xref: /openbmc/linux/drivers/firmware/cirrus/cs_dsp.c (revision 1e8fc4ff)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #include <linux/firmware/cirrus/cs_dsp.h>
22 #include <linux/firmware/cirrus/wmfw.h>
23 
24 #define cs_dsp_err(_dsp, fmt, ...) \
25 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
26 #define cs_dsp_warn(_dsp, fmt, ...) \
27 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
28 #define cs_dsp_info(_dsp, fmt, ...) \
29 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
30 #define cs_dsp_dbg(_dsp, fmt, ...) \
31 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
32 
33 #define ADSP1_CONTROL_1                   0x00
34 #define ADSP1_CONTROL_2                   0x02
35 #define ADSP1_CONTROL_3                   0x03
36 #define ADSP1_CONTROL_4                   0x04
37 #define ADSP1_CONTROL_5                   0x06
38 #define ADSP1_CONTROL_6                   0x07
39 #define ADSP1_CONTROL_7                   0x08
40 #define ADSP1_CONTROL_8                   0x09
41 #define ADSP1_CONTROL_9                   0x0A
42 #define ADSP1_CONTROL_10                  0x0B
43 #define ADSP1_CONTROL_11                  0x0C
44 #define ADSP1_CONTROL_12                  0x0D
45 #define ADSP1_CONTROL_13                  0x0F
46 #define ADSP1_CONTROL_14                  0x10
47 #define ADSP1_CONTROL_15                  0x11
48 #define ADSP1_CONTROL_16                  0x12
49 #define ADSP1_CONTROL_17                  0x13
50 #define ADSP1_CONTROL_18                  0x14
51 #define ADSP1_CONTROL_19                  0x16
52 #define ADSP1_CONTROL_20                  0x17
53 #define ADSP1_CONTROL_21                  0x18
54 #define ADSP1_CONTROL_22                  0x1A
55 #define ADSP1_CONTROL_23                  0x1B
56 #define ADSP1_CONTROL_24                  0x1C
57 #define ADSP1_CONTROL_25                  0x1E
58 #define ADSP1_CONTROL_26                  0x20
59 #define ADSP1_CONTROL_27                  0x21
60 #define ADSP1_CONTROL_28                  0x22
61 #define ADSP1_CONTROL_29                  0x23
62 #define ADSP1_CONTROL_30                  0x24
63 #define ADSP1_CONTROL_31                  0x26
64 
65 /*
66  * ADSP1 Control 19
67  */
68 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
71 
72 /*
73  * ADSP1 Control 30
74  */
75 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
79 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
82 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
83 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
87 #define ADSP1_START                       0x0001  /* DSP1_START */
88 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
89 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
90 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
91 
92 /*
93  * ADSP1 Control 31
94  */
95 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
97 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
98 
99 #define ADSP2_CONTROL                     0x0
100 #define ADSP2_CLOCKING                    0x1
101 #define ADSP2V2_CLOCKING                  0x2
102 #define ADSP2_STATUS1                     0x4
103 #define ADSP2_WDMA_CONFIG_1               0x30
104 #define ADSP2_WDMA_CONFIG_2               0x31
105 #define ADSP2V2_WDMA_CONFIG_2             0x32
106 #define ADSP2_RDMA_CONFIG_1               0x34
107 
108 #define ADSP2_SCRATCH0                    0x40
109 #define ADSP2_SCRATCH1                    0x41
110 #define ADSP2_SCRATCH2                    0x42
111 #define ADSP2_SCRATCH3                    0x43
112 
113 #define ADSP2V2_SCRATCH0_1                0x40
114 #define ADSP2V2_SCRATCH2_3                0x42
115 
116 /*
117  * ADSP2 Control
118  */
119 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
122 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
123 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
126 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
127 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
131 #define ADSP2_START                       0x0001  /* DSP1_START */
132 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
133 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
134 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
135 
136 /*
137  * ADSP2 clocking
138  */
139 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
141 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
142 
143 /*
144  * ADSP2V2 clocking
145  */
146 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
148 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
149 
150 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
151 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
152 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
153 
154 /*
155  * ADSP2 Status 1
156  */
157 #define ADSP2_RAM_RDY                     0x0001
158 #define ADSP2_RAM_RDY_MASK                0x0001
159 #define ADSP2_RAM_RDY_SHIFT                    0
160 #define ADSP2_RAM_RDY_WIDTH                    1
161 
162 /*
163  * ADSP2 Lock support
164  */
165 #define ADSP2_LOCK_CODE_0                    0x5555
166 #define ADSP2_LOCK_CODE_1                    0xAAAA
167 
168 #define ADSP2_WATCHDOG                       0x0A
169 #define ADSP2_BUS_ERR_ADDR                   0x52
170 #define ADSP2_REGION_LOCK_STATUS             0x64
171 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
172 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
173 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
174 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
175 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
176 #define ADSP2_LOCK_REGION_CTRL               0x7A
177 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
178 
179 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
180 #define ADSP2_ADDR_ERR_MASK                  0x4000
181 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
182 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
183 #define ADSP2_CTRL_ERR_EINT                  0x0001
184 
185 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
186 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
187 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
188 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
189 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
190 
191 #define ADSP2_LOCK_REGION_SHIFT              16
192 
193 /*
194  * Event control messages
195  */
196 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
197 
198 /*
199  * HALO system info
200  */
201 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
202 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
203 
204 /*
205  * HALO core
206  */
207 #define HALO_SCRATCH1                        0x005c0
208 #define HALO_SCRATCH2                        0x005c8
209 #define HALO_SCRATCH3                        0x005d0
210 #define HALO_SCRATCH4                        0x005d8
211 #define HALO_CCM_CORE_CONTROL                0x41000
212 #define HALO_CORE_SOFT_RESET                 0x00010
213 #define HALO_WDT_CONTROL                     0x47000
214 
215 /*
216  * HALO MPU banks
217  */
218 #define HALO_MPU_XMEM_ACCESS_0               0x43000
219 #define HALO_MPU_YMEM_ACCESS_0               0x43004
220 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
221 #define HALO_MPU_XREG_ACCESS_0               0x4300C
222 #define HALO_MPU_YREG_ACCESS_0               0x43014
223 #define HALO_MPU_XMEM_ACCESS_1               0x43018
224 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
225 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
226 #define HALO_MPU_XREG_ACCESS_1               0x43024
227 #define HALO_MPU_YREG_ACCESS_1               0x4302C
228 #define HALO_MPU_XMEM_ACCESS_2               0x43030
229 #define HALO_MPU_YMEM_ACCESS_2               0x43034
230 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
231 #define HALO_MPU_XREG_ACCESS_2               0x4303C
232 #define HALO_MPU_YREG_ACCESS_2               0x43044
