xref: /openbmc/linux/drivers/firmware/dmi_scan.c (revision 151f4e2b)
1 #include <linux/types.h>
2 #include <linux/string.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/ctype.h>
6 #include <linux/dmi.h>
7 #include <linux/efi.h>
8 #include <linux/memblock.h>
9 #include <linux/random.h>
10 #include <asm/dmi.h>
11 #include <asm/unaligned.h>
12 
13 struct kobject *dmi_kobj;
14 EXPORT_SYMBOL_GPL(dmi_kobj);
15 
16 /*
17  * DMI stands for "Desktop Management Interface".  It is part
18  * of and an antecedent to, SMBIOS, which stands for System
19  * Management BIOS.  See further: http://www.dmtf.org/standards
20  */
21 static const char dmi_empty_string[] = "";
22 
23 static u32 dmi_ver __initdata;
24 static u32 dmi_len;
25 static u16 dmi_num;
26 static u8 smbios_entry_point[32];
27 static int smbios_entry_point_size;
28 
29 /* DMI system identification string used during boot */
30 static char dmi_ids_string[128] __initdata;
31 
32 static struct dmi_memdev_info {
33 	const char *device;
34 	const char *bank;
35 	u64 size;		/* bytes */
36 	u16 handle;
37 } *dmi_memdev;
38 static int dmi_memdev_nr;
39 
40 static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
41 {
42 	const u8 *bp = ((u8 *) dm) + dm->length;
43 	const u8 *nsp;
44 
45 	if (s) {
46 		while (--s > 0 && *bp)
47 			bp += strlen(bp) + 1;
48 
49 		/* Strings containing only spaces are considered empty */
50 		nsp = bp;
51 		while (*nsp == ' ')
52 			nsp++;
53 		if (*nsp != '\0')
54 			return bp;
55 	}
56 
57 	return dmi_empty_string;
58 }
59 
60 static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
61 {
62 	const char *bp = dmi_string_nosave(dm, s);
63 	char *str;
64 	size_t len;
65 
66 	if (bp == dmi_empty_string)
67 		return dmi_empty_string;
68 
69 	len = strlen(bp) + 1;
70 	str = dmi_alloc(len);
71 	if (str != NULL)
72 		strcpy(str, bp);
73 
74 	return str;
75 }
76 
77 /*
78  *	We have to be cautious here. We have seen BIOSes with DMI pointers
79  *	pointing to completely the wrong place for example
80  */
81 static void dmi_decode_table(u8 *buf,
82 			     void (*decode)(const struct dmi_header *, void *),
83 			     void *private_data)
84 {
85 	u8 *data = buf;
86 	int i = 0;
87 
88 	/*
89 	 * Stop when we have seen all the items the table claimed to have
90 	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
91 	 * >= 3.0 only) OR we run off the end of the table (should never
92 	 * happen but sometimes does on bogus implementations.)
93 	 */
94 	while ((!dmi_num || i < dmi_num) &&
95 	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
96 		const struct dmi_header *dm = (const struct dmi_header *)data;
97 
98 		/*
99 		 *  We want to know the total length (formatted area and
100 		 *  strings) before decoding to make sure we won't run off the
101 		 *  table in dmi_decode or dmi_string
102 		 */
103 		data += dm->length;
104 		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
105 			data++;
106 		if (data - buf < dmi_len - 1)
107 			decode(dm, private_data);
108 
109 		data += 2;
110 		i++;
111 
112 		/*
113 		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
114 		 * For tables behind a 64-bit entry point, we have no item
115 		 * count and no exact table length, so stop on end-of-table
116 		 * marker. For tables behind a 32-bit entry point, we have
117 		 * seen OEM structures behind the end-of-table marker on
118 		 * some systems, so don't trust it.
