case 1: /* System Information */ 442 dmi_save_ident(dm, DMI_SYS_VENDOR, 4); 443 dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); 444 dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); 445 dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); 446 dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); 447 dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); 448 dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); 449 break; 450 case 2: /* Base Board Information */ 451 dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); 452 dmi_save_ident(dm, DMI_BOARD_NAME, 5); 453 dmi_save_ident(dm, DMI_BOARD_VERSION, 6); 454 dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); 455 dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); 456 break; 457 case 3: /* Chassis Information */ 458 dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); 459 dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); 460 dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); 461 dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); 462 dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); 463 break; 464 case 9: /* System Slots */ 465 dmi_save_system_slot(dm); 466 break; 467 case 10: /* Onboard Devices Information */ 468 dmi_save_devices(dm); 469 break; 470 case 11: /* OEM Strings */ 471 dmi_save_oem_strings_devices(dm); 472 break; 473 case 38: /* IPMI Device Information */ 474 dmi_save_ipmi_device(dm); 475 break; 476 case 41: /* Onboard Devices Extended Information */ 477 dmi_save_extended_devices(dm); 478 } 479 } 480 481 static int __init print_filtered(char *buf, size_t len, const char *info) 482 { 483 int c = 0; 484 const char *p; 485 486 if (!info) 487 return c; 488 489 for (p = info; *p; p++) 490 if (isprint(*p)) 491 c += scnprintf(buf + c, len - c, "%c", *p); 492 else 493 c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); 494 return c; 495 } 496 497 static void __init dmi_format_ids(char *buf, size_t len) 498 { 499 int c = 0; 500 const char *board; /* Board Name is optional */ 501 502 c += print_filtered(buf + c, len - c, 503 dmi_get_system_info(DMI_SYS_VENDOR)); 504 c += scnprintf(buf + c, len - c, " "); 505 c += print_filtered(buf + c, len - c, 506 dmi_get_system_info(DMI_PRODUCT_NAME)); 507 508 board = dmi_get_system_info(DMI_BOARD_NAME); 509 if (board) { 510 c += scnprintf(buf + c, len - c, "/"); 511 c += print_filtered(buf + c, len - c, board); 512 } 513 c += scnprintf(buf + c, len - c, ", BIOS "); 514 c += print_filtered(buf + c, len - c, 515 dmi_get_system_info(DMI_BIOS_VERSION)); 516 c += scnprintf(buf + c, len - c, " "); 517 c += print_filtered(buf + c, len - c, 518 dmi_get_system_info(DMI_BIOS_DATE)); 519 } 520 521 /* 522 * Check for DMI/SMBIOS headers in the system firmware image. Any 523 * SMBIOS header must start 16 bytes before the DMI header, so take a 524 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset 525 * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS 526 * takes precedence) and return 0. Otherwise return 1. 527 */ 528 static int __init dmi_present(const u8 *buf) 529 { 530 u32 smbios_ver; 531 532 if (memcmp(buf, "_SM_", 4) == 0 && 533 buf[5] < 32 && dmi_checksum(buf, buf[5])) { 534 smbios_ver = get_unaligned_be16(buf + 6); 535 smbios_entry_point_size = buf[5]; 536 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 537 538 /* Some BIOS report weird SMBIOS version, fix that up */ 539 switch (smbios_ver) { 540 case 0x021F: 541 case 0x0221: 542 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 543 smbios_ver & 0xFF, 3); 544 smbios_ver = 0x0203; 545 break; 546 case 0x0233: 547 pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); 548 smbios_ver = 0x0206; 549 break; 550 } 551 } else { 552 smbios_ver = 0; 553 } 554 555 buf += 16; 556 557 if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { 558 if (smbios_ver) 559 dmi_ver = smbios_ver; 560 else 561 dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); 562 dmi_ver <<= 8; 563 dmi_num = get_unaligned_le16(buf + 12); 564 dmi_len = get_unaligned_le16(buf + 6); 565 dmi_base = get_unaligned_le32(buf + 8); 566 567 if (dmi_walk_early(dmi_decode) == 0) { 568 if (smbios_ver) { 569 pr_info("SMBIOS %d.