233 #define HALO_MPU_XMEM_ACCESS_3               0x43048
234 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
235 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
236 #define HALO_MPU_XREG_ACCESS_3               0x43054
237 #define HALO_MPU_YREG_ACCESS_3               0x4305C
238 #define HALO_MPU_XM_VIO_ADDR                 0x43100
239 #define HALO_MPU_XM_VIO_STATUS               0x43104
240 #define HALO_MPU_YM_VIO_ADDR                 0x43108
241 #define HALO_MPU_YM_VIO_STATUS               0x4310C
242 #define HALO_MPU_PM_VIO_ADDR                 0x43110
243 #define HALO_MPU_PM_VIO_STATUS               0x43114
244 #define HALO_MPU_LOCK_CONFIG                 0x43140
245 
246 /*
247  * HALO_AHBM_WINDOW_DEBUG_1
248  */
249 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
250 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
251 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
252 
253 /*
254  * HALO_CCM_CORE_CONTROL
255  */
256 #define HALO_CORE_RESET                     0x00000200
257 #define HALO_CORE_EN                        0x00000001
258 
259 /*
260  * HALO_CORE_SOFT_RESET
261  */
262 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
263 
264 /*
265  * HALO_WDT_CONTROL
266  */
267 #define HALO_WDT_EN_MASK                    0x00000001
268 
269 /*
270  * HALO_MPU_?M_VIO_STATUS
271  */
272 #define HALO_MPU_VIO_STS_MASK               0x007e0000
273 #define HALO_MPU_VIO_STS_SHIFT                      17
274 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
275 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
276 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
277 
278 struct cs_dsp_ops {
279 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
280 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
281 				    const char * const file,
282 				    unsigned int pos,
283 				    const struct firmware *firmware);
284 	int (*setup_algs)(struct cs_dsp *dsp);
285 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
286 				      unsigned int offset);
287 
288 	void (*show_fw_status)(struct cs_dsp *dsp);
289 	void (*stop_watchdog)(struct cs_dsp *dsp);
290 
291 	int (*enable_memory)(struct cs_dsp *dsp);
292 	void (*disable_memory)(struct cs_dsp *dsp);
293 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
294 
295 	int (*enable_core)(struct cs_dsp *dsp);
296 	void (*disable_core)(struct cs_dsp *dsp);
297 
298 	int (*start_core)(struct cs_dsp *dsp);
299 	void (*stop_core)(struct cs_dsp *dsp);
300 };
301 
302 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
303 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
304 static const struct cs_dsp_ops cs_dsp_halo_ops;
305 static const struct cs_dsp_ops cs_dsp_halo_ao_ops;
306 
307 struct cs_dsp_buf {
308 	struct list_head list;
309 	void *buf;
310 };
311 
312 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
313 					   struct list_head *list)
314 {
315 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
316 
317 	if (buf == NULL)
318 		return NULL;
319 
320 	buf->buf = vmalloc(len);
321 	if (!buf->buf) {
322 		kfree(buf);
323 		return NULL;
324 	}
325 	memcpy(buf->buf, src, len);
326 
327 	if (list)
328 		list_add_tail(&buf->list, list);
329 
330 	return buf;
331 }
332 
333 static void cs_dsp_buf_free(struct list_head *list)
334 {
335 	while (!list_empty(list)) {
336 		struct cs_dsp_buf *buf = list_first_entry(list,
337 							  struct cs_dsp_buf,
338 							  list);
339 		list_del(&buf->list);
340 		vfree(buf->buf);
341 		kfree(buf);
342 	}
343 }
344 
345 /**
346  * cs_dsp_mem_region_name() - Return a name string for a memory type
347  * @type: the memory type to match
348  *
349  * Return: A const string identifying the memory region.
350  */
351 const char *cs_dsp_mem_region_name(unsigned int type)
352 {
353 	switch (type) {
354 	case WMFW_ADSP1_PM:
355 		return "PM";
356 	case WMFW_HALO_PM_PACKED:
357 		return "PM_PACKED";
358 	case WMFW_ADSP1_DM:
359 		return "DM";
360 	case WMFW_ADSP2_XM:
361 		return "XM";
362 	case WMFW_HALO_XM_PACKED:
363 		return "XM_PACKED";
364 	case WMFW_ADSP2_YM:
365 		return "YM";
366 	case WMFW_HALO_YM_PACKED:
367 		return "YM_PACKED";
368 	case WMFW_ADSP1_ZM:
369 		return "ZM";
370 	default:
371 		return NULL;
372 	}
373 }
374 EXPORT_SYMBOL_NS_GPL(cs_dsp_mem_region_name, FW_CS_DSP);
375 
376 #ifdef CONFIG_DEBUG_FS
377 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
378 {
379 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
380 
381 	kfree(dsp->wmfw_file_name);
382 	dsp->wmfw_file_name = tmp;
383 }
384 
385 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
386 {
387 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
388 
389 	kfree(dsp->bin_file_name);
390 	dsp->bin_file_name = tmp;
391 }
392 
393 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
394 {
395 	kfree(dsp->wmfw_file_name);
396 	kfree(dsp->bin_file_name);
397 	dsp->wmfw_file_name = NULL;
398 	dsp->bin_file_name = NULL;
399 }
400 
401 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
402 					char __user *user_buf,
403 					size_t count, loff_t *ppos)
404 {
405 	struct cs_dsp *dsp = file->private_data;
406 	ssize_t ret;
407 
408 	mutex_lock(&dsp->pwr_lock);
409 
410 	if (!dsp->wmfw_file_name || !dsp->booted)
411 		ret = 0;
412 	else
413 		ret = simple_read_from_buffer(user_buf, count, ppos,
414 					      dsp->wmfw_file_name,
415 					      strlen(dsp->wmfw_file_name));
416 
417 	mutex_unlock(&dsp->pwr_lock);
418 	return ret;
419 }
420 
421 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
422 				       char __user *user_buf,
423 				       size_t count, loff_t *ppos)
424 {
425 	struct cs_dsp *dsp = file->private_data;
426 	ssize_t ret;
427 
428 	mutex_lock(&dsp->pwr_lock);
429 
430 	if (!dsp->bin_file_name || !dsp->booted)
431 		ret = 0;
432 	else
433 		ret = simple_read_from_buffer(user_buf, count, ppos,
434 					      dsp->bin_file_name,
435 					      strlen(dsp->bin_file_name));
436 
437 	mutex_unlock(&dsp->pwr_lock);
438 	return ret;
439 }
440 
441 static const struct {
442 	const char *name;
443 	const struct file_operations fops;
444 } cs_dsp_debugfs_fops[] = {
445 	{
446 		.name = "wmfw_file_name",
447 		.fops = {
448 			.open = simple_open,
449 			.read = cs_dsp_debugfs_wmfw_read,
450 		},
451 	},
452 	{
453 		.name = "bin_file_name",
454 		.fops = {
455 			.open = simple_open,
456 			.read = cs_dsp_debugfs_bin_read,
457 		},
458 	},
459 };
460 
461 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
462 				 unsigned int off);
463 
464 static int cs_dsp_debugfs_read_controls_show(struct seq_file *s, void *ignored)
465 {
466 	struct cs_dsp *dsp = s->private;
467 	struct cs_dsp_coeff_ctl *ctl;
468 	unsigned int reg;
469 
470 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
471 		cs_dsp_coeff_base_reg(ctl, &reg, 0);
472 		seq_printf(s, "%22.*s: %#8zx %s:%08x %#8x %s %#8x %#4x %c%c%c%c %s %s\n",
473 			   ctl->subname_len, ctl->subname, ctl->len,
474 			   cs_dsp_mem_region_name(ctl->alg_region.type),
475 			   ctl->offset, reg, ctl->fw_name, ctl->alg_region.alg, ctl->type,
476 			   ctl->flags & WMFW_CTL_FLAG_VOLATILE ? 'V' : '-',
477 			   ctl->flags & WMFW_CTL_FLAG_SYS ? 'S' : '-',
478 			   ctl->flags & WMFW_CTL_FLAG_READABLE ? 'R' : '-',
479 			   ctl->flags & WMFW_CTL_FLAG_WRITEABLE ? 'W' : '-',
480 			   ctl->enabled ? "enabled" : "disabled",
481 			   ctl->set ? "dirty" : "clean");
482 	}
483 
484 	return 0;
485 }
486 DEFINE_SHOW_ATTRIBUTE(cs_dsp_debugfs_read_controls);
487 
488 /**
489  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
490  * @dsp: pointer to DSP structure
491  * @debugfs_root: pointer to debugfs directory in which to create this DSP
492  *                representation
493  */
494 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
495 {
496 	struct dentry *root = NULL;
497 	int i;
498 
499 	root = debugfs_create_dir(dsp->name, debugfs_root);
500 
501 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
502 	debugfs_create_bool("running", 0444, root, &dsp->running);
