xref: /openbmc/linux/drivers/firmware/cirrus/cs_dsp.c (revision 80d0624d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = NULL;
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (len + off * sizeof(u32) > ctl->len)
800 		return -EINVAL;
801 
802 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
803 		ret = -EPERM;
804 	} else if (buf != ctl->cache) {
805 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
806 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
807 		else
808 			return 0;
809 	}
810 
811 	ctl->set = 1;
812 	if (ctl->enabled && ctl->dsp->running)
813 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
814 
815 	if (ret < 0)
816 		return ret;
817 
818 	return 1;
819 }
820 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
821 
822 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
823 				      unsigned int off, void *buf, size_t len)
824 {
825 	struct cs_dsp *dsp = ctl->dsp;
826 	void *scratch;
827 	int ret;
828 	unsigned int reg;
829 
830 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
831 	if (ret)
832 		return ret;
833 
834 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
835 	if (!scratch)
836 		return -ENOMEM;
837 
838 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
839 	if (ret) {
840 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
841 			   len, reg, ret);
842 		kfree(scratch);
843 		return ret;
844 	}
845 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
846 
847 	memcpy(buf, scratch, len);
848 	kfree(scratch);
849 
850 	return 0;
851 }
852 
853 /**
854  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
855  * @ctl: pointer to coefficient control
856  * @off: word offset at which data should be read
857  * @buf: the buffer to store to the given control
858  * @len: the length of the buffer in bytes
859  *
860  * Must be called with pwr_lock held.
861  *
862  * Return: Zero for success, a negative number on error.
863  */
864 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
865 			   unsigned int off, void *buf, size_t len)
866 {
867 	int ret = 0;
868 
869 	if (!ctl)
870 		return -ENOENT;
871 
872 	lockdep_assert_held(&ctl->dsp->pwr_lock);
873 
874 	if (len + off * sizeof(u32) > ctl->len)
875 		return -EINVAL;
876 
877 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
878 		if (ctl->enabled && ctl->dsp->running)
879 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
880 		else
881 			return -EPERM;
882 	} else {
883 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
884 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
885 
886 		if (buf != ctl->cache)
887 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
893 
894 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
895 {
896 	struct cs_dsp_coeff_ctl *ctl;
897 	int ret;
898 
899 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
900 		if (!ctl->enabled || ctl->set)
901 			continue;
902 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
903 			continue;
904 
905 		/*
906 		 * For readable controls populate the cache from the DSP memory.
907 		 * For non-readable controls the cache was zero-filled when
908 		 * created so we don't need to do anything.
909 		 */
910 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
911 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
912 			if (ret < 0)
913 				return ret;
914 		}
915 	}
916 
917 	return 0;
918 }
919 
920 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
921 {
922 	struct cs_dsp_coeff_ctl *ctl;
923 	int ret;
924 
925 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
926 		if (!ctl->enabled)
927 			continue;
928 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
929 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
930 							  ctl->len);
931 			if (ret < 0)
932 				return ret;
933 		}
934 	}
935 
936 	return 0;
937 }
938 
939 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
940 					 unsigned int event)
941 {
942 	struct cs_dsp_coeff_ctl *ctl;
943 	int ret;
944 
945 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
946 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
947 			continue;
948 
949 		if (!ctl->enabled)
950 			continue;
951 
952 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
953 		if (ret)
954 			cs_dsp_warn(dsp,
955 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
956 				    event, ctl->alg_region.alg, ret);
957 	}
958 }
959 
960 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
961 {
962 	kfree(ctl->cache);
963 	kfree(ctl->subname);
964 	kfree(ctl);
965 }
966 
967 static int cs_dsp_create_control(struct cs_dsp *dsp,
968 				 const struct cs_dsp_alg_region *alg_region,
969 				 unsigned int offset, unsigned int len,
970 				 const char *subname, unsigned int subname_len,
971 				 unsigned int flags, unsigned int type)
972 {
973 	struct cs_dsp_coeff_ctl *ctl;
974 	int ret;
975 
976 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
977 		if (ctl->fw_name == dsp->fw_name &&
978 		    ctl->alg_region.alg == alg_region->alg &&
979 		    ctl->alg_region.type == alg_region->type) {
980 			if ((!subname && !ctl->subname) ||
981 			    (subname && (ctl->subname_len == subname_len) &&
982 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
983 				if (!ctl->enabled)
984 					ctl->enabled = 1;
985 				return 0;
986 			}
987 		}
988 	}
989 
990 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
991 	if (!ctl)
992 		return -ENOMEM;
993 
994 	ctl->fw_name = dsp->fw_name;
995 	ctl->alg_region = *alg_region;
996 	if (subname && dsp->fw_ver >= 2) {
997 		ctl->subname_len = subname_len;
998 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
999 		if (!ctl->subname) {
1000 			ret = -ENOMEM;
1001 			goto err_ctl;
1002 		}
1003 	}
1004 	ctl->enabled = 1;
1005 	ctl->set = 0;
1006 	ctl->dsp = dsp;
1007 
1008 	ctl->flags = flags;
1009 	ctl->type = type;
1010 	ctl->offset = offset;
1011 	ctl->len = len;
1012 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1013 	if (!ctl->cache) {
1014 		ret = -ENOMEM;
1015 		goto err_ctl_subname;
1016 	}
1017 
1018 	list_add(&ctl->list, &dsp->ctl_list);
1019 
1020 	if (dsp->client_ops->control_add) {
1021 		ret = dsp->client_ops->control_add(ctl);
1022 		if (ret)
1023 			goto err_list_del;
1024 	}
1025 
1026 	return 0;
1027 
1028 err_list_del:
1029 	list_del(&ctl->list);
1030 	kfree(ctl->cache);
1031 err_ctl_subname:
1032 	kfree(ctl->subname);
1033 err_ctl:
1034 	kfree(ctl);
1035 
1036 	return ret;
1037 }
1038 
1039 struct cs_dsp_coeff_parsed_alg {
1040 	int id;
1041 	const u8 *name;
1042 	int name_len;
1043 	int ncoeff;
1044 };
1045 
1046 struct cs_dsp_coeff_parsed_coeff {
1047 	int offset;
1048 	int mem_type;
1049 	const u8 *name;
1050 	int name_len;
1051 	unsigned int ctl_type;
1052 	int flags;
1053 	int len;
1054 };
1055 
1056 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1057 				     const u8 **str)
1058 {
1059 	int length, total_field_len;
1060 
1061 	/* String fields are at least one __le32 */
1062 	if (sizeof(__le32) > avail) {
1063 		*pos = NULL;
1064 		return 0;
1065 	}
1066 
1067 	switch (bytes) {
1068 	case 1:
1069 		length = **pos;
1070 		break;
1071 	case 2:
1072 		length = le16_to_cpu(*((__le16 *)*pos));
1073 		break;
1074 	default:
1075 		return 0;
1076 	}
1077 
1078 	total_field_len = ((length + bytes) + 3) & ~0x03;
1079 	if ((unsigned int)total_field_len > avail) {
1080 		*pos = NULL;
1081 		return 0;
1082 	}
1083 
1084 	if (str)
1085 		*str = *pos + bytes;
1086 
1087 	*pos += total_field_len;
1088 
1089 	return length;
1090 }
1091 
1092 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1093 {
1094 	int val = 0;
1095 
1096 	switch (bytes) {
1097 	case 2:
1098 		val = le16_to_cpu(*((__le16 *)*pos));
1099 		break;
1100 	case 4:
1101 		val = le32_to_cpu(*((__le32 *)*pos));
1102 		break;
1103 	default:
1104 		break;
1105 	}
1106 
1107 	*pos += bytes;
1108 
1109 	return val;
1110 }
1111 
1112 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1113 				  const struct wmfw_region *region,
1114 				  struct cs_dsp_coeff_parsed_alg *blk)
1115 {
1116 	const struct wmfw_adsp_alg_data *raw;
1117 	unsigned int data_len = le32_to_cpu(region->len);
1118 	unsigned int pos;
1119 	const u8 *tmp;
1120 
1121 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1122 
1123 	switch (dsp->fw_ver) {
1124 	case 0:
1125 	case 1:
1126 		if (sizeof(*raw) > data_len)
1127 			return -EOVERFLOW;
1128 
1129 		blk->id = le32_to_cpu(raw->id);
1130 		blk->name = raw->name;
1131 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1132 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1133 
1134 		pos = sizeof(*raw);
1135 		break;
1136 	default:
1137 		if (sizeof(raw->id) > data_len)
1138 			return -EOVERFLOW;
1139 
1140 		tmp = region->data;
1141 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1142 		pos = tmp - region->data;
1143 
1144 		tmp = &region->data[pos];
1145 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1146 							  &blk->name);
1147 		if (!tmp)
1148 			return -EOVERFLOW;
1149 
1150 		pos = tmp - region->data;
1151 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1152 		if (!tmp)
1153 			return -EOVERFLOW;
1154 
1155 		pos = tmp - region->data;
1156 		if (sizeof(raw->ncoeff) > (data_len - pos))
1157 			return -EOVERFLOW;
1158 
1159 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1160 		pos += sizeof(raw->ncoeff);
1161 		break;
1162 	}
1163 
1164 	if ((int)blk->ncoeff < 0)
1165 		return -EOVERFLOW;
1166 
1167 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1168 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1169 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1170 
1171 	return pos;
1172 }
1173 
1174 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1175 				    const struct wmfw_region *region,
1176 				    unsigned int pos,
1177 				    struct cs_dsp_coeff_parsed_coeff *blk)
1178 {
1179 	const struct wmfw_adsp_coeff_data *raw;
1180 	unsigned int data_len = le32_to_cpu(region->len);
1181 	unsigned int blk_len, blk_end_pos;
1182 	const u8 *tmp;
1183 
1184 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1185 	if (sizeof(raw->hdr) > (data_len - pos))
1186 		return -EOVERFLOW;
1187 
1188 	blk_len = le32_to_cpu(raw->hdr.size);
1189 	if (blk_len > S32_MAX)
1190 		return -EOVERFLOW;
1191 