119 		 */
120 		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
121 			break;
122 	}
123 
124 	/* Trim DMI table length if needed */
125 	if (dmi_len > data - buf)
126 		dmi_len = data - buf;
127 }
128 
129 static phys_addr_t dmi_base;
130 
131 static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
132 		void *))
133 {
134 	u8 *buf;
135 	u32 orig_dmi_len = dmi_len;
136 
137 	buf = dmi_early_remap(dmi_base, orig_dmi_len);
138 	if (buf == NULL)
139 		return -ENOMEM;
140 
141 	dmi_decode_table(buf, decode, NULL);
142 
143 	add_device_randomness(buf, dmi_len);
144 
145 	dmi_early_unmap(buf, orig_dmi_len);
146 	return 0;
147 }
148 
149 static int __init dmi_checksum(const u8 *buf, u8 len)
150 {
151 	u8 sum = 0;
152 	int a;
153 
154 	for (a = 0; a < len; a++)
155 		sum += buf[a];
156 
157 	return sum == 0;
158 }
159 
160 static const char *dmi_ident[DMI_STRING_MAX];
161 static LIST_HEAD(dmi_devices);
162 int dmi_available;
163 
164 /*
165  *	Save a DMI string
166  */
167 static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
168 		int string)
169 {
170 	const char *d = (const char *) dm;
171 	const char *p;
172 
173 	if (dmi_ident[slot] || dm->length <= string)
174 		return;
175 
176 	p = dmi_string(dm, d[string]);
177 	if (p == NULL)
178 		return;
179 
180 	dmi_ident[slot] = p;
181 }
182 
183 static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
184 		int index)
185 {
186 	const u8 *d;
187 	char *s;
188 	int is_ff = 1, is_00 = 1, i;
189 
190 	if (dmi_ident[slot] || dm->length < index + 16)
191 		return;
192 
193 	d = (u8 *) dm + index;
194 	for (i = 0; i < 16 && (is_ff || is_00); i++) {
195 		if (d[i] != 0x00)
196 			is_00 = 0;
197 		if (d[i] != 0xFF)
198 			is_ff = 0;
199 	}
200 
201 	if (is_ff || is_00)
202 		return;
203 
204 	s = dmi_alloc(16*2+4+1);
205 	if (!s)
206 		return;
207 
208 	/*
209 	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
210 	 * the UUID are supposed to be little-endian encoded.  The specification
211 	 * says that this is the defacto standard.
212 	 */
213 	if (dmi_ver >= 0x020600)
214 		sprintf(s, "%pUl", d);
215 	else
216 		sprintf(s, "%pUb", d);
217 
218 	dmi_ident[slot] = s;
219 }
220 
221 static void __init dmi_save_type(const struct dmi_header *dm, int slot,
222 		int index)
223 {
224 	const u8 *d;
225 	char *s;
226 
227 	if (dmi_ident[slot] || dm->length <= index)
228 		return;
229 
230 	s = dmi_alloc(4);
231 	if (!s)
232 		return;
233 
234 	d = (u8 *) dm + index;
235 	sprintf(s, "%u", *d & 0x7F);
236 	dmi_ident[slot] = s;
237 }
238 
239 static void __init dmi_save_one_device(int type, const char *name)
240 {
241 	struct dmi_device *dev;
242 
243 	/* No duplicate device */
244 	if (dmi_find_device(type, name, NULL))
245 		return;
246 
247 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
248 	if (!dev)
249 		return;
250 
251 	dev->type = type;
252 	strcpy((char *)(dev + 1), name);
253 	dev->name = (char *)(dev + 1);
254 	dev->device_data = NULL;
255 	list_add(&dev->list, &dmi_devices);
256 }
257 
258 static void __init dmi_save_devices(const struct dmi_header *dm)
259 {
260 	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
261 
262 	for (i = 0; i < count; i++) {
263 		const char *d = (char *)(dm + 1) + (i * 2);
264 
265 		/* Skip disabled device */
266 		if ((*d & 0x80) == 0)
267 			continue;
268 
269 		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
270 	}
271 }
272 
273 static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
274 {
275 	int i, count;
276 	struct dmi_device *dev;
277 
278 	if (dm->length < 0x05)
279 		return;
280 
281 	count = *(u8 *)(dm + 1);
282 	for (i = 1; i <= count; i++) {
283 		const char *devname = dmi_string(dm, i);
284 
285 		if (devname == dmi_empty_string)
286 			continue;
287 
288 		dev = dmi_alloc(sizeof(*dev));