503 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
504 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
505 
506 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
507 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
508 				    dsp, &cs_dsp_debugfs_fops[i].fops);
509 
510 	debugfs_create_file("controls", 0444, root, dsp,
511 			    &cs_dsp_debugfs_read_controls_fops);
512 
513 	dsp->debugfs_root = root;
514 }
515 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
516 
517 /**
518  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
519  * @dsp: pointer to DSP structure
520  */
521 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
522 {
523 	cs_dsp_debugfs_clear(dsp);
524 	debugfs_remove_recursive(dsp->debugfs_root);
525 	dsp->debugfs_root = ERR_PTR(-ENODEV);
526 }
527 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
528 #else
529 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
530 {
531 }
532 EXPORT_SYMBOL_NS_GPL(cs_dsp_init_debugfs, FW_CS_DSP);
533 
534 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
535 {
536 }
537 EXPORT_SYMBOL_NS_GPL(cs_dsp_cleanup_debugfs, FW_CS_DSP);
538 
539 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
540 						const char *s)
541 {
542 }
543 
544 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
545 					       const char *s)
546 {
547 }
548 
549 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
550 {
551 }
552 #endif
553 
554 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
555 						      int type)
556 {
557 	int i;
558 
559 	for (i = 0; i < dsp->num_mems; i++)
560 		if (dsp->mem[i].type == type)
561 			return &dsp->mem[i];
562 
563 	return NULL;
564 }
565 
566 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
567 					 unsigned int offset)
568 {
569 	switch (mem->type) {
570 	case WMFW_ADSP1_PM:
571 		return mem->base + (offset * 3);
572 	case WMFW_ADSP1_DM:
573 	case WMFW_ADSP2_XM:
574 	case WMFW_ADSP2_YM:
575 	case WMFW_ADSP1_ZM:
576 		return mem->base + (offset * 2);
577 	default:
578 		WARN(1, "Unknown memory region type");
579 		return offset;
580 	}
581 }
582 
583 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
584 					      unsigned int offset)
585 {
586 	switch (mem->type) {
587 	case WMFW_ADSP2_XM:
588 	case WMFW_ADSP2_YM:
589 		return mem->base + (offset * 4);
590 	case WMFW_HALO_XM_PACKED:
591 	case WMFW_HALO_YM_PACKED:
592 		return (mem->base + (offset * 3)) & ~0x3;
593 	case WMFW_HALO_PM_PACKED:
594 		return mem->base + (offset * 5);
595 	default:
596 		WARN(1, "Unknown memory region type");
597 		return offset;
598 	}
599 }
600 
601 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
602 				  int noffs, unsigned int *offs)
603 {
604 	unsigned int i;
605 	int ret;
606 
607 	for (i = 0; i < noffs; ++i) {
608 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
609 		if (ret) {
610 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
611 			return;
612 		}
613 	}
614 }
615 
616 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
617 {
618 	unsigned int offs[] = {
619 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
620 	};
621 
622 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
623 
624 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
625 		   offs[0], offs[1], offs[2], offs[3]);
626 }
627 
628 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
629 {
630 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
631 
632 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
633 
634 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
635 		   offs[0] & 0xFFFF, offs[0] >> 16,
636 		   offs[1] & 0xFFFF, offs[1] >> 16);
637 }
638 
639 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
640 {
641 	unsigned int offs[] = {
642 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
643 	};
644 
645 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
646 
647 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
648 		   offs[0], offs[1], offs[2], offs[3]);
649 }
650 
651 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
652 				 unsigned int off)
653 {
654 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
655 	struct cs_dsp *dsp = ctl->dsp;
656 	const struct cs_dsp_region *mem;
657 
658 	mem = cs_dsp_find_region(dsp, alg_region->type);
659 	if (!mem) {
660 		cs_dsp_err(dsp, "No base for region %x\n",
661 			   alg_region->type);
662 		return -EINVAL;
663 	}
664 
665 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
666 
667 	return 0;
668 }
669 
670 /**
671  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
672  * @ctl: pointer to acked coefficient control
673  * @event_id: the value to write to the given acked control
674  *
675  * Once the value has been written to the control the function shall block
676  * until the running firmware acknowledges the write or timeout is exceeded.
677  *
678  * Must be called with pwr_lock held.
679  *
680  * Return: Zero for success, a negative number on error.
681  */
682 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
683 {
684 	struct cs_dsp *dsp = ctl->dsp;
685 	__be32 val = cpu_to_be32(event_id);
686 	unsigned int reg;
687 	int i, ret;
688 
689 	lockdep_assert_held(&dsp->pwr_lock);
690 
691 	if (!dsp->running)
692 		return -EPERM;
693 
694 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
695 	if (ret)
696 		return ret;
697 
698 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
699 		   event_id, ctl->alg_region.alg,
700 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
701 
702 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
703 	if (ret) {
704 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
705 		return ret;
706 	}
707 
708 	/*
709 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
710 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
711 	 * to ack instantly so we do the first 1ms delay before reading the
712 	 * control to avoid a pointless bus transaction
713 	 */
714 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
715 		switch (i) {
716 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
717 			usleep_range(1000, 2000);
718 			i++;
719 			break;
720 		default:
721 			usleep_range(10000, 20000);
722 			i += 10;
723 			break;
724 		}
725 
726 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
727 		if (ret) {
728 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
729 			return ret;
730 		}
731 
732 		if (val == 0) {
733 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
734 			return 0;
735 		}
736 	}
737 
738 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
739 		    reg, ctl->alg_region.alg,
740 		    cs_dsp_mem_region_name(ctl->alg_region.type),
741 		    ctl->offset);
742 
743 	return -ETIMEDOUT;
744 }
745 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_acked_control, FW_CS_DSP);
746 
747 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
748 				       unsigned int off, const void *buf, size_t len)
749 {
750 	struct cs_dsp *dsp = ctl->dsp;
751 	void *scratch;
752 	int ret;
753 	unsigned int reg;
754 
755 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
756 	if (ret)
757 		return ret;
758 
759 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
760 	if (!scratch)
761 		return -ENOMEM;
762 
763 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
764 			       len);
765 	if (ret) {
766 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
767 			   len, reg, ret);
768 		kfree(scratch);
769 		return ret;
770 	}
771 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
772 
773 	kfree(scratch);
774 
775 	return 0;
776 }
777 
778 /**
779  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
780  * @ctl: pointer to coefficient control
781  * @off: word offset at which data should be written
782  * @buf: the buffer to write to the given control
783  * @len: the length of the buffer in bytes
784  *
785  * Must be called with pwr_lock held.
786  *
787  * Return: < 0 on error, 1 when the control value changed and 0 when it has not.