1192 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1193 		return -EOVERFLOW;
1194 
1195 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1196 
1197 	blk->offset = le16_to_cpu(raw->hdr.offset);
1198 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1199 
1200 	switch (dsp->fw_ver) {
1201 	case 0:
1202 	case 1:
1203 		if (sizeof(*raw) > (data_len - pos))
1204 			return -EOVERFLOW;
1205 
1206 		blk->name = raw->name;
1207 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1208 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1209 		blk->flags = le16_to_cpu(raw->flags);
1210 		blk->len = le32_to_cpu(raw->len);
1211 		break;
1212 	default:
1213 		pos += sizeof(raw->hdr);
1214 		tmp = &region->data[pos];
1215 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1216 							  &blk->name);
1217 		if (!tmp)
1218 			return -EOVERFLOW;
1219 
1220 		pos = tmp - region->data;
1221 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1222 		if (!tmp)
1223 			return -EOVERFLOW;
1224 
1225 		pos = tmp - region->data;
1226 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1227 		if (!tmp)
1228 			return -EOVERFLOW;
1229 
1230 		pos = tmp - region->data;
1231 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1232 		    (data_len - pos))
1233 			return -EOVERFLOW;
1234 
1235 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1236 		pos += sizeof(raw->ctl_type);
1237 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1238 		pos += sizeof(raw->flags);
1239 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1240 		break;
1241 	}
1242 
1243 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1244 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1245 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1246 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1247 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1248 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1249 
1250 	return blk_end_pos;
1251 }
1252 
1253 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1254 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1255 				    unsigned int f_required,
1256 				    unsigned int f_illegal)
1257 {
1258 	if ((coeff_blk->flags & f_illegal) ||
1259 	    ((coeff_blk->flags & f_required) != f_required)) {
1260 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1261 			   coeff_blk->flags, coeff_blk->ctl_type);
1262 		return -EINVAL;
1263 	}
1264 
1265 	return 0;
1266 }
1267 
1268 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1269 			      const struct wmfw_region *region)
1270 {
1271 	struct cs_dsp_alg_region alg_region = {};
1272 	struct cs_dsp_coeff_parsed_alg alg_blk;
1273 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1274 	int i, pos, ret;
1275 
1276 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1277 	if (pos < 0)
1278 		return pos;
1279 
1280 	for (i = 0; i < alg_blk.ncoeff; i++) {
1281 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1282 		if (pos < 0)
1283 			return pos;
1284 
1285 		switch (coeff_blk.ctl_type) {
1286 		case WMFW_CTL_TYPE_BYTES:
1287 			break;
1288 		case WMFW_CTL_TYPE_ACKED:
1289 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1290 				continue;	/* ignore */
1291 
1292 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1293 						       WMFW_CTL_FLAG_VOLATILE |
1294 						       WMFW_CTL_FLAG_WRITEABLE |
1295 						       WMFW_CTL_FLAG_READABLE,
1296 						       0);
1297 			if (ret)
1298 				return -EINVAL;
1299 			break;
1300 		case WMFW_CTL_TYPE_HOSTEVENT:
1301 		case WMFW_CTL_TYPE_FWEVENT:
1302 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1303 						       WMFW_CTL_FLAG_SYS |
1304 						       WMFW_CTL_FLAG_VOLATILE |
1305 						       WMFW_CTL_FLAG_WRITEABLE |
1306 						       WMFW_CTL_FLAG_READABLE,
1307 						       0);
1308 			if (ret)
1309 				return -EINVAL;
1310 			break;
1311 		case WMFW_CTL_TYPE_HOST_BUFFER:
1312 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1313 						       WMFW_CTL_FLAG_SYS |
1314 						       WMFW_CTL_FLAG_VOLATILE |
1315 						       WMFW_CTL_FLAG_READABLE,
1316 						       0);
1317 			if (ret)
1318 				return -EINVAL;
1319 			break;
1320 		default:
1321 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1322 				   coeff_blk.ctl_type);
1323 			return -EINVAL;
1324 		}
1325 
1326 		alg_region.type = coeff_blk.mem_type;
1327 		alg_region.alg = alg_blk.id;
1328 
1329 		ret = cs_dsp_create_control(dsp, &alg_region,
1330 					    coeff_blk.offset,
1331 					    coeff_blk.len,
1332 					    coeff_blk.name,
1333 					    coeff_blk.name_len,
1334 					    coeff_blk.flags,
1335 					    coeff_blk.ctl_type);
1336 		if (ret < 0)
1337 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1338 				   coeff_blk.name_len, coeff_blk.name, ret);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1345 					     const char * const file,
1346 					     unsigned int pos,
1347 					     const struct firmware *firmware)
1348 {
1349 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1350 
1351 	adsp1_sizes = (void *)&firmware->data[pos];
1352 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1353 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1354 		return 0;
1355 	}
1356 
1357 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1358 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1359 		   le32_to_cpu(adsp1_sizes->zm));
1360 
1361 	return pos + sizeof(*adsp1_sizes);
1362 }
1363 
1364 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1365 					     const char * const file,
1366 					     unsigned int pos,
1367 					     const struct firmware *firmware)
1368 {
1369 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1370 
1371 	adsp2_sizes = (void *)&firmware->data[pos];
1372 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1373 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1374 		return 0;
1375 	}
1376 
1377 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1378 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1379 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1380 
1381 	return pos + sizeof(*adsp2_sizes);
1382 }
1383 
1384 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1385 {
1386 	switch (version) {
1387 	case 0:
1388 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1389 		return true;
1390 	case 1:
1391 	case 2:
1392 		return true;
1393 	default:
1394 		return false;
1395 	}
1396 }
1397 
1398 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1399 {
1400 	switch (version) {
1401 	case 3:
1402 		return true;
1403 	default:
1404 		return false;
1405 	}
1406 }
1407 
1408 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1409 		       const char *file)
1410 {
1411 	LIST_HEAD(buf_list);
1412 	struct regmap *regmap = dsp->regmap;
1413 	unsigned int pos = 0;
1414 	const struct wmfw_header *header;
1415 	const struct wmfw_footer *footer;
1416 	const struct wmfw_region *region;
1417 	const struct cs_dsp_region *mem;
1418 	const char *region_name;
1419 	char *text = NULL;
1420 	struct cs_dsp_buf *buf;
1421 	unsigned int reg;
1422 	int regions = 0;
1423 	int ret, offset, type;
1424 
1425 	if (!firmware)
1426 		return 0;
1427 
1428 	ret = -EINVAL;
1429 
1430 	if (sizeof(*header) >= firmware->size) {
1431 		ret = -EOVERFLOW;
1432 		goto out_fw;
1433 	}
1434 
1435 	header = (void *)&firmware->data[0];
1436 
1437 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1438 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1439 		goto out_fw;
1440 	}
1441 
1442 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1443 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1444 			   file, header->ver);
1445 		goto out_fw;
1446 	}
1447 
1448 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1449 	dsp->fw_ver = header->ver;
1450 
1451 	if (header->core != dsp->type) {
1452 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1453 			   file, header->core, dsp->type);
1454 		goto out_fw;
1455 	}
1456 
1457 	pos = sizeof(*header);
1458 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1459 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1460 		ret = -EOVERFLOW;
1461 		goto out_fw;
1462 	}
1463 
1464 	footer = (void *)&firmware->data[pos];
1465 	pos += sizeof(*footer);
1466 
1467 	if (le32_to_cpu(header->len) != pos) {
1468 		ret = -EOVERFLOW;
1469 		goto out_fw;
1470 	}
1471 
1472 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1473 		   le64_to_cpu(footer->timestamp));
1474 
1475 	while (pos < firmware->size) {
1476 		/* Is there enough data for a complete block header? */
1477 		if (sizeof(*region) > firmware->size - pos) {
1478 			ret = -EOVERFLOW;
1479 			goto out_fw;
1480 		}
1481 
1482 		region = (void *)&(firmware->data[pos]);
1483 
1484 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1485 			ret = -EOVERFLOW;
1486 			goto out_fw;
1487 		}
1488 
1489 		region_name = "Unknown";
1490 		reg = 0;
1491 		text = NULL;
1492 		offset = le32_to_cpu(region->offset) & 0xffffff;
1493 		type = be32_to_cpu(region->type) & 0xff;
1494 
1495 		switch (type) {
1496 		case WMFW_NAME_TEXT:
1497 			region_name = "Firmware name";
1498 			text = kzalloc(le32_to_cpu(region->len) + 1,
1499 				       GFP_KERNEL);
1500 			break;
1501 		case WMFW_ALGORITHM_DATA:
1502 			region_name = "Algorithm";
1503 			ret = cs_dsp_parse_coeff(dsp, region);
1504 			if (ret != 0)
1505 				goto out_fw;
1506 			break;
1507 		case WMFW_INFO_TEXT:
1508 			region_name = "Information";
1509 			text = kzalloc(le32_to_cpu(region->len) + 1,
1510 				       GFP_KERNEL);
1511 			break;
1512 		case WMFW_ABSOLUTE:
1513 			region_name = "Absolute";
1514 			reg = offset;
1515 			break;
1516 		case WMFW_ADSP1_PM:
1517 		case WMFW_ADSP1_DM:
1518 		case WMFW_ADSP2_XM:
1519 		case WMFW_ADSP2_YM:
1520 		case WMFW_ADSP1_ZM:
1521 		case WMFW_HALO_PM_PACKED:
1522 		case WMFW_HALO_XM_PACKED:
1523 		case WMFW_HALO_YM_PACKED:
1524 			mem = cs_dsp_find_region(dsp, type);
1525 			if (!mem) {
1526 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1527 				ret = -EINVAL;
1528 				goto out_fw;
1529 			}
1530 
1531 			region_name = cs_dsp_mem_region_name(type);
1532 			reg = dsp->ops->region_to_reg(mem, offset);
1533 			break;
1534 		default:
1535 			cs_dsp_warn(dsp,
1536 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1537 				    file, regions, type, pos, pos);