289 		if (!dev)
290 			break;
291 
292 		dev->type = DMI_DEV_TYPE_OEM_STRING;
293 		dev->name = devname;
294 		dev->device_data = NULL;
295 
296 		list_add(&dev->list, &dmi_devices);
297 	}
298 }
299 
300 static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
301 {
302 	struct dmi_device *dev;
303 	void *data;
304 
305 	data = dmi_alloc(dm->length);
306 	if (data == NULL)
307 		return;
308 
309 	memcpy(data, dm, dm->length);
310 
311 	dev = dmi_alloc(sizeof(*dev));
312 	if (!dev)
313 		return;
314 
315 	dev->type = DMI_DEV_TYPE_IPMI;
316 	dev->name = "IPMI controller";
317 	dev->device_data = data;
318 
319 	list_add_tail(&dev->list, &dmi_devices);
320 }
321 
322 static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
323 					int devfn, const char *name, int type)
324 {
325 	struct dmi_dev_onboard *dev;
326 
327 	/* Ignore invalid values */
328 	if (type == DMI_DEV_TYPE_DEV_SLOT &&
329 	    segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
330 		return;
331 
332 	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
333 	if (!dev)
334 		return;
335 
336 	dev->instance = instance;
337 	dev->segment = segment;
338 	dev->bus = bus;
339 	dev->devfn = devfn;
340 
341 	strcpy((char *)&dev[1], name);
342 	dev->dev.type = type;
343 	dev->dev.name = (char *)&dev[1];
344 	dev->dev.device_data = dev;
345 
346 	list_add(&dev->dev.list, &dmi_devices);
347 }
348 
349 static void __init dmi_save_extended_devices(const struct dmi_header *dm)
350 {
351 	const char *name;
352 	const u8 *d = (u8 *)dm;
353 
354 	if (dm->length < 0x0B)
355 		return;
356 
357 	/* Skip disabled device */
358 	if ((d[0x5] & 0x80) == 0)
359 		return;
360 
361 	name = dmi_string_nosave(dm, d[0x4]);
362 	dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
363 			     DMI_DEV_TYPE_DEV_ONBOARD);
364 	dmi_save_one_device(d[0x5] & 0x7f, name);
365 }
366 
367 static void __init dmi_save_system_slot(const struct dmi_header *dm)
368 {
369 	const u8 *d = (u8 *)dm;
370 
371 	/* Need SMBIOS 2.6+ structure */
372 	if (dm->length < 0x11)
373 		return;
374 	dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
375 			     d[0x10], dmi_string_nosave(dm, d[0x4]),
376 			     DMI_DEV_TYPE_DEV_SLOT);
377 }
378 
379 static void __init count_mem_devices(const struct dmi_header *dm, void *v)
380 {
381 	if (dm->type != DMI_ENTRY_MEM_DEVICE)
382 		return;
383 	dmi_memdev_nr++;
384 }
385 
386 static void __init save_mem_devices(const struct dmi_header *dm, void *v)
387 {
388 	const char *d = (const char *)dm;
389 	static int nr;
390 	u64 bytes;
391 	u16 size;
392 
393 	if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
394 		return;
395 	if (nr >= dmi_memdev_nr) {
396 		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
397 		return;
398 	}
399 	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
400 	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
401 	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
402 
403 	size = get_unaligned((u16 *)&d[0xC]);
404 	if (size == 0)
405 		bytes = 0;
406 	else if (size == 0xffff)
407 		bytes = ~0ull;
408 	else if (size & 0x8000)
409 		bytes = (u64)(size & 0x7fff) << 10;
410 	else if (size != 0x7fff)
411 		bytes = (u64)size << 20;
412 	else
413 		bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
414 
415 	dmi_memdev[nr].size = bytes;
416 	nr++;
417 }
418 
419 static void __init dmi_memdev_walk(void)
420 {
421 	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
422 		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
423 		if (dmi_memdev)
424 			dmi_walk_early(save_mem_devices);
425 	}
426 }
427 
428 /*
429  *	Process a DMI table entry. Right now all we care about are the BIOS
430  *	and machine entries. For 2.5 we should pull the smbus controller info
431  *	out of here.