788  */
789 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
790 			    unsigned int off, const void *buf, size_t len)
791 {
792 	int ret = 0;
793 
794 	if (!ctl)
795 		return -ENOENT;
796 
797 	lockdep_assert_held(&ctl->dsp->pwr_lock);
798 
799 	if (ctl->flags && !(ctl->flags & WMFW_CTL_FLAG_WRITEABLE))
800 		return -EPERM;
801 
802 	if (len + off * sizeof(u32) > ctl->len)
803 		return -EINVAL;
804 
805 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
806 		ret = -EPERM;
807 	} else if (buf != ctl->cache) {
808 		if (memcmp(ctl->cache + off * sizeof(u32), buf, len))
809 			memcpy(ctl->cache + off * sizeof(u32), buf, len);
810 		else
811 			return 0;
812 	}
813 
814 	ctl->set = 1;
815 	if (ctl->enabled && ctl->dsp->running)
816 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
817 
818 	if (ret < 0)
819 		return ret;
820 
821 	return 1;
822 }
823 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_write_ctrl, FW_CS_DSP);
824 
825 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
826 				      unsigned int off, void *buf, size_t len)
827 {
828 	struct cs_dsp *dsp = ctl->dsp;
829 	void *scratch;
830 	int ret;
831 	unsigned int reg;
832 
833 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
834 	if (ret)
835 		return ret;
836 
837 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
838 	if (!scratch)
839 		return -ENOMEM;
840 
841 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
842 	if (ret) {
843 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
844 			   len, reg, ret);
845 		kfree(scratch);
846 		return ret;
847 	}
848 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
849 
850 	memcpy(buf, scratch, len);
851 	kfree(scratch);
852 
853 	return 0;
854 }
855 
856 /**
857  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
858  * @ctl: pointer to coefficient control
859  * @off: word offset at which data should be read
860  * @buf: the buffer to store to the given control
861  * @len: the length of the buffer in bytes
862  *
863  * Must be called with pwr_lock held.
864  *
865  * Return: Zero for success, a negative number on error.
866  */
867 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
868 			   unsigned int off, void *buf, size_t len)
869 {
870 	int ret = 0;
871 
872 	if (!ctl)
873 		return -ENOENT;
874 
875 	lockdep_assert_held(&ctl->dsp->pwr_lock);
876 
877 	if (len + off * sizeof(u32) > ctl->len)
878 		return -EINVAL;
879 
880 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
881 		if (ctl->enabled && ctl->dsp->running)
882 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
883 		else
884 			return -EPERM;
885 	} else {
886 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
887 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
888 
889 		if (buf != ctl->cache)
890 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
891 	}
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_NS_GPL(cs_dsp_coeff_read_ctrl, FW_CS_DSP);
896 
897 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
898 {
899 	struct cs_dsp_coeff_ctl *ctl;
900 	int ret;
901 
902 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
903 		if (!ctl->enabled || ctl->set)
904 			continue;
905 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
906 			continue;
907 
908 		/*
909 		 * For readable controls populate the cache from the DSP memory.
910 		 * For non-readable controls the cache was zero-filled when
911 		 * created so we don't need to do anything.
912 		 */
913 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
914 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
915 			if (ret < 0)
916 				return ret;
917 		}
918 	}
919 
920 	return 0;
921 }
922 
923 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
924 {
925 	struct cs_dsp_coeff_ctl *ctl;
926 	int ret;
927 
928 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
929 		if (!ctl->enabled)
930 			continue;
931 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
932 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
933 							  ctl->len);
934 			if (ret < 0)
935 				return ret;
936 		}
937 	}
938 
939 	return 0;
940 }
941 
942 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
943 					 unsigned int event)
944 {
945 	struct cs_dsp_coeff_ctl *ctl;
946 	int ret;
947 
948 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
949 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
950 			continue;
951 
952 		if (!ctl->enabled)
953 			continue;
954 
955 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
956 		if (ret)
957 			cs_dsp_warn(dsp,
958 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
959 				    event, ctl->alg_region.alg, ret);
960 	}
961 }
962 
963 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
964 {
965 	kfree(ctl->cache);
966 	kfree(ctl->subname);
967 	kfree(ctl);
968 }
969 
970 static int cs_dsp_create_control(struct cs_dsp *dsp,
971 				 const struct cs_dsp_alg_region *alg_region,
972 				 unsigned int offset, unsigned int len,
973 				 const char *subname, unsigned int subname_len,
974 				 unsigned int flags, unsigned int type)
975 {
976 	struct cs_dsp_coeff_ctl *ctl;
977 	int ret;
978 
979 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
980 		if (ctl->fw_name == dsp->fw_name &&
981 		    ctl->alg_region.alg == alg_region->alg &&
982 		    ctl->alg_region.type == alg_region->type) {
983 			if ((!subname && !ctl->subname) ||
984 			    (subname && (ctl->subname_len == subname_len) &&
985 			     !strncmp(ctl->subname, subname, ctl->subname_len))) {
986 				if (!ctl->enabled)
987 					ctl->enabled = 1;
988 				return 0;
989 			}
990 		}
991 	}
992 
993 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
994 	if (!ctl)
995 		return -ENOMEM;
996 
997 	ctl->fw_name = dsp->fw_name;
998 	ctl->alg_region = *alg_region;
999 	if (subname && dsp->fw_ver >= 2) {
1000 		ctl->subname_len = subname_len;
1001 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
1002 		if (!ctl->subname) {
1003 			ret = -ENOMEM;
1004 			goto err_ctl;
1005 		}
1006 	}
1007 	ctl->enabled = 1;
1008 	ctl->set = 0;
1009 	ctl->dsp = dsp;
1010 
1011 	ctl->flags = flags;
1012 	ctl->type = type;
1013 	ctl->offset = offset;
1014 	ctl->len = len;
1015 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
1016 	if (!ctl->cache) {
1017 		ret = -ENOMEM;
1018 		goto err_ctl_subname;
1019 	}
1020 
1021 	list_add(&ctl->list, &dsp->ctl_list);
1022 
1023 	if (dsp->client_ops->control_add) {
1024 		ret = dsp->client_ops->control_add(ctl);
1025 		if (ret)
1026 			goto err_list_del;
1027 	}
1028 
1029 	return 0;
1030 
1031 err_list_del:
1032 	list_del(&ctl->list);
1033 	kfree(ctl->cache);
1034 err_ctl_subname:
1035 	kfree(ctl->subname);
1036 err_ctl:
1037 	kfree(ctl);
1038 
1039 	return ret;
1040 }
1041 
1042 struct cs_dsp_coeff_parsed_alg {
1043 	int id;
1044 	const u8 *name;
1045 	int name_len;
1046 	int ncoeff;
1047 };
1048 
1049 struct cs_dsp_coeff_parsed_coeff {
1050 	int offset;
1051 	int mem_type;
1052 	const u8 *name;
1053 	int name_len;
1054 	unsigned int ctl_type;
1055 	int flags;
1056 	int len;
1057 };
1058 
1059 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, unsigned int avail,
1060 				     const u8 **str)
1061 {
1062 	int length, total_field_len;
1063 
1064 	/* String fields are at least one __le32 */
1065 	if (sizeof(__le32) > avail) {