%d present.\n", 570 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 571 } else { 572 smbios_entry_point_size = 15; 573 memcpy(smbios_entry_point, buf, 574 smbios_entry_point_size); 575 pr_info("Legacy DMI %d.%d present.\n", 576 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); 577 } 578 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 579 pr_info("DMI: %s\n", dmi_ids_string); 580 return 0; 581 } 582 } 583 584 return 1; 585 } 586 587 /* 588 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy 589 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. 590 */ 591 static int __init dmi_smbios3_present(const u8 *buf) 592 { 593 if (memcmp(buf, "_SM3_", 5) == 0 && 594 buf[6] < 32 && dmi_checksum(buf, buf[6])) { 595 dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; 596 dmi_num = 0; /* No longer specified */ 597 dmi_len = get_unaligned_le32(buf + 12); 598 dmi_base = get_unaligned_le64(buf + 16); 599 smbios_entry_point_size = buf[6]; 600 memcpy(smbios_entry_point, buf, smbios_entry_point_size); 601 602 if (dmi_walk_early(dmi_decode) == 0) { 603 pr_info("SMBIOS %d.%d.%d present.\n", 604 dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, 605 dmi_ver & 0xFF); 606 dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); 607 pr_info("DMI: %s\n", dmi_ids_string); 608 return 0; 609 } 610 } 611 return 1; 612 } 613 614 static void __init dmi_scan_machine(void) 615 { 616 char __iomem *p, *q; 617 char buf[32]; 618 619 if (efi_enabled(EFI_CONFIG_TABLES)) { 620 /* 621 * According to the DMTF SMBIOS reference spec v3.0.0, it is 622 * allowed to define both the 64-bit entry point (smbios3) and 623 * the 32-bit entry point (smbios), in which case they should 624 * either both point to the same SMBIOS structure table, or the 625 * table pointed to by the 64-bit entry point should contain a 626 * superset of the table contents pointed to by the 32-bit entry 627 * point (section 5.2) 628 * This implies that the 64-bit entry point should have 629 * precedence if it is defined and supported by the OS. If we 630 * have the 64-bit entry point, but fail to decode it, fall 631 * back to the legacy one (if available) 632 */ 633 if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { 634 p = dmi_early_remap(efi.smbios3, 32); 635 if (p == NULL) 636 goto error; 637 memcpy_fromio(buf, p, 32); 638 dmi_early_unmap(p, 32); 639 640 if (!dmi_smbios3_present(buf)) { 641 dmi_available = 1; 642 return; 643 } 644 } 645 if (efi.smbios == EFI_INVALID_TABLE_ADDR) 646 goto error; 647 648 /* This is called as a core_initcall() because it isn't 649 * needed during early boot. This also means we can 650 * iounmap the space when we're done with it. 651 */ 652 p = dmi_early_remap(efi.smbios, 32); 653 if (p == NULL) 654 goto error; 655 memcpy_fromio(buf, p, 32); 656 dmi_early_unmap(p, 32); 657 658 if (!dmi_present(buf)) { 659 dmi_available = 1; 660 return; 661 } 662 } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { 663 p = dmi_early_remap(0xF0000, 0x10000); 664 if (p == NULL) 665 goto error; 666 667 /* 668 * Same logic as above, look for a 64-bit entry point 669 * first, and if not found, fall back to 32-bit entry point. 670 */ 671 memcpy_fromio(buf, p, 16); 672 for (q = p + 16; q < p + 0x10000; q += 16) { 673 memcpy_fromio(buf + 16, q, 16); 674 if (!dmi_smbios3_present(buf)) { 675 dmi_available = 1; 676 dmi_early_unmap(p, 0x10000); 677 return; 678 } 679 memcpy(buf, buf + 16, 16); 680 } 681 682 /* 683 * Iterate over all possible DMI header addresses q. 684 * Maintain the 32 bytes around q in buf. On the 685 * first iteration, substitute zero for the 686 * out-of-range bytes so there is no chance of falsely 687 * detecting an SMBIOS header. 688 */ 689 memset(buf, 0, 16); 690 for (q = p; q < p + 0x10000; q += 16) { 691 memcpy_fromio(buf + 16, q, 16); 692 if (!dmi_present(buf)) { 693 dmi_available = 1; 694 dmi_early_unmap(p, 0x10000); 695 return; 696 } 697 memcpy(buf, buf + 16, 16); 698 } 699 dmi_early_unmap(p, 0x10000); 700 } 701 error: 702 pr_info("DMI not present or invalid.