432  */
433 static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
434 {
435 	switch (dm->type) {
436 	case 0:		/* BIOS Information */
437 		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
438 		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
439 		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
440 		break;
441 	case 1:		/* System Information */
442 		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
443 		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
444 		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
445 		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
446 		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
447 		dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
448 		dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
449 		break;
450 	case 2:		/* Base Board Information */
451 		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
452 		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
453 		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
454 		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
455 		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
456 		break;
457 	case 3:		/* Chassis Information */
458 		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
459 		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
460 		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
461 		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
462 		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
463 		break;
464 	case 9:		/* System Slots */
465 		dmi_save_system_slot(dm);
466 		break;
467 	case 10:	/* Onboard Devices Information */
468 		dmi_save_devices(dm);
469 		break;
470 	case 11:	/* OEM Strings */
471 		dmi_save_oem_strings_devices(dm);
472 		break;
473 	case 38:	/* IPMI Device Information */
474 		dmi_save_ipmi_device(dm);
475 		break;
476 	case 41:	/* Onboard Devices Extended Information */
477 		dmi_save_extended_devices(dm);
478 	}
479 }
480 
481 static int __init print_filtered(char *buf, size_t len, const char *info)
482 {
483 	int c = 0;
484 	const char *p;
485 
486 	if (!info)
487 		return c;
488 
489 	for (p = info; *p; p++)
490 		if (isprint(*p))
491 			c += scnprintf(buf + c, len - c, "%c", *p);
492 		else
493 			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
494 	return c;
495 }
496 
497 static void __init dmi_format_ids(char *buf, size_t len)
498 {
499 	int c = 0;
500 	const char *board;	/* Board Name is optional */
501 
502 	c += print_filtered(buf + c, len - c,
503 			    dmi_get_system_info(DMI_SYS_VENDOR));
504 	c += scnprintf(buf + c, len - c, " ");
505 	c += print_filtered(buf + c, len - c,
506 			    dmi_get_system_info(DMI_PRODUCT_NAME));
507 
508 	board = dmi_get_system_info(DMI_BOARD_NAME);
509 	if (board) {
510 		c += scnprintf(buf + c, len - c, "/");
511 		c += print_filtered(buf + c, len - c, board);
512 	}
513 	c += scnprintf(buf + c, len - c, ", BIOS ");
514 	c += print_filtered(buf + c, len - c,
515 			    dmi_get_system_info(DMI_BIOS_VERSION));
516 	c += scnprintf(buf + c, len - c, " ");
517 	c += print_filtered(buf + c, len - c,
518 			    dmi_get_system_info(DMI_BIOS_DATE));
519 }
520 
521 /*
522  * Check for DMI/SMBIOS headers in the system firmware image.  Any
523  * SMBIOS header must start 16 bytes before the DMI header, so take a
524  * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
525  * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
526  * takes precedence) and return 0.  Otherwise return 1.
527  */
528 static int __init dmi_present(const u8 *buf)
529 {
530 	u32 smbios_ver;
531 
532 	if (memcmp(buf, "_SM_", 4) == 0 &&
533 	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
534 		smbios_ver = get_unaligned_be16(buf + 6);
535 		smbios_entry_point_size = buf[5];
536 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
537 
538 		/* Some BIOS report weird SMBIOS version, fix that up */
539 		switch (smbios_ver) {
540 		case 0x021F:
541 		case 0x0221:
542 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
543 				 smbios_ver & 0xFF, 3);
544 			smbios_ver = 0x0203;
545 			break;
546 		case 0x0233:
547 			pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
548 			smbios_ver = 0x0206;
549 			break;
550 		}
551 	} else {
552 		smbios_ver = 0;
553 	}
554 
555 	buf += 16;
556 
557 	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
558 		if (smbios_ver)
559 			dmi_ver = smbios_ver;
560 		else
561 			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
562 		dmi_ver <<= 8;
563 		dmi_num = get_unaligned_le16(buf + 12);
564 		dmi_len = get_unaligned_le16(buf + 6);
565 		dmi_base = get_unaligned_le32(buf + 8);
566 
567 		if (dmi_walk_early(dmi_decode) == 0) {
568 			if (smbios_ver) {
569 				pr_info("SMBIOS %d.%d present.\n",
570 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
571 			} else {
572 				smbios_entry_point_size = 15;
573 				memcpy(smbios_entry_point, buf,