1538 			break;
1539 		}
1540 
1541 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1542 			   regions, le32_to_cpu(region->len), offset,
1543 			   region_name);
1544 
1545 		if (text) {
1546 			memcpy(text, region->data, le32_to_cpu(region->len));
1547 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1548 			kfree(text);
1549 			text = NULL;
1550 		}
1551 
1552 		if (reg) {
1553 			buf = cs_dsp_buf_alloc(region->data,
1554 					       le32_to_cpu(region->len),
1555 					       &buf_list);
1556 			if (!buf) {
1557 				cs_dsp_err(dsp, "Out of memory\n");
1558 				ret = -ENOMEM;
1559 				goto out_fw;
1560 			}
1561 
1562 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1563 						     le32_to_cpu(region->len));
1564 			if (ret != 0) {
1565 				cs_dsp_err(dsp,
1566 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1567 					   file, regions,
1568 					   le32_to_cpu(region->len), offset,
1569 					   region_name, ret);
1570 				goto out_fw;
1571 			}
1572 		}
1573 
1574 		pos += le32_to_cpu(region->len) + sizeof(*region);
1575 		regions++;
1576 	}
1577 
1578 	ret = regmap_async_complete(regmap);
1579 	if (ret != 0) {
1580 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1581 		goto out_fw;
1582 	}
1583 
1584 	if (pos > firmware->size)
1585 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1586 			    file, regions, pos - firmware->size);
1587 
1588 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1589 
1590 out_fw:
1591 	regmap_async_complete(regmap);
1592 	cs_dsp_buf_free(&buf_list);
1593 	kfree(text);
1594 
1595 	if (ret == -EOVERFLOW)
1596 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1597 
1598 	return ret;
1599 }
1600 
1601 /**
1602  * cs_dsp_get_ctl() - Finds a matching coefficient control
1603  * @dsp: pointer to DSP structure
1604  * @name: pointer to string to match with a control's subname
1605  * @type: the algorithm type to match
1606  * @alg: the algorithm id to match
1607  *
1608  * Find cs_dsp_coeff_ctl with input name as its subname
1609  *
1610  * Return: pointer to the control on success, NULL if not found
1611  */
1612 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1613 					unsigned int alg)
1614 {
1615 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1616 
1617 	lockdep_assert_held(&dsp->pwr_lock);
1618 
1619 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1620 		if (!pos->subname)
1621 			continue;
1622 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1623 		    pos->fw_name == dsp->fw_name &&
1624 		    pos->alg_region.alg == alg &&
1625 		    pos->alg_region.type == type) {
1626 			rslt = pos;
1627 			break;
1628 		}
1629 	}
1630 
1631 	return rslt;
1632 }
1633 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1634 
1635 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1636 				  const struct cs_dsp_alg_region *alg_region)
1637 {
1638 	struct cs_dsp_coeff_ctl *ctl;
1639 
1640 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1641 		if (ctl->fw_name == dsp->fw_name &&
1642 		    alg_region->alg == ctl->alg_region.alg &&
1643 		    alg_region->type == ctl->alg_region.type) {
1644 			ctl->alg_region.base = alg_region->base;
1645 		}
1646 	}
1647 }
1648 
1649 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1650 			      const struct cs_dsp_region *mem,
1651 			      unsigned int pos, unsigned int len)
1652 {
1653 	void *alg;
1654 	unsigned int reg;
1655 	int ret;
1656 	__be32 val;
1657 
1658 	if (n_algs == 0) {
1659 		cs_dsp_err(dsp, "No algorithms\n");
1660 		return ERR_PTR(-EINVAL);
1661 	}
1662 
1663 	if (n_algs > 1024) {
1664 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1665 		return ERR_PTR(-EINVAL);
1666 	}
1667 
1668 	/* Read the terminator first to validate the length */
1669 	reg = dsp->ops->region_to_reg(mem, pos + len);
1670 
1671 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1672 	if (ret != 0) {
1673 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1674 			   ret);
1675 		return ERR_PTR(ret);
1676 	}
1677 
1678 	if (be32_to_cpu(val) != 0xbedead)
1679 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1680 			    reg, be32_to_cpu(val));
1681 
1682 	/* Convert length from DSP words to bytes */
1683 	len *= sizeof(u32);
1684 
1685 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1686 	if (!alg)
1687 		return ERR_PTR(-ENOMEM);
1688 
1689 	reg = dsp->ops->region_to_reg(mem, pos);
1690 
1691 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1692 	if (ret != 0) {
1693 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1694 		kfree(alg);
1695 		return ERR_PTR(ret);
1696 	}
1697 
1698 	return alg;
1699 }
1700 
1701 /**
1702  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1703  * @dsp: pointer to DSP structure
1704  * @type: the algorithm type to match
1705  * @id: the algorithm id to match
1706  *
1707  * Return: Pointer to matching algorithm region, or NULL if not found.
1708  */
1709 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1710 						 int type, unsigned int id)
1711 {
1712 	struct cs_dsp_alg_region *alg_region;
1713 
1714 	lockdep_assert_held(&dsp->pwr_lock);
1715 
1716 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1717 		if (id == alg_region->alg && type == alg_region->type)
1718 			return alg_region;
1719 	}
1720 
1721 	return NULL;
1722 }
1723 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1724 
1725 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1726 						      int type, __be32 id,
1727 						      __be32 ver, __be32 base)
1728 {
1729 	struct cs_dsp_alg_region *alg_region;
1730 
1731 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1732 	if (!alg_region)
1733 		return ERR_PTR(-ENOMEM);
1734 
1735 	alg_region->type = type;
1736 	alg_region->alg = be32_to_cpu(id);
1737 	alg_region->ver = be32_to_cpu(ver);
1738 	alg_region->base = be32_to_cpu(base);
1739 
1740 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1741 
1742 	if (dsp->fw_ver > 0)
1743 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1744 
1745 	return alg_region;
1746 }
1747 
1748 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1749 {
1750 	struct cs_dsp_alg_region *alg_region;
1751 
1752 	while (!list_empty(&dsp->alg_regions)) {
1753 		alg_region = list_first_entry(&dsp->alg_regions,
1754 					      struct cs_dsp_alg_region,
1755 					      list);
1756 		list_del(&alg_region->list);
1757 		kfree(alg_region);
1758 	}
1759 }
1760 
1761 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1762 					struct wmfw_id_hdr *fw, int nalgs)
1763 {
1764 	dsp->fw_id = be32_to_cpu(fw->id);
1765 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1766 
1767 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1768 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1769 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1770 		    nalgs);
1771 }
1772 
1773 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1774 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1775 {
1776 	dsp->fw_id = be32_to_cpu(fw->id);
1777 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1778 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1779 
1780 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1781 		    dsp->fw_id, dsp->fw_vendor_id,
1782 		    (dsp->fw_id_version & 0xff0000) >> 16,
1783 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1784 		    nalgs);
1785 }
1786 
1787 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1788 				 int nregions, const int *type, __be32 *base)
1789 {
1790 	struct cs_dsp_alg_region *alg_region;
1791 	int i;
1792 
1793 	for (i = 0; i < nregions; i++) {
1794 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1795 		if (IS_ERR(alg_region))
1796 			return PTR_ERR(alg_region);
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1803 {
1804 	struct wmfw_adsp1_id_hdr adsp1_id;
1805 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1806 	struct cs_dsp_alg_region *alg_region;
1807 	const struct cs_dsp_region *mem;
1808 	unsigned int pos, len;
1809 	size_t n_algs;
1810 	int i, ret;
1811 
1812 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1813 	if (WARN_ON(!mem))
1814 		return -EINVAL;
1815 
1816 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1817 			      sizeof(adsp1_id));
1818 	if (ret != 0) {
1819 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1820 			   ret);
1821 		return ret;
1822 	}
1823 
1824 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1825 
1826 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1827 
1828 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1829 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1830 					  adsp1_id.zm);
1831 	if (IS_ERR(alg_region))
1832 		return PTR_ERR(alg_region);
1833 
1834 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1835 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1836 					  adsp1_id.dm);
1837 	if (IS_ERR(alg_region))
1838 		return PTR_ERR(alg_region);
1839 
1840 	/* Calculate offset and length in DSP words */
1841 	pos = sizeof(adsp1_id) / sizeof(u32);
1842 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1843 
1844 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1845 	if (IS_ERR(adsp1_alg))
1846 		return PTR_ERR(adsp1_alg);
1847 
1848 	for (i = 0; i < n_algs; i++) {
1849 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1850 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1851 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1852 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1853 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1854 			    be32_to_cpu(adsp1_alg[i].dm),
1855 			    be32_to_cpu(adsp1_alg[i].zm));
1856 
1857 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1858 						  adsp1_alg[i].alg.id,
1859 						  adsp1_alg[i].alg.ver,
1860 						  adsp1_alg[i].dm);
1861 		if (IS_ERR(alg_region)) {
1862 			ret = PTR_ERR(alg_region);
1863 			goto out;
1864 		}
1865 		if (dsp->fw_ver == 0) {
1866 			if (i + 1 < n_algs) {
1867 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1868 				len -= be32_to_cpu(adsp1_alg[i].dm);
1869 				len *= 4;
1870 				cs_dsp_create_control(dsp, alg_region, 0,
1871 						      len, NULL, 0, 0,
1872 						      WMFW_CTL_TYPE_BYTES);
1873 			} else {