\n"); 703 } 704 705 static ssize_t raw_table_read(struct file *file, struct kobject *kobj, 706 struct bin_attribute *attr, char *buf, 707 loff_t pos, size_t count) 708 { 709 memcpy(buf, attr->private + pos, count); 710 return count; 711 } 712 713 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); 714 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); 715 716 static int __init dmi_init(void) 717 { 718 struct kobject *tables_kobj; 719 u8 *dmi_table; 720 int ret = -ENOMEM; 721 722 if (!dmi_available) 723 return 0; 724 725 /* 726 * Set up dmi directory at /sys/firmware/dmi. This entry should stay 727 * even after farther error, as it can be used by other modules like 728 * dmi-sysfs. 729 */ 730 dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); 731 if (!dmi_kobj) 732 goto err; 733 734 tables_kobj = kobject_create_and_add("tables", dmi_kobj); 735 if (!tables_kobj) 736 goto err; 737 738 dmi_table = dmi_remap(dmi_base, dmi_len); 739 if (!dmi_table) 740 goto err_tables; 741 742 bin_attr_smbios_entry_point.size = smbios_entry_point_size; 743 bin_attr_smbios_entry_point.private = smbios_entry_point; 744 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); 745 if (ret) 746 goto err_unmap; 747 748 bin_attr_DMI.size = dmi_len; 749 bin_attr_DMI.private = dmi_table; 750 ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); 751 if (!ret) 752 return 0; 753 754 sysfs_remove_bin_file(tables_kobj, 755 &bin_attr_smbios_entry_point); 756 err_unmap: 757 dmi_unmap(dmi_table); 758 err_tables: 759 kobject_del(tables_kobj); 760 kobject_put(tables_kobj); 761 err: 762 pr_err("dmi: Firmware registration failed.\n"); 763 764 return ret; 765 } 766 subsys_initcall(dmi_init); 767 768 /** 769 * dmi_setup - scan and setup DMI system information 770 * 771 * Scan the DMI system information. This setups DMI identifiers 772 * (dmi_system_id) for printing it out on task dumps and prepares 773 * DIMM entry information (dmi_memdev_info) from the SMBIOS table 774 * for using this when reporting memory errors. 775 */ 776 void __init dmi_setup(void) 777 { 778 dmi_scan_machine(); 779 if (!dmi_available) 780 return; 781 782 dmi_memdev_walk(); 783 dump_stack_set_arch_desc("%s", dmi_ids_string); 784 } 785 786 /** 787 * dmi_matches - check if dmi_system_id structure matches system DMI data 788 * @dmi: pointer to the dmi_system_id structure to check 789 */ 790 static bool dmi_matches(const struct dmi_system_id *dmi) 791 { 792 int i; 793 794 for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { 795 int s = dmi->matches[i].slot; 796 if (s == DMI_NONE) 797 break; 798 if (s == DMI_OEM_STRING) { 799 /* DMI_OEM_STRING must be exact match */ 800 const struct dmi_device *valid; 801 802 valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, 803 dmi->matches[i].substr, NULL); 804 if (valid) 805 continue; 806 } else if (dmi_ident[s]) { 807 if (dmi->matches[i].exact_match) { 808 if (!strcmp(dmi_ident[s], 809 dmi->matches[i].substr)) 810 continue; 811 } else { 812 if (strstr(dmi_ident[s], 813 dmi->matches[i].substr)) 814 continue; 815 } 816 } 817 818 /* No match */ 819 return false; 820 } 821 return true; 822 } 823 824 /** 825 * dmi_is_end_of_table - check for end-of-table marker 826 * @dmi: pointer to the dmi_system_id structure to check 827 */ 828 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) 829 { 830 return dmi->matches[0].slot == DMI_NONE; 831 } 832 833 /** 834 * dmi_check_system - check system DMI data 835 * @list: array of dmi_system_id structures to match against 836 * All non-null elements of the list must match 837 * their slot's (field index's) data (i.e., each 838 * list string must be a substring of the specified 839 * DMI slot's string data) to be considered a 840 * successful match. 841 * 842 * Walk the blacklist table running matching functions until someone 843 * returns non zero or we hit the end. Callback function is called for 844 * each successful match. Returns the number of matches. 