574 				       smbios_entry_point_size);
575 				pr_info("Legacy DMI %d.%d present.\n",
576 					dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
577 			}
578 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
579 			pr_info("DMI: %s\n", dmi_ids_string);
580 			return 0;
581 		}
582 	}
583 
584 	return 1;
585 }
586 
587 /*
588  * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
589  * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
590  */
591 static int __init dmi_smbios3_present(const u8 *buf)
592 {
593 	if (memcmp(buf, "_SM3_", 5) == 0 &&
594 	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
595 		dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
596 		dmi_num = 0;			/* No longer specified */
597 		dmi_len = get_unaligned_le32(buf + 12);
598 		dmi_base = get_unaligned_le64(buf + 16);
599 		smbios_entry_point_size = buf[6];
600 		memcpy(smbios_entry_point, buf, smbios_entry_point_size);
601 
602 		if (dmi_walk_early(dmi_decode) == 0) {
603 			pr_info("SMBIOS %d.%d.%d present.\n",
604 				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
605 				dmi_ver & 0xFF);
606 			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
607 			pr_info("DMI: %s\n", dmi_ids_string);
608 			return 0;
609 		}
610 	}
611 	return 1;
612 }
613 
614 static void __init dmi_scan_machine(void)
615 {
616 	char __iomem *p, *q;
617 	char buf[32];
618 
619 	if (efi_enabled(EFI_CONFIG_TABLES)) {
620 		/*
621 		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
622 		 * allowed to define both the 64-bit entry point (smbios3) and
623 		 * the 32-bit entry point (smbios), in which case they should
624 		 * either both point to the same SMBIOS structure table, or the
625 		 * table pointed to by the 64-bit entry point should contain a
626 		 * superset of the table contents pointed to by the 32-bit entry
627 		 * point (section 5.2)
628 		 * This implies that the 64-bit entry point should have
629 		 * precedence if it is defined and supported by the OS. If we
630 		 * have the 64-bit entry point, but fail to decode it, fall
631 		 * back to the legacy one (if available)
632 		 */
633 		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
634 			p = dmi_early_remap(efi.smbios3, 32);
635 			if (p == NULL)
636 				goto error;
637 			memcpy_fromio(buf, p, 32);
638 			dmi_early_unmap(p, 32);
639 
640 			if (!dmi_smbios3_present(buf)) {
641 				dmi_available = 1;
642 				return;
643 			}
644 		}
645 		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
646 			goto error;
647 
648 		/* This is called as a core_initcall() because it isn't
649 		 * needed during early boot.  This also means we can
650 		 * iounmap the space when we're done with it.
651 		 */
652 		p = dmi_early_remap(efi.smbios, 32);
653 		if (p == NULL)
654 			goto error;
655 		memcpy_fromio(buf, p, 32);
656 		dmi_early_unmap(p, 32);
657 
658 		if (!dmi_present(buf)) {
659 			dmi_available = 1;
660 			return;
661 		}
662 	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
663 		p = dmi_early_remap(0xF0000, 0x10000);
664 		if (p == NULL)
665 			goto error;
666 
667 		/*
668 		 * Same logic as above, look for a 64-bit entry point
669 		 * first, and if not found, fall back to 32-bit entry point.
670 		 */
671 		memcpy_fromio(buf, p, 16);
672 		for (q = p + 16; q < p + 0x10000; q += 16) {
673 			memcpy_fromio(buf + 16, q, 16);
674 			if (!dmi_smbios3_present(buf)) {
675 				dmi_available = 1;
676 				dmi_early_unmap(p, 0x10000);
677 				return;
678 			}
679 			memcpy(buf, buf + 16, 16);
680 		}
681 
682 		/*
683 		 * Iterate over all possible DMI header addresses q.
684 		 * Maintain the 32 bytes around q in buf.  On the
685 		 * first iteration, substitute zero for the
686 		 * out-of-range bytes so there is no chance of falsely
687 		 * detecting an SMBIOS header.
688 		 */
689 		memset(buf, 0, 16);
690 		for (q = p; q < p + 0x10000; q += 16) {
691 			memcpy_fromio(buf + 16, q, 16);
692 			if (!dmi_present(buf)) {
693 				dmi_available = 1;
694 				dmi_early_unmap(p, 0x10000);
695 				return;
696 			}
697 			memcpy(buf, buf + 16, 16);
698 		}
699 		dmi_early_unmap(p, 0x10000);
700 	}
701  error:
702 	pr_info("DMI not present or invalid.\n");
703 }
704 
705 static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
706 			      struct bin_attribute *attr, char *buf,
707 			      loff_t pos, size_t count)
708 {
709 	memcpy(buf, attr->private + pos, count);
710 	return count;
711 }
712 
713 static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
714 static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
715 
716 static int __init dmi_init(void)
717 {
718 	struct kobject *tables_kobj;
719 	u8 *dmi_table;
720 	int ret = -ENOMEM;
721 
722 	if (!dmi_available)
723 		return 0;
724 
725 	/*
726 	 * Set up dmi directory at /sys/firmware/dmi. This entry should stay
727 	 * even after farther error, as it can be used by other modules like
728 	 * dmi-sysfs.