1066 		*pos = NULL;
1067 		return 0;
1068 	}
1069 
1070 	switch (bytes) {
1071 	case 1:
1072 		length = **pos;
1073 		break;
1074 	case 2:
1075 		length = le16_to_cpu(*((__le16 *)*pos));
1076 		break;
1077 	default:
1078 		return 0;
1079 	}
1080 
1081 	total_field_len = ((length + bytes) + 3) & ~0x03;
1082 	if ((unsigned int)total_field_len > avail) {
1083 		*pos = NULL;
1084 		return 0;
1085 	}
1086 
1087 	if (str)
1088 		*str = *pos + bytes;
1089 
1090 	*pos += total_field_len;
1091 
1092 	return length;
1093 }
1094 
1095 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1096 {
1097 	int val = 0;
1098 
1099 	switch (bytes) {
1100 	case 2:
1101 		val = le16_to_cpu(*((__le16 *)*pos));
1102 		break;
1103 	case 4:
1104 		val = le32_to_cpu(*((__le32 *)*pos));
1105 		break;
1106 	default:
1107 		break;
1108 	}
1109 
1110 	*pos += bytes;
1111 
1112 	return val;
1113 }
1114 
1115 static int cs_dsp_coeff_parse_alg(struct cs_dsp *dsp,
1116 				  const struct wmfw_region *region,
1117 				  struct cs_dsp_coeff_parsed_alg *blk)
1118 {
1119 	const struct wmfw_adsp_alg_data *raw;
1120 	unsigned int data_len = le32_to_cpu(region->len);
1121 	unsigned int pos;
1122 	const u8 *tmp;
1123 
1124 	raw = (const struct wmfw_adsp_alg_data *)region->data;
1125 
1126 	switch (dsp->fw_ver) {
1127 	case 0:
1128 	case 1:
1129 		if (sizeof(*raw) > data_len)
1130 			return -EOVERFLOW;
1131 
1132 		blk->id = le32_to_cpu(raw->id);
1133 		blk->name = raw->name;
1134 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1135 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1136 
1137 		pos = sizeof(*raw);
1138 		break;
1139 	default:
1140 		if (sizeof(raw->id) > data_len)
1141 			return -EOVERFLOW;
1142 
1143 		tmp = region->data;
1144 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), &tmp);
1145 		pos = tmp - region->data;
1146 
1147 		tmp = &region->data[pos];
1148 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1149 							  &blk->name);
1150 		if (!tmp)
1151 			return -EOVERFLOW;
1152 
1153 		pos = tmp - region->data;
1154 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1155 		if (!tmp)
1156 			return -EOVERFLOW;
1157 
1158 		pos = tmp - region->data;
1159 		if (sizeof(raw->ncoeff) > (data_len - pos))
1160 			return -EOVERFLOW;
1161 
1162 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), &tmp);
1163 		pos += sizeof(raw->ncoeff);
1164 		break;
1165 	}
1166 
1167 	if ((int)blk->ncoeff < 0)
1168 		return -EOVERFLOW;
1169 
1170 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1171 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1172 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1173 
1174 	return pos;
1175 }
1176 
1177 static int cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp,
1178 				    const struct wmfw_region *region,
1179 				    unsigned int pos,
1180 				    struct cs_dsp_coeff_parsed_coeff *blk)
1181 {
1182 	const struct wmfw_adsp_coeff_data *raw;
1183 	unsigned int data_len = le32_to_cpu(region->len);
1184 	unsigned int blk_len, blk_end_pos;
1185 	const u8 *tmp;
1186 
1187 	raw = (const struct wmfw_adsp_coeff_data *)&region->data[pos];
1188 	if (sizeof(raw->hdr) > (data_len - pos))
1189 		return -EOVERFLOW;
1190 
1191 	blk_len = le32_to_cpu(raw->hdr.size);
1192 	if (blk_len > S32_MAX)
1193 		return -EOVERFLOW;
1194 
1195 	if (blk_len > (data_len - pos - sizeof(raw->hdr)))
1196 		return -EOVERFLOW;
1197 
1198 	blk_end_pos = pos + sizeof(raw->hdr) + blk_len;
1199 
1200 	blk->offset = le16_to_cpu(raw->hdr.offset);
1201 	blk->mem_type = le16_to_cpu(raw->hdr.type);
1202 
1203 	switch (dsp->fw_ver) {
1204 	case 0:
1205 	case 1:
1206 		if (sizeof(*raw) > (data_len - pos))
1207 			return -EOVERFLOW;
1208 
1209 		blk->name = raw->name;
1210 		blk->name_len = strnlen(raw->name, ARRAY_SIZE(raw->name));
1211 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1212 		blk->flags = le16_to_cpu(raw->flags);
1213 		blk->len = le32_to_cpu(raw->len);
1214 		break;
1215 	default:
1216 		pos += sizeof(raw->hdr);
1217 		tmp = &region->data[pos];
1218 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos,
1219 							  &blk->name);
1220 		if (!tmp)
1221 			return -EOVERFLOW;
1222 
1223 		pos = tmp - region->data;
1224 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, data_len - pos, NULL);
1225 		if (!tmp)
1226 			return -EOVERFLOW;
1227 
1228 		pos = tmp - region->data;
1229 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, data_len - pos, NULL);
1230 		if (!tmp)
1231 			return -EOVERFLOW;
1232 
1233 		pos = tmp - region->data;
1234 		if (sizeof(raw->ctl_type) + sizeof(raw->flags) + sizeof(raw->len) >
1235 		    (data_len - pos))
1236 			return -EOVERFLOW;
1237 
1238 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1239 		pos += sizeof(raw->ctl_type);
1240 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1241 		pos += sizeof(raw->flags);
1242 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1243 		break;
1244 	}
1245 
1246 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1247 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1248 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1249 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1250 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1251 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1252 
1253 	return blk_end_pos;
1254 }
1255 
1256 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1257 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1258 				    unsigned int f_required,
1259 				    unsigned int f_illegal)
1260 {
1261 	if ((coeff_blk->flags & f_illegal) ||
1262 	    ((coeff_blk->flags & f_required) != f_required)) {
1263 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1264 			   coeff_blk->flags, coeff_blk->ctl_type);
1265 		return -EINVAL;
1266 	}
1267 
1268 	return 0;
1269 }
1270 
1271 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1272 			      const struct wmfw_region *region)
1273 {
1274 	struct cs_dsp_alg_region alg_region = {};
1275 	struct cs_dsp_coeff_parsed_alg alg_blk;
1276 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1277 	int i, pos, ret;
1278 
1279 	pos = cs_dsp_coeff_parse_alg(dsp, region, &alg_blk);
1280 	if (pos < 0)
1281 		return pos;
1282 
1283 	for (i = 0; i < alg_blk.ncoeff; i++) {
1284 		pos = cs_dsp_coeff_parse_coeff(dsp, region, pos, &coeff_blk);
1285 		if (pos < 0)
1286 			return pos;
1287 
1288 		switch (coeff_blk.ctl_type) {
1289 		case WMFW_CTL_TYPE_BYTES:
1290 			break;
1291 		case WMFW_CTL_TYPE_ACKED:
1292 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1293 				continue;	/* ignore */
1294 
1295 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1296 						       WMFW_CTL_FLAG_VOLATILE |
1297 						       WMFW_CTL_FLAG_WRITEABLE |
1298 						       WMFW_CTL_FLAG_READABLE,
1299 						       0);
1300 			if (ret)
1301 				return -EINVAL;
1302 			break;
1303 		case WMFW_CTL_TYPE_HOSTEVENT:
1304 		case WMFW_CTL_TYPE_FWEVENT:
1305 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1306 						       WMFW_CTL_FLAG_SYS |
1307 						       WMFW_CTL_FLAG_VOLATILE |
1308 						       WMFW_CTL_FLAG_WRITEABLE |
1309 						       WMFW_CTL_FLAG_READABLE,
1310 						       0);
1311 			if (ret)
1312 				return -EINVAL;
1313 			break;
1314 		case WMFW_CTL_TYPE_HOST_BUFFER:
1315 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1316 						       WMFW_CTL_FLAG_SYS |
1317 						       WMFW_CTL_FLAG_VOLATILE |
1318 						       WMFW_CTL_FLAG_READABLE,
1319 						       0);
1320 			if (ret)
1321 				return -EINVAL;
1322 			break;
1323 		default:
1324 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1325 				   coeff_blk.ctl_type);
1326 			return -EINVAL;
1327 		}
1328 
1329 		alg_region.type = coeff_blk.mem_type;
1330 		alg_region.alg = alg_blk.id;
1331 
1332 		ret = cs_dsp_create_control(dsp, &alg_region,
1333 					    coeff_blk.offset,
1334 					    coeff_blk.len,
1335 					    coeff_blk.name,
1336 					    coeff_blk.name_len,
1337 					    coeff_blk.flags,
1338 					    coeff_blk.ctl_type);
1339 		if (ret < 0)
1340 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1341 				   coeff_blk.name_len, coeff_blk.name, ret);
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1348 					     const char * const file,
1349 					     unsigned int pos,
1350 					     const struct firmware *firmware)
1351 {
1352 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1353 
1354 	adsp1_sizes = (void *)&firmware->data[pos];
1355 	if (sizeof(*adsp1_sizes) > firmware->size - pos) {
1356 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1357 		return 0;
1358 	}
1359 
1360 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1361 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1362 		   le32_to_cpu(adsp1_sizes->zm));
1363 
1364 	return pos + sizeof(*adsp1_sizes);
1365 }
1366 
1367 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1368 					     const char * const file,
1369 					     unsigned int pos,
1370 					     const struct firmware *firmware)
1371 {
1372 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1373 
1374 	adsp2_sizes = (void *)&firmware->data[pos];
1375 	if (sizeof(*adsp2_sizes) > firmware->size - pos) {
1376 		cs_dsp_err(dsp, "%s: file truncated\n", file);
1377 		return 0;
1378 	}
1379 
1380 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1381 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1382 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1383 
1384 	return pos + sizeof(*adsp2_sizes);
1385 }
1386 
1387 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1388 {
1389 	switch (version) {
1390 	case 0:
1391 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1392 		return true;
1393 	case 1:
1394 	case 2:
1395 		return true;
1396 	default:
1397 		return false;
1398 	}
1399 }
1400 
1401 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1402 {
1403 	switch (version) {
1404 	case 3:
1405 		return true;
1406 	default:
1407 		return false;
1408 	}
1409 }
1410 
1411 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1412 		       const char *file)
1413 {
1414 	LIST_HEAD(buf_list);
1415 	struct regmap *regmap = dsp->regmap;
1416 	unsigned int pos = 0;
1417 	const struct wmfw_header *header;
1418 	const struct wmfw_footer *footer;
1419 	const struct wmfw_region *region;
1420 	const struct cs_dsp_region *mem;
1421 	const char *region_name;
1422 	char *text = NULL;
1423 	struct cs_dsp_buf *buf;
1424 	unsigned int reg;
1425 	int regions = 0;
1426 	int ret, offset, type;
1427 
1428 	if (!firmware)
1429 		return 0;
1430 
1431 	ret = -EINVAL;
1432 
1433 	if (sizeof(*header) >= firmware->size) {
1434 		ret = -EOVERFLOW;
1435 		goto out_fw;
1436 	}
1437 
1438 	header = (void *)&firmware->data[0];
1439 
1440 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1441 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1442 		goto out_fw;
1443 	}
1444 
1445 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1446 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1447 			   file, header->ver);
1448 		goto out_fw;
1449 	}
1450 
1451 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1452 	dsp->fw_ver = header->ver;
1453 
1454 	if (header->core != dsp->type) {
1455 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1456 			   file, header->core, dsp->type);
1457 		goto out_fw;
1458 	}
1459 
1460 	pos = sizeof(*header);
1461 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1462 	if ((pos == 0) || (sizeof(*footer) > firmware->size - pos)) {
1463 		ret = -EOVERFLOW;
1464 		goto out_fw;
1465 	}
1466 
1467 	footer = (void *)&firmware->data[pos];
1468 	pos += sizeof(*footer);
1469 
1470 	if (le32_to_cpu(header->len) != pos) {
1471 		ret = -EOVERFLOW;
1472 		goto out_fw;
1473 	}
1474 
1475 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1476 		   le64_to_cpu(footer->timestamp));
1477 
1478 	while (pos < firmware->size) {
1479 		/* Is there enough data for a complete block header? */
1480 		if (sizeof(*region) > firmware->size - pos) {
1481 			ret = -EOVERFLOW;
1482 			goto out_fw;
1483 		}
1484 
1485 		region = (void *)&(firmware->data[pos]);
1486 
1487 		if (le32_to_cpu(region->len) > firmware->size - pos - sizeof(*region)) {
1488 			ret = -EOVERFLOW;
1489 			goto out_fw;
1490 		}
1491 
1492 		region_name = "Unknown";
1493 		reg = 0;
1494 		text = NULL;
1495 		offset = le32_to_cpu(region->offset) & 0xffffff;
1496 		type = be32_to_cpu(region->type) & 0xff;
1497 
1498 		switch (type) {
1499 		case WMFW_NAME_TEXT:
1500 			region_name = "Firmware name";
1501 			text = kzalloc(le32_to_cpu(region->len) + 1,
1502 				       GFP_KERNEL);
1503 			break;
1504 		case WMFW_ALGORITHM_DATA:
1505 			region_name = "Algorithm";
1506 			ret = cs_dsp_parse_coeff(dsp, region);
1507 			if (ret != 0)
1508 				goto out_fw;
1509 			break;
1510 		case WMFW_INFO_TEXT:
1511 			region_name = "Information";
1512 			text = kzalloc(le32_to_cpu(region->len) + 1,
1513 				       GFP_KERNEL);
1514 			break;
1515 		case WMFW_ABSOLUTE:
1516 			region_name = "Absolute";
1517 			reg = offset;
1518 			break;
1519 		case WMFW_ADSP1_PM:
1520 		case WMFW_ADSP1_DM:
1521 		case WMFW_ADSP2_XM:
1522 		case WMFW_ADSP2_YM:
1523 		case WMFW_ADSP1_ZM:
1524 		case WMFW_HALO_PM_PACKED:
1525 		case WMFW_HALO_XM_PACKED:
1526 		case WMFW_HALO_YM_PACKED:
1527 			mem = cs_dsp_find_region(dsp, type);
1528 			if (!mem) {
1529 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1530 				ret = -EINVAL;
1531 				goto out_fw;
1532 			}
1533 
1534 			region_name = cs_dsp_mem_region_name(type);
1535 			reg = dsp->ops->region_to_reg(mem, offset);
1536 			break;
1537 		default:
1538 			cs_dsp_warn(dsp,
1539 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1540 				    file, regions, type, pos, pos);
1541 			break;
1542 		}
1543 
1544 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1545 			   regions, le32_to_cpu(region->len), offset,
1546 			   region_name);
1547 
1548 		if (text) {
1549 			memcpy(text, region->data, le32_to_cpu(region->len));
1550 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1551 			kfree(text);
1552 			text = NULL;
1553 		}
1554 
1555 		if (reg) {
1556 			buf = cs_dsp_buf_alloc(region->data,
1557 					       le32_to_cpu(region->len),
1558 					       &buf_list);
1559 			if (!buf) {
1560 				cs_dsp_err(dsp, "Out of memory\n");
1561 				ret = -ENOMEM;
1562 				goto out_fw;
1563 			}
1564 
1565 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1566 						     le32_to_cpu(region->len));
1567 			if (ret != 0) {
1568 				cs_dsp_err(dsp,
1569 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1570 					   file, regions,
1571 					   le32_to_cpu(region->len), offset,