1874 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1875 					    be32_to_cpu(adsp1_alg[i].alg.id));
1876 			}
1877 		}
1878 
1879 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1880 						  adsp1_alg[i].alg.id,
1881 						  adsp1_alg[i].alg.ver,
1882 						  adsp1_alg[i].zm);
1883 		if (IS_ERR(alg_region)) {
1884 			ret = PTR_ERR(alg_region);
1885 			goto out;
1886 		}
1887 		if (dsp->fw_ver == 0) {
1888 			if (i + 1 < n_algs) {
1889 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1890 				len -= be32_to_cpu(adsp1_alg[i].zm);
1891 				len *= 4;
1892 				cs_dsp_create_control(dsp, alg_region, 0,
1893 						      len, NULL, 0, 0,
1894 						      WMFW_CTL_TYPE_BYTES);
1895 			} else {
1896 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1897 					    be32_to_cpu(adsp1_alg[i].alg.id));
1898 			}
1899 		}
1900 	}
1901 
1902 out:
1903 	kfree(adsp1_alg);
1904 	return ret;
1905 }
1906 
1907 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1908 {
1909 	struct wmfw_adsp2_id_hdr adsp2_id;
1910 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1911 	struct cs_dsp_alg_region *alg_region;
1912 	const struct cs_dsp_region *mem;
1913 	unsigned int pos, len;
1914 	size_t n_algs;
1915 	int i, ret;
1916 
1917 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1918 	if (WARN_ON(!mem))
1919 		return -EINVAL;
1920 
1921 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1922 			      sizeof(adsp2_id));
1923 	if (ret != 0) {
1924 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1925 			   ret);
1926 		return ret;
1927 	}
1928 
1929 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1930 
1931 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1932 
1933 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1934 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1935 					  adsp2_id.xm);
1936 	if (IS_ERR(alg_region))
1937 		return PTR_ERR(alg_region);
1938 
1939 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1940 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1941 					  adsp2_id.ym);
1942 	if (IS_ERR(alg_region))
1943 		return PTR_ERR(alg_region);
1944 
1945 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1946 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1947 					  adsp2_id.zm);
1948 	if (IS_ERR(alg_region))
1949 		return PTR_ERR(alg_region);
1950 
1951 	/* Calculate offset and length in DSP words */
1952 	pos = sizeof(adsp2_id) / sizeof(u32);
1953 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1954 
1955 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1956 	if (IS_ERR(adsp2_alg))
1957 		return PTR_ERR(adsp2_alg);
1958 
1959 	for (i = 0; i < n_algs; i++) {
1960 		cs_dsp_dbg(dsp,
1961 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1962 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
1963 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1964 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1965 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1966 			   be32_to_cpu(adsp2_alg[i].xm),
1967 			   be32_to_cpu(adsp2_alg[i].ym),
1968 			   be32_to_cpu(adsp2_alg[i].zm));
1969 
1970 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1971 						  adsp2_alg[i].alg.id,
1972 						  adsp2_alg[i].alg.ver,
1973 						  adsp2_alg[i].xm);
1974 		if (IS_ERR(alg_region)) {
1975 			ret = PTR_ERR(alg_region);
1976 			goto out;
1977 		}
1978 		if (dsp->fw_ver == 0) {
1979 			if (i + 1 < n_algs) {
1980 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1981 				len -= be32_to_cpu(adsp2_alg[i].xm);
1982 				len *= 4;
1983 				cs_dsp_create_control(dsp, alg_region, 0,
1984 						      len, NULL, 0, 0,
1985 						      WMFW_CTL_TYPE_BYTES);
1986 			} else {
1987 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1988 					    be32_to_cpu(adsp2_alg[i].alg.id));
1989 			}
1990 		}
1991 
1992 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1993 						  adsp2_alg[i].alg.id,
1994 						  adsp2_alg[i].alg.ver,
1995 						  adsp2_alg[i].ym);
1996 		if (IS_ERR(alg_region)) {
1997 			ret = PTR_ERR(alg_region);
1998 			goto out;
1999 		}
2000 		if (dsp->fw_ver == 0) {
2001 			if (i + 1 < n_algs) {
2002 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2003 				len -= be32_to_cpu(adsp2_alg[i].ym);
2004 				len *= 4;
2005 				cs_dsp_create_control(dsp, alg_region, 0,
2006 						      len, NULL, 0, 0,
2007 						      WMFW_CTL_TYPE_BYTES);
2008 			} else {
2009 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2010 					    be32_to_cpu(adsp2_alg[i].alg.id));
2011 			}
2012 		}
2013 
2014 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2015 						  adsp2_alg[i].alg.id,
2016 						  adsp2_alg[i].alg.ver,
2017 						  adsp2_alg[i].zm);
2018 		if (IS_ERR(alg_region)) {
2019 			ret = PTR_ERR(alg_region);
2020 			goto out;
2021 		}
2022 		if (dsp->fw_ver == 0) {
2023 			if (i + 1 < n_algs) {
2024 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2025 				len -= be32_to_cpu(adsp2_alg[i].zm);
2026 				len *= 4;
2027 				cs_dsp_create_control(dsp, alg_region, 0,
2028 						      len, NULL, 0, 0,
2029 						      WMFW_CTL_TYPE_BYTES);
2030 			} else {
2031 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2032 					    be32_to_cpu(adsp2_alg[i].alg.id));
2033 			}
2034 		}
2035 	}
2036 
2037 out:
2038 	kfree(adsp2_alg);
2039 	return ret;
2040 }
2041 
2042 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2043 				      __be32 xm_base, __be32 ym_base)
2044 {
2045 	static const int types[] = {
2046 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2047 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2048 	};
2049 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2050 
2051 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2052 }
2053 
2054 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2055 {
2056 	struct wmfw_halo_id_hdr halo_id;
2057 	struct wmfw_halo_alg_hdr *halo_alg;
2058 	const struct cs_dsp_region *mem;
2059 	unsigned int pos, len;
2060 	size_t n_algs;
2061 	int i, ret;
2062 
2063 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2064 	if (WARN_ON(!mem))
2065 		return -EINVAL;
2066 
2067 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2068 			      sizeof(halo_id));
2069 	if (ret != 0) {
2070 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2071 			   ret);
2072 		return ret;
2073 	}
2074 
2075 	n_algs = be32_to_cpu(halo_id.n_algs);
2076 
2077 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2078 
2079 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2080 					 halo_id.xm_base, halo_id.ym_base);
2081 	if (ret)
2082 		return ret;
2083 
2084 	/* Calculate offset and length in DSP words */
2085 	pos = sizeof(halo_id) / sizeof(u32);
2086 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2087 
2088 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2089 	if (IS_ERR(halo_alg))
2090 		return PTR_ERR(halo_alg);
2091 
2092 	for (i = 0; i < n_algs; i++) {
2093 		cs_dsp_dbg(dsp,
2094 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2095 			   i, be32_to_cpu(halo_alg[i].alg.id),
2096 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2097 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2098 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2099 			   be32_to_cpu(halo_alg[i].xm_base),
2100 			   be32_to_cpu(halo_alg[i].ym_base));
2101 
2102 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2103 						 halo_alg[i].alg.ver,
2104 						 halo_alg[i].xm_base,
2105 						 halo_alg[i].ym_base);
2106 		if (ret)
2107 			goto out;
2108 	}
2109 
2110 out:
2111 	kfree(halo_alg);
2112 	return ret;
2113 }
2114 
2115 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2116 			     const char *file)
2117 {
2118 	LIST_HEAD(buf_list);
2119 	struct regmap *regmap = dsp->regmap;
2120 	struct wmfw_coeff_hdr *hdr;
2121 	struct wmfw_coeff_item *blk;
2122 	const struct cs_dsp_region *mem;
2123 	struct cs_dsp_alg_region *alg_region;
2124 	const char *region_name;
2125 	int ret, pos, blocks, type, offset, reg, version;
2126 	char *text = NULL;
2127 	struct cs_dsp_buf *buf;
2128 
2129 	if (!firmware)
2130 		return 0;
2131 
2132 	ret = -EINVAL;
2133 
2134 	if (sizeof(*hdr) >= firmware->size) {
2135 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2136 			   file, firmware->size);
2137 		goto out_fw;
2138 	}
2139 
2140 	hdr = (void *)&firmware->data[0];
2141 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2142 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2143 		goto out_fw;
2144 	}
2145 
2146 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2147 	case 1:
2148 	case 2:
2149 		break;
2150 	default:
2151 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2152 			   file, be32_to_cpu(hdr->rev) & 0xff);
2153 		ret = -EINVAL;
2154 		goto out_fw;
2155 	}
2156 
2157 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2158 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2159 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2160 		    le32_to_cpu(hdr->ver) & 0xff);
2161 
2162 	pos = le32_to_cpu(hdr->len);
2163 
2164 	blocks = 0;
2165 	while (pos < firmware->size) {
2166 		/* Is there enough data for a complete block header? */
2167 		if (sizeof(*blk) > firmware->size - pos) {
2168 			ret = -EOVERFLOW;
2169 			goto out_fw;
2170 		}
2171 
2172 		blk = (void *)(&firmware->data[pos]);
2173 
2174 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2175 			ret = -EOVERFLOW;
2176 			goto out_fw;
2177 		}
2178 
2179 		type = le16_to_cpu(blk->type);
2180 		offset = le16_to_cpu(blk->offset);
2181 		version = le32_to_cpu(blk->ver) >> 8;
2182 
2183 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2184 			   file, blocks, le32_to_cpu(blk->id),
2185 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2186 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2187 			   le32_to_cpu(blk->ver) & 0xff);
2188 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2189 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2190 
2191 		reg = 0;
2192 		region_name = "Unknown";
2193 		switch (type) {
2194 		case (WMFW_NAME_TEXT << 8):
2195 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2196 			break;
2197 		case (WMFW_INFO_TEXT << 8):
2198 		case (WMFW_METADATA << 8):
2199 			break;
2200 		case (WMFW_ABSOLUTE << 8):
2201 			/*
2202 			 * Old files may use this for global
2203 			 * coefficients.