729 	 */
730 	dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
731 	if (!dmi_kobj)
732 		goto err;
733 
734 	tables_kobj = kobject_create_and_add("tables", dmi_kobj);
735 	if (!tables_kobj)
736 		goto err;
737 
738 	dmi_table = dmi_remap(dmi_base, dmi_len);
739 	if (!dmi_table)
740 		goto err_tables;
741 
742 	bin_attr_smbios_entry_point.size = smbios_entry_point_size;
743 	bin_attr_smbios_entry_point.private = smbios_entry_point;
744 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
745 	if (ret)
746 		goto err_unmap;
747 
748 	bin_attr_DMI.size = dmi_len;
749 	bin_attr_DMI.private = dmi_table;
750 	ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
751 	if (!ret)
752 		return 0;
753 
754 	sysfs_remove_bin_file(tables_kobj,
755 			      &bin_attr_smbios_entry_point);
756  err_unmap:
757 	dmi_unmap(dmi_table);
758  err_tables:
759 	kobject_del(tables_kobj);
760 	kobject_put(tables_kobj);
761  err:
762 	pr_err("dmi: Firmware registration failed.\n");
763 
764 	return ret;
765 }
766 subsys_initcall(dmi_init);
767 
768 /**
769  *	dmi_setup - scan and setup DMI system information
770  *
771  *	Scan the DMI system information. This setups DMI identifiers
772  *	(dmi_system_id) for printing it out on task dumps and prepares
773  *	DIMM entry information (dmi_memdev_info) from the SMBIOS table
774  *	for using this when reporting memory errors.
775  */
776 void __init dmi_setup(void)
777 {
778 	dmi_scan_machine();
779 	if (!dmi_available)
780 		return;
781 
782 	dmi_memdev_walk();
783 	dump_stack_set_arch_desc("%s", dmi_ids_string);
784 }
785 
786 /**
787  *	dmi_matches - check if dmi_system_id structure matches system DMI data
788  *	@dmi: pointer to the dmi_system_id structure to check
789  */
790 static bool dmi_matches(const struct dmi_system_id *dmi)
791 {
792 	int i;
793 
794 	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
795 		int s = dmi->matches[i].slot;
796 		if (s == DMI_NONE)
797 			break;
798 		if (s == DMI_OEM_STRING) {
799 			/* DMI_OEM_STRING must be exact match */
800 			const struct dmi_device *valid;
801 
802 			valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
803 						dmi->matches[i].substr, NULL);
804 			if (valid)
805 				continue;
806 		} else if (dmi_ident[s]) {
807 			if (dmi->matches[i].exact_match) {
808 				if (!strcmp(dmi_ident[s],
809 					    dmi->matches[i].substr))
810 					continue;
811 			} else {
812 				if (strstr(dmi_ident[s],
813 					   dmi->matches[i].substr))
814 					continue;
815 			}
816 		}
817 
818 		/* No match */
819 		return false;
820 	}
821 	return true;
822 }
823 
824 /**
825  *	dmi_is_end_of_table - check for end-of-table marker
826  *	@dmi: pointer to the dmi_system_id structure to check
827  */
828 static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
829 {
830 	return dmi->matches[0].slot == DMI_NONE;
831 }
832 
833 /**
834  *	dmi_check_system - check system DMI data
835  *	@list: array of dmi_system_id structures to match against
836  *		All non-null elements of the list must match
837  *		their slot's (field index's) data (i.e., each
838  *		list string must be a substring of the specified
839  *		DMI slot's string data) to be considered a
840  *		successful match.
841  *
842  *	Walk the blacklist table running matching functions until someone
843  *	returns non zero or we hit the end. Callback function is called for
844  *	each successful match. Returns the number of matches.
845  *
846  *	dmi_setup must be called before this function is called.
847  */
848 int dmi_check_system(const struct dmi_system_id *list)
849 {
850 	int count = 0;
851 	const struct dmi_system_id *d;
852 
853 	for (d = list; !dmi_is_end_of_table(d); d++)
854 		if (dmi_matches(d)) {
855 			count++;
856 			if (d->callback && d->callback(d))
857 				break;
858 		}
859 
860 	return count;
861 }
862 EXPORT_SYMBOL(dmi_check_system);
863 
864 /**
865  *	dmi_first_match - find dmi_system_id structure matching system DMI data
866  *	@list: array of dmi_system_id structures to match against
867  *		All non-null elements of the list must match
868  *		their slot's (field index's) data (i.e., each
869  *		list string must be a substring of the specified
870  *		DMI slot's string data) to be considered a
871  *		successful match.