1572 					   region_name, ret);
1573 				goto out_fw;
1574 			}
1575 		}
1576 
1577 		pos += le32_to_cpu(region->len) + sizeof(*region);
1578 		regions++;
1579 	}
1580 
1581 	ret = regmap_async_complete(regmap);
1582 	if (ret != 0) {
1583 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1584 		goto out_fw;
1585 	}
1586 
1587 	if (pos > firmware->size)
1588 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1589 			    file, regions, pos - firmware->size);
1590 
1591 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1592 
1593 out_fw:
1594 	regmap_async_complete(regmap);
1595 	cs_dsp_buf_free(&buf_list);
1596 	kfree(text);
1597 
1598 	if (ret == -EOVERFLOW)
1599 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
1600 
1601 	return ret;
1602 }
1603 
1604 /**
1605  * cs_dsp_get_ctl() - Finds a matching coefficient control
1606  * @dsp: pointer to DSP structure
1607  * @name: pointer to string to match with a control's subname
1608  * @type: the algorithm type to match
1609  * @alg: the algorithm id to match
1610  *
1611  * Find cs_dsp_coeff_ctl with input name as its subname
1612  *
1613  * Return: pointer to the control on success, NULL if not found
1614  */
1615 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1616 					unsigned int alg)
1617 {
1618 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1619 
1620 	lockdep_assert_held(&dsp->pwr_lock);
1621 
1622 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1623 		if (!pos->subname)
1624 			continue;
1625 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1626 		    pos->fw_name == dsp->fw_name &&
1627 		    pos->alg_region.alg == alg &&
1628 		    pos->alg_region.type == type) {
1629 			rslt = pos;
1630 			break;
1631 		}
1632 	}
1633 
1634 	return rslt;
1635 }
1636 EXPORT_SYMBOL_NS_GPL(cs_dsp_get_ctl, FW_CS_DSP);
1637 
1638 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1639 				  const struct cs_dsp_alg_region *alg_region)
1640 {
1641 	struct cs_dsp_coeff_ctl *ctl;
1642 
1643 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1644 		if (ctl->fw_name == dsp->fw_name &&
1645 		    alg_region->alg == ctl->alg_region.alg &&
1646 		    alg_region->type == ctl->alg_region.type) {
1647 			ctl->alg_region.base = alg_region->base;
1648 		}
1649 	}
1650 }
1651 
1652 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1653 			      const struct cs_dsp_region *mem,
1654 			      unsigned int pos, unsigned int len)
1655 {
1656 	void *alg;
1657 	unsigned int reg;
1658 	int ret;
1659 	__be32 val;
1660 
1661 	if (n_algs == 0) {
1662 		cs_dsp_err(dsp, "No algorithms\n");
1663 		return ERR_PTR(-EINVAL);
1664 	}
1665 
1666 	if (n_algs > 1024) {
1667 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1668 		return ERR_PTR(-EINVAL);
1669 	}
1670 
1671 	/* Read the terminator first to validate the length */
1672 	reg = dsp->ops->region_to_reg(mem, pos + len);
1673 
1674 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1675 	if (ret != 0) {
1676 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1677 			   ret);
1678 		return ERR_PTR(ret);
1679 	}
1680 
1681 	if (be32_to_cpu(val) != 0xbedead)
1682 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1683 			    reg, be32_to_cpu(val));
1684 
1685 	/* Convert length from DSP words to bytes */
1686 	len *= sizeof(u32);
1687 
1688 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1689 	if (!alg)
1690 		return ERR_PTR(-ENOMEM);
1691 
1692 	reg = dsp->ops->region_to_reg(mem, pos);
1693 
1694 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1695 	if (ret != 0) {
1696 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1697 		kfree(alg);
1698 		return ERR_PTR(ret);
1699 	}
1700 
1701 	return alg;
1702 }
1703 
1704 /**
1705  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1706  * @dsp: pointer to DSP structure
1707  * @type: the algorithm type to match
1708  * @id: the algorithm id to match
1709  *
1710  * Return: Pointer to matching algorithm region, or NULL if not found.
1711  */
1712 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1713 						 int type, unsigned int id)
1714 {
1715 	struct cs_dsp_alg_region *alg_region;
1716 
1717 	lockdep_assert_held(&dsp->pwr_lock);
1718 
1719 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1720 		if (id == alg_region->alg && type == alg_region->type)
1721 			return alg_region;
1722 	}
1723 
1724 	return NULL;
1725 }
1726 EXPORT_SYMBOL_NS_GPL(cs_dsp_find_alg_region, FW_CS_DSP);
1727 
1728 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1729 						      int type, __be32 id,
1730 						      __be32 ver, __be32 base)
1731 {
1732 	struct cs_dsp_alg_region *alg_region;
1733 
1734 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1735 	if (!alg_region)
1736 		return ERR_PTR(-ENOMEM);
1737 
1738 	alg_region->type = type;
1739 	alg_region->alg = be32_to_cpu(id);
1740 	alg_region->ver = be32_to_cpu(ver);
1741 	alg_region->base = be32_to_cpu(base);
1742 
1743 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1744 
1745 	if (dsp->fw_ver > 0)
1746 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1747 
1748 	return alg_region;
1749 }
1750 
1751 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1752 {
1753 	struct cs_dsp_alg_region *alg_region;
1754 
1755 	while (!list_empty(&dsp->alg_regions)) {
1756 		alg_region = list_first_entry(&dsp->alg_regions,
1757 					      struct cs_dsp_alg_region,
1758 					      list);
1759 		list_del(&alg_region->list);
1760 		kfree(alg_region);
1761 	}
1762 }
1763 
1764 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1765 					struct wmfw_id_hdr *fw, int nalgs)
1766 {
1767 	dsp->fw_id = be32_to_cpu(fw->id);
1768 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1769 
1770 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1771 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1772 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1773 		    nalgs);
1774 }
1775 
1776 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1777 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1778 {
1779 	dsp->fw_id = be32_to_cpu(fw->id);
1780 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1781 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1782 
1783 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1784 		    dsp->fw_id, dsp->fw_vendor_id,
1785 		    (dsp->fw_id_version & 0xff0000) >> 16,
1786 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1787 		    nalgs);
1788 }
1789 
1790 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1791 				 int nregions, const int *type, __be32 *base)
1792 {
1793 	struct cs_dsp_alg_region *alg_region;
1794 	int i;
1795 
1796 	for (i = 0; i < nregions; i++) {
1797 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1798 		if (IS_ERR(alg_region))
1799 			return PTR_ERR(alg_region);
1800 	}
1801 
1802 	return 0;
1803 }
1804 
1805 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1806 {
1807 	struct wmfw_adsp1_id_hdr adsp1_id;
1808 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1809 	struct cs_dsp_alg_region *alg_region;
1810 	const struct cs_dsp_region *mem;
1811 	unsigned int pos, len;
1812 	size_t n_algs;
1813 	int i, ret;
1814 
1815 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1816 	if (WARN_ON(!mem))
1817 		return -EINVAL;
1818 