2204 			 */
2205 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2206 			    offset == 0) {
2207 				region_name = "global coefficients";
2208 				mem = cs_dsp_find_region(dsp, type);
2209 				if (!mem) {
2210 					cs_dsp_err(dsp, "No ZM\n");
2211 					break;
2212 				}
2213 				reg = dsp->ops->region_to_reg(mem, 0);
2214 
2215 			} else {
2216 				region_name = "register";
2217 				reg = offset;
2218 			}
2219 			break;
2220 
2221 		case WMFW_ADSP1_DM:
2222 		case WMFW_ADSP1_ZM:
2223 		case WMFW_ADSP2_XM:
2224 		case WMFW_ADSP2_YM:
2225 		case WMFW_HALO_XM_PACKED:
2226 		case WMFW_HALO_YM_PACKED:
2227 		case WMFW_HALO_PM_PACKED:
2228 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2229 				   file, blocks, le32_to_cpu(blk->len),
2230 				   type, le32_to_cpu(blk->id));
2231 
2232 			region_name = cs_dsp_mem_region_name(type);
2233 			mem = cs_dsp_find_region(dsp, type);
2234 			if (!mem) {
2235 				cs_dsp_err(dsp, "No base for region %x\n", type);
2236 				break;
2237 			}
2238 
2239 			alg_region = cs_dsp_find_alg_region(dsp, type,
2240 							    le32_to_cpu(blk->id));
2241 			if (alg_region) {
2242 				if (version != alg_region->ver)
2243 					cs_dsp_warn(dsp,
2244 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2245 						   (version >> 16) & 0xFF,
2246 						   (version >> 8) & 0xFF,
2247 						   version & 0xFF,
2248 						   (alg_region->ver >> 16) & 0xFF,
2249 						   (alg_region->ver >> 8) & 0xFF,
2250 						   alg_region->ver & 0xFF);
2251 
2252 				reg = alg_region->base;
2253 				reg = dsp->ops->region_to_reg(mem, reg);
2254 				reg += offset;
2255 			} else {
2256 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2257 					   region_name, le32_to_cpu(blk->id));
2258 			}
2259 			break;
2260 
2261 		default:
2262 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2263 				   file, blocks, type, pos);
2264 			break;
2265 		}
2266 
2267 		if (text) {
2268 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2269 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2270 			kfree(text);
2271 			text = NULL;
2272 		}
2273 
2274 		if (reg) {
2275 			buf = cs_dsp_buf_alloc(blk->data,
2276 					       le32_to_cpu(blk->len),
2277 					       &buf_list);
2278 			if (!buf) {
2279 				cs_dsp_err(dsp, "Out of memory\n");
2280 				ret = -ENOMEM;
2281 				goto out_fw;
2282 			}
2283 
2284 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2285 				   file, blocks, le32_to_cpu(blk->len),
2286 				   reg);
2287 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2288 						     le32_to_cpu(blk->len));
2289 			if (ret != 0) {
2290 				cs_dsp_err(dsp,
2291 					   "%s.%d: Failed to write to %x in %s: %d\n",
2292 					   file, blocks, reg, region_name, ret);
2293 			}
2294 		}
2295 
2296 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2297 		blocks++;
2298 	}
2299 
2300 	ret = regmap_async_complete(regmap);
2301 	if (ret != 0)
2302 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2303 
2304 	if (pos > firmware->size)
2305 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2306 			    file, blocks, pos - firmware->size);
2307 
2308 	cs_dsp_debugfs_save_binname(dsp, file);
2309 
2310 out_fw:
2311 	regmap_async_complete(regmap);
2312 	cs_dsp_buf_free(&buf_list);
2313 	kfree(text);
2314 
2315 	if (ret == -EOVERFLOW)
2316 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2317 
2318 	return ret;
2319 }
2320 
2321 static int cs_dsp_create_name(struct cs_dsp *dsp)
2322 {
2323 	if (!dsp->name) {
2324 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2325 					   dsp->num);
2326 		if (!dsp->name)
2327 			return -ENOMEM;
2328 	}
2329 
2330 	return 0;
2331 }
2332 
2333 static int cs_dsp_common_init(struct cs_dsp *dsp)
2334 {
2335 	int ret;
2336 
2337 	ret = cs_dsp_create_name(dsp);
2338 	if (ret)
2339 		return ret;
2340 
2341 	INIT_LIST_HEAD(&dsp->alg_regions);
2342 	INIT_LIST_HEAD(&dsp->ctl_list);
2343 
2344 	mutex_init(&dsp->pwr_lock);
2345 
2346 	return 0;
2347 }
2348 
2349 /**
2350  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2351  * @dsp: pointer to DSP structure
2352  *
2353  * Return: Zero for success, a negative number on error.
2354  */
2355 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2356 {
2357 	dsp->ops = &cs_dsp_adsp1_ops;
2358 
2359 	return cs_dsp_common_init(dsp);
2360 }
2361 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2362 
2363 /**
2364  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2365  * @dsp: pointer to DSP structure
2366  * @wmfw_firmware: the firmware to be sent
2367  * @wmfw_filename: file name of firmware to be sent
2368  * @coeff_firmware: the coefficient data to be sent
2369  * @coeff_filename: file name of coefficient to data be sent
2370  * @fw_name: the user-friendly firmware name
2371  *
2372  * Return: Zero for success, a negative number on error.
2373  */
2374 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2375 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2376 			  const struct firmware *coeff_firmware, char *coeff_filename,
2377 			  const char *fw_name)
2378 {
2379 	unsigned int val;
2380 	int ret;
2381 
2382 	mutex_lock(&dsp->pwr_lock);
2383 
2384 	dsp->fw_name = fw_name;
2385 
2386 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2387 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2388 
2389 	/*
2390 	 * For simplicity set the DSP clock rate to be the
2391 	 * SYSCLK rate rather than making it configurable.