872  *
873  *	Walk the blacklist table until the first match is found.  Return the
874  *	pointer to the matching entry or NULL if there's no match.
875  *
876  *	dmi_setup must be called before this function is called.
877  */
878 const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
879 {
880 	const struct dmi_system_id *d;
881 
882 	for (d = list; !dmi_is_end_of_table(d); d++)
883 		if (dmi_matches(d))
884 			return d;
885 
886 	return NULL;
887 }
888 EXPORT_SYMBOL(dmi_first_match);
889 
890 /**
891  *	dmi_get_system_info - return DMI data value
892  *	@field: data index (see enum dmi_field)
893  *
894  *	Returns one DMI data value, can be used to perform
895  *	complex DMI data checks.
896  */
897 const char *dmi_get_system_info(int field)
898 {
899 	return dmi_ident[field];
900 }
901 EXPORT_SYMBOL(dmi_get_system_info);
902 
903 /**
904  * dmi_name_in_serial - Check if string is in the DMI product serial information
905  * @str: string to check for
906  */
907 int dmi_name_in_serial(const char *str)
908 {
909 	int f = DMI_PRODUCT_SERIAL;
910 	if (dmi_ident[f] && strstr(dmi_ident[f], str))
911 		return 1;
912 	return 0;
913 }
914 
915 /**
916  *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
917  *	@str: Case sensitive Name
918  */
919 int dmi_name_in_vendors(const char *str)
920 {
921 	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
922 	int i;
923 	for (i = 0; fields[i] != DMI_NONE; i++) {
924 		int f = fields[i];
925 		if (dmi_ident[f] && strstr(dmi_ident[f], str))
926 			return 1;
927 	}
928 	return 0;
929 }
930 EXPORT_SYMBOL(dmi_name_in_vendors);
931 
932 /**
933  *	dmi_find_device - find onboard device by type/name
934  *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
935  *	@name: device name string or %NULL to match all
936  *	@from: previous device found in search, or %NULL for new search.
937  *
938  *	Iterates through the list of known onboard devices. If a device is
939  *	found with a matching @type and @name, a pointer to its device
940  *	structure is returned.  Otherwise, %NULL is returned.
941  *	A new search is initiated by passing %NULL as the @from argument.
942  *	If @from is not %NULL, searches continue from next device.
943  */
944 const struct dmi_device *dmi_find_device(int type, const char *name,
945 				    const struct dmi_device *from)
946 {
947 	const struct list_head *head = from ? &from->list : &dmi_devices;
948 	struct list_head *d;
949 
950 	for (d = head->next; d != &dmi_devices; d = d->next) {
951 		const struct dmi_device *dev =
952 			list_entry(d, struct dmi_device, list);
953 
954 		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
955 		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
956 			return dev;
957 	}
958 
959 	return NULL;
960 }
961 EXPORT_SYMBOL(dmi_find_device);
962 
963 /**
964  *	dmi_get_date - parse a DMI date
965  *	@field:	data index (see enum dmi_field)
966  *	@yearp: optional out parameter for the year
967  *	@monthp: optional out parameter for the month
968  *	@dayp: optional out parameter for the day
969  *
970  *	The date field is assumed to be in the form resembling
971  *	[mm[/dd]]/yy[yy] and the result is stored in the out
972  *	parameters any or all of which can be omitted.
973  *
974  *	If the field doesn't exist, all out parameters are set to zero
975  *	and false is returned.  Otherwise, true is returned with any
976  *	invalid part of date set to zero.
977  *
978  *	On return, year, month and day are guaranteed to be in the
979  *	range of [0,9999], [0,12] and [0,31] respectively.
980  */
981 bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
982 {
983 	int year = 0, month = 0, day = 0;
984 	bool exists;
985 	const char *s, *y;
986 	char *e;
987 
988 	s = dmi_get_system_info(field);
989 	exists = s;
990 	if (!exists)
991 		goto out;
992 
993 	/*
994 	 * Determine year first.  We assume the date string resembles
995 	 * mm/dd/yy[yy] but the original code extracted only the year
996 	 * from the end.  Keep the behavior in the spirit of no
997 	 * surprises.