845 * 846 * dmi_setup must be called before this function is called. 847 */ 848 int dmi_check_system(const struct dmi_system_id *list) 849 { 850 int count = 0; 851 const struct dmi_system_id *d; 852 853 for (d = list; !dmi_is_end_of_table(d); d++) 854 if (dmi_matches(d)) { 855 count++; 856 if (d->callback && d->callback(d)) 857 break; 858 } 859 860 return count; 861 } 862 EXPORT_SYMBOL(dmi_check_system); 863 864 /** 865 * dmi_first_match - find dmi_system_id structure matching system DMI data 866 * @list: array of dmi_system_id structures to match against 867 * All non-null elements of the list must match 868 * their slot's (field index's) data (i.e., each 869 * list string must be a substring of the specified 870 * DMI slot's string data) to be considered a 871 * successful match. 872 * 873 * Walk the blacklist table until the first match is found. Return the 874 * pointer to the matching entry or NULL if there's no match. 875 * 876 * dmi_setup must be called before this function is called. 877 */ 878 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) 879 { 880 const struct dmi_system_id *d; 881 882 for (d = list; !dmi_is_end_of_table(d); d++) 883 if (dmi_matches(d)) 884 return d; 885 886 return NULL; 887 } 888 EXPORT_SYMBOL(dmi_first_match); 889 890 /** 891 * dmi_get_system_info - return DMI data value 892 * @field: data index (see enum dmi_field) 893 * 894 * Returns one DMI data value, can be used to perform 895 * complex DMI data checks. 896 */ 897 const char *dmi_get_system_info(int field) 898 { 899 return dmi_ident[field]; 900 } 901 EXPORT_SYMBOL(dmi_get_system_info); 902 903 /** 904 * dmi_name_in_serial - Check if string is in the DMI product serial information 905 * @str: string to check for 906 */ 907 int dmi_name_in_serial(const char *str) 908 { 909 int f = DMI_PRODUCT_SERIAL; 910 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 911 return 1; 912 return 0; 913 } 914 915 /** 916 * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name 917 * @str: Case sensitive Name 918 */ 919 int dmi_name_in_vendors(const char *str) 920 { 921 static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; 922 int i; 923 for (i = 0; fields[i] != DMI_NONE; i++) { 924 int f = fields[i]; 925 if (dmi_ident[f] && strstr(dmi_ident[f], str)) 926 return 1; 927 } 928 return 0; 929 } 930 EXPORT_SYMBOL(dmi_name_in_vendors); 931 932 /** 933 * dmi_find_device - find onboard device by type/name 934 * @type: device type or %DMI_DEV_TYPE_ANY to match all device types 935 * @name: device name string or %NULL to match all 936 * @from: previous device found in search, or %NULL for new search. 937 * 938 * Iterates through the list of known onboard devices. If a device is 939 * found with a matching @type and @name, a pointer to its device 940 * structure is returned. Otherwise, %NULL is returned. 941 * A new search is initiated by passing %NULL as the @from argument. 942 * If @from is not %NULL, searches continue from next device. 943 */ 944 const struct dmi_device *dmi_find_device(int type, const char *name, 945 const struct dmi_device *from) 946 { 947 const struct list_head *head = from ? &from->list : &dmi_devices; 948 struct list_head *d; 949 950 for (d = head->next; d != &dmi_devices; d = d->next) { 951 const struct dmi_device *dev = 952 list_entry(d, struct dmi_device, list); 953 954 if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && 955 ((name == NULL) || (strcmp(dev->name, name) == 0))) 956 return dev; 957 } 958 959 return NULL; 960 } 961 EXPORT_SYMBOL(dmi_find_device); 962 963 /** 964 * dmi_get_date - parse a DMI date 965 * @field: data index (see enum dmi_field) 966 * @yearp: optional out parameter for the year 967 * @monthp: optional out parameter for the month 968 * @dayp: optional out parameter for the day 969 * 970 * The date field is assumed to be in the form resembling 971 * [mm[/dd]]/yy[yy] and the result is stored in the out 972 * parameters any or all of which can be omitted. 