2392 	 */
2393 	if (dsp->sysclk_reg) {
2394 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2395 		if (ret != 0) {
2396 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2397 			goto err_mutex;
2398 		}
2399 
2400 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2401 
2402 		ret = regmap_update_bits(dsp->regmap,
2403 					 dsp->base + ADSP1_CONTROL_31,
2404 					 ADSP1_CLK_SEL_MASK, val);
2405 		if (ret != 0) {
2406 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2407 			goto err_mutex;
2408 		}
2409 	}
2410 
2411 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2412 	if (ret != 0)
2413 		goto err_ena;
2414 
2415 	ret = cs_dsp_adsp1_setup_algs(dsp);
2416 	if (ret != 0)
2417 		goto err_ena;
2418 
2419 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2420 	if (ret != 0)
2421 		goto err_ena;
2422 
2423 	/* Initialize caches for enabled and unset controls */
2424 	ret = cs_dsp_coeff_init_control_caches(dsp);
2425 	if (ret != 0)
2426 		goto err_ena;
2427 
2428 	/* Sync set controls */
2429 	ret = cs_dsp_coeff_sync_controls(dsp);
2430 	if (ret != 0)
2431 		goto err_ena;
2432 
2433 	dsp->booted = true;
2434 
2435 	/* Start the core running */
2436 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2437 			   ADSP1_CORE_ENA | ADSP1_START,
2438 			   ADSP1_CORE_ENA | ADSP1_START);
2439 
2440 	dsp->running = true;
2441 
2442 	mutex_unlock(&dsp->pwr_lock);
2443 
2444 	return 0;
2445 
2446 err_ena:
2447 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2448 			   ADSP1_SYS_ENA, 0);
2449 err_mutex:
2450 	mutex_unlock(&dsp->pwr_lock);
2451 	return ret;
2452 }
2453 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2454 
2455 /**
2456  * cs_dsp_adsp1_power_down() - Halts the DSP
2457  * @dsp: pointer to DSP structure
2458  */
2459 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2460 {
2461 	struct cs_dsp_coeff_ctl *ctl;
2462 
2463 	mutex_lock(&dsp->pwr_lock);
2464 
2465 	dsp->running = false;
2466 	dsp->booted = false;
2467 
2468 	/* Halt the core */
2469 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2470 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2471 
2472 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2473 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2474 
2475 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2476 			   ADSP1_SYS_ENA, 0);
2477 
2478 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2479 		ctl->enabled = 0;
2480 
2481 	cs_dsp_free_alg_regions(dsp);
2482 
2483 	mutex_unlock(&dsp->pwr_lock);
2484 }
2485 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2486 
2487 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2488 {
2489 	unsigned int val;
2490 	int ret, count;
2491 
2492 	/* Wait for the RAM to start, should be near instantaneous */
2493 	for (count = 0; count < 10; ++count) {
2494 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2495 		if (ret != 0)
2496 			return ret;
2497 
2498 		if (val & ADSP2_RAM_RDY)
2499 			break;
2500 
2501 		usleep_range(250, 500);
2502 	}
2503 
2504 	if (!(val & ADSP2_RAM_RDY)) {
2505 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2506 		return -EBUSY;
2507 	}
2508 
2509 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2510 
2511 	return 0;
2512 }
2513 
2514 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2515 {
2516 	int ret;
2517 
2518 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2519 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2520 	if (ret != 0)
2521 		return ret;
2522 
2523 	return cs_dsp_adsp2v2_enable_core(dsp);
2524 }
2525 
2526 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2527 {
2528 	struct regmap *regmap = dsp->regmap;
2529 	unsigned int code0, code1, lock_reg;
2530 
2531 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2532 		return 0;
2533 
2534 	lock_regions &= CS_ADSP2_REGION_ALL;
2535 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2536 
2537 	while (lock_regions) {
2538 		code0 = code1 = 0;
2539 		if (lock_regions & BIT(0)) {
2540 			code0 = ADSP2_LOCK_CODE_0;
2541 			code1 = ADSP2_LOCK_CODE_1;
2542 		}
2543 		if (lock_regions & BIT(1)) {
2544 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2545 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2546 		}
2547 		regmap_write(regmap, lock_reg, code0);
2548 		regmap_write(regmap, lock_reg, code1);
2549 		lock_regions >>= 2;
2550 		lock_reg += 2;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2557 {
2558 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2559 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2560 }
2561 
2562 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2563 {
2564 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2565 			   ADSP2_MEM_ENA, 0);
2566 }
2567 
2568 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2569 {
2570 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2571 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2572 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2573 
2574 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2575 			   ADSP2_SYS_ENA, 0);
2576 }
2577 
2578 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2579 {
2580 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2581 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2582 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2583 }
2584 
2585 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2586 {
2587 	struct reg_sequence config[] = {
2588 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2589 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2590 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2591 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2592 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2593 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2594 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2595 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2596 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2597 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2598 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2599 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2600 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2601 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2602 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2603 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2604 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2605 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2606 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2607 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2608 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2609 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2610 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2611 	};
2612 
2613 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2614 }
2615 
2616 /**
2617  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2618  * @dsp: pointer to DSP structure
2619  * @freq: clock rate to set
2620  *
2621  * This is only for use on ADSP2 cores.
2622  *
2623  * Return: Zero for success, a negative number on error.
2624  */
2625 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2626 {
2627 	int ret;
2628 
2629 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2630 				 ADSP2_CLK_SEL_MASK,
2631 				 freq << ADSP2_CLK_SEL_SHIFT);
2632 	if (ret)
2633 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2638 
2639 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2640 {
2641 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2642 			   ADSP2_WDT_ENA_MASK, 0);
2643 }
2644 
2645 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2646 {
2647 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2648 			   HALO_WDT_EN_MASK, 0);
2649 }
2650 
2651 /**
2652  * cs_dsp_power_up() - Downloads firmware to the DSP
2653  * @dsp: pointer to DSP structure
2654  * @wmfw_firmware: the firmware to be sent
2655  * @wmfw_filename: file name of firmware to be sent
2656  * @coeff_firmware: the coefficient data to be sent
2657  * @coeff_filename: file name of coefficient to data be sent
2658  * @fw_name: the user-friendly firmware name
2659  *
2660  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2661  * and downloads the firmware but does not start the firmware running. The
2662  * cs_dsp booted flag will be set once completed and if the core has a low-power
2663  * memory retention mode it will be put into this state after the firmware is
2664  * downloaded.
2665  *
2666  * Return: Zero for success, a negative number on error.
2667  */
2668 int cs_dsp_power_up(struct cs_dsp *dsp,
2669 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2670 		    const struct firmware *coeff_firmware, char *coeff_filename,
2671 		    const char *fw_name)
2672 {
2673 	int ret;
2674 
2675 	mutex_lock(&dsp->pwr_lock);
2676 
2677 	dsp->fw_name = fw_name;
2678 
2679 	if (dsp->ops->enable_memory) {
2680 		ret = dsp->ops->enable_memory(dsp);
2681 		if (ret != 0)
2682 			goto err_mutex;
2683 	}
2684 
2685 	if (dsp->ops->enable_core) {
2686 		ret = dsp->ops->enable_core(dsp);
2687 		if (ret != 0)
2688 			goto err_mem;
2689 	}
2690 
2691 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2692 	if (ret != 0)
2693 		goto err_ena;
2694 
2695 	ret = dsp->ops->setup_algs(dsp);
2696 	if (ret != 0)
2697 		goto err_ena;
2698 
2699 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2700 	if (ret != 0)
2701 		goto err_ena;
2702 
2703 	/* Initialize caches for enabled and unset controls */
2704 	ret = cs_dsp_coeff_init_control_caches(dsp);
2705 	if (ret != 0)
2706 		goto err_ena;
2707 
2708 	if (dsp->ops->disable_core)
2709 		dsp->ops->disable_core(dsp);
2710 
2711 	dsp->booted = true;
2712 
2713 	mutex_unlock(&dsp->pwr_lock);
2714 
2715 	return 0;
2716 err_ena:
2717 	if (dsp->ops->disable_core)
2718 		dsp->ops->disable_core(dsp);
2719 err_mem:
2720 	if (dsp->ops->disable_memory)
2721 		dsp->ops->disable_memory(dsp);
2722 err_mutex:
2723 	mutex_unlock(&dsp->pwr_lock);
2724 
2725 	return ret;
2726 }
2727 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2728 
2729 /**
2730  * cs_dsp_power_down() - Powers-down the DSP
2731  * @dsp: pointer to DSP structure
2732  *
2733  * cs_dsp_stop() must have been called before this function. The core will be
2734  * fully powered down and so the memory will not be retained.
2735  */
2736 void cs_dsp_power_down(struct cs_dsp *dsp)
2737 {
2738 	struct cs_dsp_coeff_ctl *ctl;
2739 
2740 	mutex_lock(&dsp->pwr_lock);
2741 
2742 	cs_dsp_debugfs_clear(dsp);
2743 
2744 	dsp->fw_id = 0;
2745 	dsp->fw_id_version = 0;
2746 
2747 	dsp->booted = false;
2748 
2749 	if (dsp->ops->disable_memory)
2750 		dsp->ops->disable_memory(dsp);
2751 
2752 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2753 		ctl->enabled = 0;
2754 
2755 	cs_dsp_free_alg_regions(dsp);
2756 
2757 	mutex_unlock(&dsp->pwr_lock);
2758 
2759 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2760 }
2761 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2762 
2763 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2764 {
2765 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2766 				  ADSP2_CORE_ENA | ADSP2_START,
2767 				  ADSP2_CORE_ENA | ADSP2_START);
2768 }
2769 
2770 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2771 {
2772 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2773 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2774 }
2775 
2776 /**
2777  * cs_dsp_run() - Starts the firmware running
2778  * @dsp: pointer to DSP structure
2779  *
2780  * cs_dsp_power_up() must have previously been called successfully.
2781  *
2782  * Return: Zero for success, a negative number on error.