998 	 */
999 	y = strrchr(s, '/');
1000 	if (!y)
1001 		goto out;
1002 
1003 	y++;
1004 	year = simple_strtoul(y, &e, 10);
1005 	if (y != e && year < 100) {	/* 2-digit year */
1006 		year += 1900;
1007 		if (year < 1996)	/* no dates < spec 1.0 */
1008 			year += 100;
1009 	}
1010 	if (year > 9999)		/* year should fit in %04d */
1011 		year = 0;
1012 
1013 	/* parse the mm and dd */
1014 	month = simple_strtoul(s, &e, 10);
1015 	if (s == e || *e != '/' || !month || month > 12) {
1016 		month = 0;
1017 		goto out;
1018 	}
1019 
1020 	s = e + 1;
1021 	day = simple_strtoul(s, &e, 10);
1022 	if (s == y || s == e || *e != '/' || day > 31)
1023 		day = 0;
1024 out:
1025 	if (yearp)
1026 		*yearp = year;
1027 	if (monthp)
1028 		*monthp = month;
1029 	if (dayp)
1030 		*dayp = day;
1031 	return exists;
1032 }
1033 EXPORT_SYMBOL(dmi_get_date);
1034 
1035 /**
1036  *	dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
1037  *
1038  *	Returns year on success, -ENXIO if DMI is not selected,
1039  *	or a different negative error code if DMI field is not present
1040  *	or not parseable.
1041  */
1042 int dmi_get_bios_year(void)
1043 {
1044 	bool exists;
1045 	int year;
1046 
1047 	exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
1048 	if (!exists)
1049 		return -ENODATA;
1050 
1051 	return year ? year : -ERANGE;
1052 }
1053 EXPORT_SYMBOL(dmi_get_bios_year);
1054 
1055 /**
1056  *	dmi_walk - Walk the DMI table and get called back for every record
1057  *	@decode: Callback function
1058  *	@private_data: Private data to be passed to the callback function
1059  *
1060  *	Returns 0 on success, -ENXIO if DMI is not selected or not present,
1061  *	or a different negative error code if DMI walking fails.
1062  */
1063 int dmi_walk(void (*decode)(const struct dmi_header *, void *),
1064 	     void *private_data)
1065 {
1066 	u8 *buf;
1067 
1068 	if (!dmi_available)
1069 		return -ENXIO;
1070 
1071 	buf = dmi_remap(dmi_base, dmi_len);
1072 	if (buf == NULL)
1073 		return -ENOMEM;
1074 
1075 	dmi_decode_table(buf, decode, private_data);
1076 
1077 	dmi_unmap(buf);
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(dmi_walk);
1081 
1082 /**
1083  * dmi_match - compare a string to the dmi field (if exists)
1084  * @f: DMI field identifier
1085  * @str: string to compare the DMI field to
1086  *
1087  * Returns true if the requested field equals to the str (including NULL).
1088  */
1089 bool dmi_match(enum dmi_field f, const char *str)
1090 {
1091 	const char *info = dmi_get_system_info(f);
1092 
1093 	if (info == NULL || str == NULL)
1094 		return info == str;
1095 
1096 	return !strcmp(info, str);
1097 }
1098 EXPORT_SYMBOL_GPL(dmi_match);
1099 
1100 void dmi_memdev_name(u16 handle, const char **bank, const char **device)
1101 {
1102 	int n;
1103 
1104 	if (dmi_memdev == NULL)
1105 		return;
1106 
1107 	for (n = 0; n < dmi_memdev_nr; n++) {
1108 		if (handle == dmi_memdev[n].handle) {
1109 			*bank = dmi_memdev[n].bank;
1110 			*device = dmi_memdev[n].device;
1111 			break;
1112 		}
1113 	}
1114 }
1115 EXPORT_SYMBOL_GPL(dmi_memdev_name);
1116 
1117 u64 dmi_memdev_size(u16 handle)
1118 {
1119 	int n;
1120 
1121 	if (dmi_memdev) {
1122 		for (n = 0; n < dmi_memdev_nr; n++) {
1123 			if (handle == dmi_memdev[n].handle)
1124 				return dmi_memdev[n].size;
1125 		}
1126 	}
1127 	return ~0ull;
1128 }
1129 EXPORT_SYMBOL_GPL(dmi_memdev_size);
1130