973 * 974 * If the field doesn't exist, all out parameters are set to zero 975 * and false is returned. Otherwise, true is returned with any 976 * invalid part of date set to zero. 977 * 978 * On return, year, month and day are guaranteed to be in the 979 * range of [0,9999], [0,12] and [0,31] respectively. 980 */ 981 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) 982 { 983 int year = 0, month = 0, day = 0; 984 bool exists; 985 const char *s, *y; 986 char *e; 987 988 s = dmi_get_system_info(field); 989 exists = s; 990 if (!exists) 991 goto out; 992 993 /* 994 * Determine year first. We assume the date string resembles 995 * mm/dd/yy[yy] but the original code extracted only the year 996 * from the end. Keep the behavior in the spirit of no 997 * surprises. 998 */ 999 y = strrchr(s, '/'); 1000 if (!y) 1001 goto out; 1002 1003 y++; 1004 year = simple_strtoul(y, &e, 10); 1005 if (y != e && year < 100) { /* 2-digit year */ 1006 year += 1900; 1007 if (year < 1996) /* no dates < spec 1.0 */ 1008 year += 100; 1009 } 1010 if (year > 9999) /* year should fit in %04d */ 1011 year = 0; 1012 1013 /* parse the mm and dd */ 1014 month = simple_strtoul(s, &e, 10); 1015 if (s == e || *e != '/' || !month || month > 12) { 1016 month = 0; 1017 goto out; 1018 } 1019 1020 s = e + 1; 1021 day = simple_strtoul(s, &e, 10); 1022 if (s == y || s == e || *e != '/' || day > 31) 1023 day = 0; 1024 out: 1025 if (yearp) 1026 *yearp = year; 1027 if (monthp) 1028 *monthp = month; 1029 if (dayp) 1030 *dayp = day; 1031 return exists; 1032 } 1033 EXPORT_SYMBOL(dmi_get_date); 1034 1035 /** 1036 * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field 1037 * 1038 * Returns year on success, -ENXIO if DMI is not selected, 1039 * or a different negative error code if DMI field is not present 1040 * or not parseable. 1041 */ 1042 int dmi_get_bios_year(void) 1043 { 1044 bool exists; 1045 int year; 1046 1047 exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); 1048 if (!exists) 1049 return -ENODATA; 1050 1051 return year ? year : -ERANGE; 1052 } 1053 EXPORT_SYMBOL(dmi_get_bios_year); 1054 1055 /** 1056 * dmi_walk - Walk the DMI table and get called back for every record 1057 * @decode: Callback function 1058 * @private_data: Private data to be passed to the callback function 1059 * 1060 * Returns 0 on success, -ENXIO if DMI is not selected or not present, 1061 * or a different negative error code if DMI walking fails. 1062 */ 1063 int dmi_walk(void (*decode)(const struct dmi_header *, void *), 1064 void *private_data) 1065 { 1066 u8 *buf; 1067 1068 if (!dmi_available) 1069 return -ENXIO; 1070 1071 buf = dmi_remap(dmi_base, dmi_len); 1072 if (buf == NULL) 1073 return -ENOMEM; 1074 1075 dmi_decode_table(buf, decode, private_data); 1076 1077 dmi_unmap(buf); 1078 return 0; 1079 } 1080 EXPORT_SYMBOL_GPL(dmi_walk); 1081 1082 /** 1083 * dmi_match - compare a string to the dmi field (if exists) 1084 * @f: DMI field identifier 1085 * @str: string to compare the DMI field to 1086 * 1087 * Returns true if the requested field equals to the str (including NULL). 1088 */ 1089 bool dmi_match(enum dmi_field f, const char *str) 1090 { 1091 const char *info = dmi_get_system_info(f); 1092 1093 if (info == NULL || str == NULL) 1094 return info == str; 1095 1096 return !strcmp(info, str); 1097 } 1098 EXPORT_SYMBOL_GPL(dmi_match); 1099 1100 void dmi_memdev_name(u16 handle, const char **bank, const char **device) 1101 { 1102 int n; 1103 1104 if (dmi_memdev == NULL) 1105 return; 1106 1107 for (n = 0; n < dmi_memdev_nr; n++) { 1108 if (handle == dmi_memdev[n].handle) { 1109 *bank = dmi_memdev[n].bank; 1110 *device = dmi_memdev[n].device; 1111 break; 1112 } 1113 } 1114 } 1115 EXPORT_SYMBOL_GPL(dmi_memdev_name); 1116 1117 u64 dmi_memdev_size(u16 handle) 1118 { 1119 int n; 1120 1121 if (dmi_memdev) { 1122 for (n = 0; n < dmi_memdev_nr; n++) { 1123 if (handle == dmi_memdev[n].handle) 1124 return dmi_memdev[n].size; 1125 } 1126 } 1127 return ~0ull; 1128 } 1129 EXPORT_SYMBOL_GPL(dmi_memdev_size); 1130