2783  */
2784 int cs_dsp_run(struct cs_dsp *dsp)
2785 {
2786 	int ret;
2787 
2788 	mutex_lock(&dsp->pwr_lock);
2789 
2790 	if (!dsp->booted) {
2791 		ret = -EIO;
2792 		goto err;
2793 	}
2794 
2795 	if (dsp->ops->enable_core) {
2796 		ret = dsp->ops->enable_core(dsp);
2797 		if (ret != 0)
2798 			goto err;
2799 	}
2800 
2801 	if (dsp->client_ops->pre_run) {
2802 		ret = dsp->client_ops->pre_run(dsp);
2803 		if (ret)
2804 			goto err;
2805 	}
2806 
2807 	/* Sync set controls */
2808 	ret = cs_dsp_coeff_sync_controls(dsp);
2809 	if (ret != 0)
2810 		goto err;
2811 
2812 	if (dsp->ops->lock_memory) {
2813 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2814 		if (ret != 0) {
2815 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2816 			goto err;
2817 		}
2818 	}
2819 
2820 	if (dsp->ops->start_core) {
2821 		ret = dsp->ops->start_core(dsp);
2822 		if (ret != 0)
2823 			goto err;
2824 	}
2825 
2826 	dsp->running = true;
2827 
2828 	if (dsp->client_ops->post_run) {
2829 		ret = dsp->client_ops->post_run(dsp);
2830 		if (ret)
2831 			goto err;
2832 	}
2833 
2834 	mutex_unlock(&dsp->pwr_lock);
2835 
2836 	return 0;
2837 
2838 err:
2839 	if (dsp->ops->stop_core)
2840 		dsp->ops->stop_core(dsp);
2841 	if (dsp->ops->disable_core)
2842 		dsp->ops->disable_core(dsp);
2843 	mutex_unlock(&dsp->pwr_lock);
2844 
2845 	return ret;
2846 }
2847 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2848 
2849 /**
2850  * cs_dsp_stop() - Stops the firmware
2851  * @dsp: pointer to DSP structure
2852  *
2853  * Memory will not be disabled so firmware will remain loaded.
2854  */
2855 void cs_dsp_stop(struct cs_dsp *dsp)
2856 {
2857 	/* Tell the firmware to cleanup */
2858 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2859 
2860 	if (dsp->ops->stop_watchdog)
2861 		dsp->ops->stop_watchdog(dsp);
2862 
2863 	/* Log firmware state, it can be useful for analysis */
2864 	if (dsp->ops->show_fw_status)
2865 		dsp->ops->show_fw_status(dsp);
2866 
2867 	mutex_lock(&dsp->pwr_lock);
2868 
2869 	if (dsp->client_ops->pre_stop)
2870 		dsp->client_ops->pre_stop(dsp);
2871 
2872 	dsp->running = false;
2873 
2874 	if (dsp->ops->stop_core)
2875 		dsp->ops->stop_core(dsp);
2876 	if (dsp->ops->disable_core)
2877 		dsp->ops->disable_core(dsp);
2878 
2879 	if (dsp->client_ops->post_stop)
2880 		dsp->client_ops->post_stop(dsp);
2881 
2882 	mutex_unlock(&dsp->pwr_lock);
2883 
2884 	cs_dsp_dbg(dsp, "Execution stopped\n");
2885 }
2886 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2887 
2888 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2889 {
2890 	int ret;
2891 
2892 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2893 				 HALO_CORE_RESET | HALO_CORE_EN,
2894 				 HALO_CORE_RESET | HALO_CORE_EN);
2895 	if (ret)
2896 		return ret;
2897 
2898 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2899 				  HALO_CORE_RESET, 0);
2900 }
2901 
2902 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2903 {
2904 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2905 			   HALO_CORE_EN, 0);
2906 
2907 	/* reset halo core with CORE_SOFT_RESET */
2908 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2909 			   HALO_CORE_SOFT_RESET_MASK, 1);
2910 }
2911 
2912 /**
2913  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2914  * @dsp: pointer to DSP structure
2915  *
2916  * Return: Zero for success, a negative number on error.
2917  */
2918 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2919 {
2920 	int ret;
2921 
2922 	switch (dsp->rev) {
2923 	case 0:
2924 		/*
2925 		 * Disable the DSP memory by default when in reset for a small
2926 		 * power saving.
2927 		 */
2928 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2929 					 ADSP2_MEM_ENA, 0);
2930 		if (ret) {
2931 			cs_dsp_err(dsp,
2932 				   "Failed to clear memory retention: %d\n", ret);
2933 			return ret;
2934 		}
2935 
2936 		dsp->ops = &cs_dsp_adsp2_ops[0];
2937 		break;
2938 	case 1:
2939 		dsp->ops = &cs_dsp_adsp2_ops[1];
2940 		break;
2941 	default:
2942 		dsp->ops = &cs_dsp_adsp2_ops[2];
2943 		break;
2944 	}
2945 
2946 	return cs_dsp_common_init(dsp);
2947 }
2948 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2949 
2950 /**
2951  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2952  * @dsp: pointer to DSP structure
2953  *
2954  * Return: Zero for success, a negative number on error.
2955  */
2956 int cs_dsp_halo_init(struct cs_dsp *dsp)
2957 {
2958 	if (dsp->no_core_startstop)
2959 		dsp->ops = &cs_dsp_halo_ao_ops;
2960 	else
2961 		dsp->ops = &cs_dsp_halo_ops;
2962 
2963 	return cs_dsp_common_init(dsp);
2964 }
2965 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2966 
2967 /**
2968  * cs_dsp_remove() - Clean a cs_dsp before deletion
2969  * @dsp: pointer to DSP structure
2970  */
2971 void cs_dsp_remove(struct cs_dsp *dsp)
2972 {
2973 	struct cs_dsp_coeff_ctl *ctl;
2974 
2975 	while (!list_empty(&dsp->ctl_list)) {
2976 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2977 
2978 		if (dsp->client_ops->control_remove)
2979 			dsp->client_ops->control_remove(ctl);
2980 
2981 		list_del(&ctl->list);
2982 		cs_dsp_free_ctl_blk(ctl);
2983 	}
2984 }
2985 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2986 
2987 /**
2988  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2989  * @dsp: pointer to DSP structure
2990  * @mem_type: the type of DSP memory containing the data to be read
2991  * @mem_addr: the address of the data within the memory region
2992  * @num_words: the length of the data to read
2993  * @data: a buffer to store the fetched data
2994  *
2995  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2996  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2997  * cs_dsp_remove_padding()
2998  *
2999  * Return: Zero for success, a negative number on error.
3000  */
3001 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3002 			       unsigned int num_words, __be32 *data)
3003 {
3004 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3005 	unsigned int reg;
3006 	int ret;
3007 
3008 	lockdep_assert_held(&dsp->pwr_lock);
3009 
3010 	if (!mem)
3011 		return -EINVAL;
3012 
3013 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3014 
3015 	ret = regmap_raw_read(dsp->regmap, reg, data,
3016 			      sizeof(*data) * num_words);
3017 	if (ret < 0)
3018 		return ret;
3019 
3020 	return 0;
3021 }
3022 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3023 
3024 /**
3025  * cs_dsp_read_data_word() - Reads a word from DSP memory
3026  * @dsp: pointer to DSP structure
3027  * @mem_type: the type of DSP memory containing the data to be read
3028  * @mem_addr: the address of the data within the memory region
3029  * @data: a buffer to store the fetched data
3030  *
3031  * Return: Zero for success, a negative number on error.
3032  */
3033 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3034 {
3035 	__be32 raw;
3036 	int ret;
3037 
3038 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3039 	if (ret < 0)
3040 		return ret;
3041 
3042 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3043 
3044 	return 0;
3045 }
3046 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3047 
3048 /**
3049  * cs_dsp_write_data_word() - Writes a word to DSP memory
3050  * @dsp: pointer to DSP structure
3051  * @mem_type: the type of DSP memory containing the data to be written
3052  * @mem_addr: the address of the data within the memory region
3053  * @data: the data to be written
3054  *
3055  * Return: Zero for success, a negative number on error.
3056  */
3057 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3058 {
3059 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3060 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3061 	unsigned int reg;
3062 
3063 	lockdep_assert_held(&dsp->pwr_lock);
3064 
3065 	if (!mem)
3066 		return -EINVAL;
3067 
3068 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3069 
3070 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3071 }
3072 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3073 
3074 /**
3075  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3076  * @buf: buffer containing DSP words read from DSP memory
3077  * @nwords: number of words to convert
3078  *
3079  * DSP words from the register map have pad bytes and the data bytes
3080  * are in swapped order. This swaps to the native endian order and
3081  * strips the pad bytes.
3082  */
3083 void cs_dsp_remove_padding(u32 *buf, int nwords)
3084 {
3085 	const __be32 *pack_in = (__be32 *)buf;
3086 	u8 *pack_out = (u8 *)buf;
3087 	int i;
3088 
3089 	for (i = 0; i < nwords; i++) {
3090 		u32 word = be32_to_cpu(*pack_in++);
3091 		*pack_out++ = (u8)word;
3092 		*pack_out++ = (u8)(word >> 8);
3093 		*pack_out++ = (u8)(word >> 16);
3094 	}
3095 }
3096 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3097 
3098 /**
3099  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3100  * @dsp: pointer to DSP structure
3101  *
3102  * The firmware and DSP state will be logged for future analysis.
3103  */
3104 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3105 {
3106 	unsigned int val;
3107 	struct regmap *regmap = dsp->regmap;
3108 	int ret = 0;
3109 
3110 	mutex_lock(&dsp->pwr_lock);
3111 
3112 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3113 	if (ret) {
3114 		cs_dsp_err(dsp,
3115 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3116 		goto error;
3117 	}
3118 
3119 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3120 		cs_dsp_err(dsp, "watchdog timeout error\n");
3121 		dsp->ops->stop_watchdog(dsp);
3122 		if (dsp->client_ops->watchdog_expired)
3123 			dsp->client_ops->watchdog_expired(dsp);
3124 	}
3125 
3126 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3127 		if (val & ADSP2_ADDR_ERR_MASK)
3128 			cs_dsp_err(dsp, "bus error: address error\n");
3129 		else
3130 			cs_dsp_err(dsp, "bus error: region lock error\n");
3131 
3132 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3133 		if (ret) {
3134 			cs_dsp_err(dsp,
3135 				   "Failed to read Bus Err Addr register: %d\n",
3136 				   ret);
3137 			goto error;
3138 		}
3139 
3140 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3141 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3142 
3143 		ret = regmap_read(regmap,
3144 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3145 				  &val);
3146 		if (ret) {
3147 			cs_dsp_err(dsp,
3148 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3149 				   ret);
3150 			goto error;
3151 		}
3152 
3153 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3154 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3155 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3156 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3157 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3158 	}
3159 
3160 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3161 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3162 
3163 error:
3164 	mutex_unlock(&dsp->pwr_lock);
3165 }
3166 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3167 
3168 /**
3169  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3170  * @dsp: pointer to DSP structure
3171  *
3172  * The firmware and DSP state will be logged for future analysis.
3173  */
3174 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3175 {
3176 	struct regmap *regmap = dsp->regmap;
3177 	unsigned int fault[6];
3178 	struct reg_sequence clear[] = {
3179 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3180 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3181 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3182 	};
3183 	int ret;
3184 
3185 	mutex_lock(&dsp->pwr_lock);
3186 
3187 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3188 			  fault);
3189 	if (ret) {
3190 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3191 		goto exit_unlock;
3192 	}
3193 
3194 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3195 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3196 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3197 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3198 
3199 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3200 			  fault);
3201 	if (ret) {
3202 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3203 		goto exit_unlock;
3204 	}
3205 
3206 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3207 
3208 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3209 			       fault, ARRAY_SIZE(fault));
3210 	if (ret) {
3211 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3212 		goto exit_unlock;
3213 	}
3214 
3215 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3216 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3217 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3218 
3219 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3220 	if (ret)
3221 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3222 
3223 exit_unlock:
3224 	mutex_unlock(&dsp->pwr_lock);
3225 }
3226 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3227 
3228 /**
3229  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3230  * @dsp: pointer to DSP structure
3231  *
3232  * This is logged for future analysis.
3233  */
3234 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3235 {
3236 	mutex_lock(&dsp->pwr_lock);
3237 
3238 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3239 
3240 	dsp->ops->stop_watchdog(dsp);
3241 	if (dsp->client_ops->watchdog_expired)
3242 		dsp->client_ops->watchdog_expired(dsp);
3243 
3244 	mutex_unlock(&dsp->pwr_lock);
3245 }
3246 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3247 
3248 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3249 	.validate_version = cs_dsp_validate_version,
3250 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3251 	.region_to_reg = cs_dsp_region_to_reg,
3252 };
3253 
3254 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3255 	{
3256 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3257 		.validate_version = cs_dsp_validate_version,
3258 		.setup_algs = cs_dsp_adsp2_setup_algs,
3259 		.region_to_reg = cs_dsp_region_to_reg,
3260 
3261 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3262 
3263 		.enable_memory = cs_dsp_adsp2_enable_memory,
3264 		.disable_memory = cs_dsp_adsp2_disable_memory,
3265 
3266 		.enable_core = cs_dsp_adsp2_enable_core,
3267 		.disable_core = cs_dsp_adsp2_disable_core,
3268 
3269 		.start_core = cs_dsp_adsp2_start_core,
3270 		.stop_core = cs_dsp_adsp2_stop_core,
3271 
3272 	},
3273 	{
3274 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3275 		.validate_version = cs_dsp_validate_version,
3276 		.setup_algs = cs_dsp_adsp2_setup_algs,
3277 		.region_to_reg = cs_dsp_region_to_reg,
3278 
3279 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3280 
3281 		.enable_memory = cs_dsp_adsp2_enable_memory,
3282 		.disable_memory = cs_dsp_adsp2_disable_memory,
3283 		.lock_memory = cs_dsp_adsp2_lock,
3284 
3285 		.enable_core = cs_dsp_adsp2v2_enable_core,
3286 		.disable_core = cs_dsp_adsp2v2_disable_core,
3287 
3288 		.start_core = cs_dsp_adsp2_start_core,
3289 		.stop_core = cs_dsp_adsp2_stop_core,
3290 	},
3291 	{
3292 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3293 		.validate_version = cs_dsp_validate_version,
3294 		.setup_algs = cs_dsp_adsp2_setup_algs,
3295 		.region_to_reg = cs_dsp_region_to_reg,
3296 
3297 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3298 		.stop_watchdog = cs_dsp_stop_watchdog,
3299 
3300 		.enable_memory = cs_dsp_adsp2_enable_memory,
3301 		.disable_memory = cs_dsp_adsp2_disable_memory,
3302 		.lock_memory = cs_dsp_adsp2_lock,
3303 
3304 		.enable_core = cs_dsp_adsp2v2_enable_core,
3305 		.disable_core = cs_dsp_adsp2v2_disable_core,
3306 
3307 		.start_core = cs_dsp_adsp2_start_core,
3308 		.stop_core = cs_dsp_adsp2_stop_core,
3309 	},
3310 };
3311 
3312 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3313 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3314 	.validate_version = cs_dsp_halo_validate_version,
3315 	.setup_algs = cs_dsp_halo_setup_algs,
3316 	.region_to_reg = cs_dsp_halo_region_to_reg,
3317 
3318 	.show_fw_status = cs_dsp_halo_show_fw_status,
3319 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3320 
3321 	.lock_memory = cs_dsp_halo_configure_mpu,
3322 
3323 	.start_core = cs_dsp_halo_start_core,
3324 	.stop_core = cs_dsp_halo_stop_core,
3325 };
3326 
3327 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3328 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3329 	.validate_version = cs_dsp_halo_validate_version,
3330 	.setup_algs = cs_dsp_halo_setup_algs,
3331 	.region_to_reg = cs_dsp_halo_region_to_reg,
3332 	.show_fw_status = cs_dsp_halo_show_fw_status,
3333 };
3334 
3335 /**
3336  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3337  * @ch: Pointer to the chunk structure
3338  * @nbits: Number of bits to write
3339  * @val: Value to write
3340  *
3341  * This function sequentially writes values into the format required for DSP
3342  * memory, it handles both inserting of the padding bytes and converting to
3343  * big endian. Note that data is only committed to the chunk when a whole DSP
3344  * words worth of data is available.
3345  *
3346  * Return: Zero for success, a negative number on error.
3347  */
3348 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3349 {
3350 	int nwrite, i;
3351 
3352 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3353 
3354 	ch->cache <<= nwrite;
3355 	ch->cache |= val >> (nbits - nwrite);
3356 	ch->cachebits += nwrite;
3357 	nbits -= nwrite;
3358 
3359 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3360 		if (cs_dsp_chunk_end(ch))
3361 			return -ENOSPC;
3362 
3363 		ch->cache &= 0xFFFFFF;
3364 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3365 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3366 
3367 		ch->bytes += sizeof(ch->cache);
3368 		ch->cachebits = 0;
3369 	}
3370 
3371 	if (nbits)
3372 		return cs_dsp_chunk_write(ch, nbits, val);
3373 
3374 	return 0;
3375 }
3376 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3377 
3378 /**
3379  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3380  * @ch: Pointer to the chunk structure
3381  *
3382  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3383  * be written out it is possible that some data will remain in the cache, this
3384  * function will pad that data with zeros upto a whole DSP word and write out.
3385  *
3386  * Return: Zero for success, a negative number on error.
3387  */
3388 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3389 {
3390 	if (!ch->cachebits)
3391 		return 0;
3392 
3393 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3394 }
3395 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3396 
3397 /**
3398  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3399  * @ch: Pointer to the chunk structure
3400  * @nbits: Number of bits to read
3401  *
3402  * This function sequentially reads values from a DSP memory formatted buffer,
3403  * it handles both removing of the padding bytes and converting from big endian.
3404  *
3405  * Return: A negative number is returned on error, otherwise the read value.
3406  */
3407 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3408 {
3409 	int nread, i;
3410 	u32 result;
3411 
3412 	if (!ch->cachebits) {
3413 		if (cs_dsp_chunk_end(ch))
3414 			return -ENOSPC;
3415 
3416 		ch->cache = 0;
3417 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3418 
3419 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3420 			ch->cache |= *ch->data++;
3421 
3422 		ch->bytes += sizeof(ch->cache);
3423 	}
3424 
3425 	nread = min(ch->cachebits, nbits);
3426 	nbits -= nread;
3427 
3428 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3429 	ch->cache <<= nread;
3430 	ch->cachebits -= nread;
3431 
3432 	if (nbits)
3433 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3434 
3435 	return result;
3436 }
3437 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3438 
3439 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3440 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3441 MODULE_LICENSE("GPL v2");
3442