1819 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1820 			      sizeof(adsp1_id));
1821 	if (ret != 0) {
1822 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1823 			   ret);
1824 		return ret;
1825 	}
1826 
1827 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1828 
1829 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1830 
1831 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1832 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1833 					  adsp1_id.zm);
1834 	if (IS_ERR(alg_region))
1835 		return PTR_ERR(alg_region);
1836 
1837 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1838 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1839 					  adsp1_id.dm);
1840 	if (IS_ERR(alg_region))
1841 		return PTR_ERR(alg_region);
1842 
1843 	/* Calculate offset and length in DSP words */
1844 	pos = sizeof(adsp1_id) / sizeof(u32);
1845 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1846 
1847 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1848 	if (IS_ERR(adsp1_alg))
1849 		return PTR_ERR(adsp1_alg);
1850 
1851 	for (i = 0; i < n_algs; i++) {
1852 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1853 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1854 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1855 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1856 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1857 			    be32_to_cpu(adsp1_alg[i].dm),
1858 			    be32_to_cpu(adsp1_alg[i].zm));
1859 
1860 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1861 						  adsp1_alg[i].alg.id,
1862 						  adsp1_alg[i].alg.ver,
1863 						  adsp1_alg[i].dm);
1864 		if (IS_ERR(alg_region)) {
1865 			ret = PTR_ERR(alg_region);
1866 			goto out;
1867 		}
1868 		if (dsp->fw_ver == 0) {
1869 			if (i + 1 < n_algs) {
1870 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1871 				len -= be32_to_cpu(adsp1_alg[i].dm);
1872 				len *= 4;
1873 				cs_dsp_create_control(dsp, alg_region, 0,
1874 						      len, NULL, 0, 0,
1875 						      WMFW_CTL_TYPE_BYTES);
1876 			} else {
1877 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1878 					    be32_to_cpu(adsp1_alg[i].alg.id));
1879 			}
1880 		}
1881 
1882 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1883 						  adsp1_alg[i].alg.id,
1884 						  adsp1_alg[i].alg.ver,
1885 						  adsp1_alg[i].zm);
1886 		if (IS_ERR(alg_region)) {
1887 			ret = PTR_ERR(alg_region);
1888 			goto out;
1889 		}
1890 		if (dsp->fw_ver == 0) {
1891 			if (i + 1 < n_algs) {
1892 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1893 				len -= be32_to_cpu(adsp1_alg[i].zm);
1894 				len *= 4;
1895 				cs_dsp_create_control(dsp, alg_region, 0,
1896 						      len, NULL, 0, 0,
1897 						      WMFW_CTL_TYPE_BYTES);
1898 			} else {
1899 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1900 					    be32_to_cpu(adsp1_alg[i].alg.id));
1901 			}
1902 		}
1903 	}
1904 
1905 out:
1906 	kfree(adsp1_alg);
1907 	return ret;
1908 }
1909 
1910 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1911 {
1912 	struct wmfw_adsp2_id_hdr adsp2_id;
1913 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1914 	struct cs_dsp_alg_region *alg_region;
1915 	const struct cs_dsp_region *mem;
1916 	unsigned int pos, len;
1917 	size_t n_algs;
1918 	int i, ret;
1919 
1920 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1921 	if (WARN_ON(!mem))
1922 		return -EINVAL;
1923 
1924 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1925 			      sizeof(adsp2_id));
1926 	if (ret != 0) {
1927 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1928 			   ret);
1929 		return ret;
1930 	}
1931 
1932 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1933 
1934 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1935 
1936 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1937 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1938 					  adsp2_id.xm);
1939 	if (IS_ERR(alg_region))
1940 		return PTR_ERR(alg_region);
1941 
1942 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1943 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1944 					  adsp2_id.ym);
1945 	if (IS_ERR(alg_region))
1946 		return PTR_ERR(alg_region);
1947 
1948 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1949 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1950 					  adsp2_id.zm);
1951 	if (IS_ERR(alg_region))
1952 		return PTR_ERR(alg_region);
1953 
1954 	/* Calculate offset and length in DSP words */
1955 	pos = sizeof(adsp2_id) / sizeof(u32);
1956 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1957 
1958 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1959 	if (IS_ERR(adsp2_alg))
1960 		return PTR_ERR(adsp2_alg);
1961 
1962 	for (i = 0; i < n_algs; i++) {
1963 		cs_dsp_dbg(dsp,
1964 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1965 			   i, be32_to_cpu(adsp2_alg[i].alg.id),
1966 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1967 			   (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1968 			   be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1969 			   be32_to_cpu(adsp2_alg[i].xm),
1970 			   be32_to_cpu(adsp2_alg[i].ym),
1971 			   be32_to_cpu(adsp2_alg[i].zm));
1972 
1973 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1974 						  adsp2_alg[i].alg.id,
1975 						  adsp2_alg[i].alg.ver,
1976 						  adsp2_alg[i].xm);
1977 		if (IS_ERR(alg_region)) {
1978 			ret = PTR_ERR(alg_region);
1979 			goto out;
1980 		}
1981 		if (dsp->fw_ver == 0) {
1982 			if (i + 1 < n_algs) {
1983 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1984 				len -= be32_to_cpu(adsp2_alg[i].xm);
1985 				len *= 4;
1986 				cs_dsp_create_control(dsp, alg_region, 0,
1987 						      len, NULL, 0, 0,
1988 						      WMFW_CTL_TYPE_BYTES);
1989 			} else {
1990 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1991 					    be32_to_cpu(adsp2_alg[i].alg.id));
1992 			}
1993 		}
1994 
1995 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1996 						  adsp2_alg[i].alg.id,
1997 						  adsp2_alg[i].alg.ver,
1998 						  adsp2_alg[i].ym);
1999 		if (IS_ERR(alg_region)) {
2000 			ret = PTR_ERR(alg_region);
2001 			goto out;
2002 		}
2003 		if (dsp->fw_ver == 0) {
2004 			if (i + 1 < n_algs) {
2005 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
2006 				len -= be32_to_cpu(adsp2_alg[i].ym);
2007 				len *= 4;
2008 				cs_dsp_create_control(dsp, alg_region, 0,
2009 						      len, NULL, 0, 0,
2010 						      WMFW_CTL_TYPE_BYTES);
2011 			} else {
2012 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
2013 					    be32_to_cpu(adsp2_alg[i].alg.id));
2014 			}
2015 		}
2016 
2017 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
2018 						  adsp2_alg[i].alg.id,
2019 						  adsp2_alg[i].alg.ver,
2020 						  adsp2_alg[i].zm);
2021 		if (IS_ERR(alg_region)) {
2022 			ret = PTR_ERR(alg_region);
2023 			goto out;
2024 		}
2025 		if (dsp->fw_ver == 0) {
2026 			if (i + 1 < n_algs) {
2027 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
2028 				len -= be32_to_cpu(adsp2_alg[i].zm);
2029 				len *= 4;
2030 				cs_dsp_create_control(dsp, alg_region, 0,
2031 						      len, NULL, 0, 0,
2032 						      WMFW_CTL_TYPE_BYTES);
2033 			} else {
2034 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
2035 					    be32_to_cpu(adsp2_alg[i].alg.id));
2036 			}
2037 		}
2038 	}
2039 
2040 out:
2041 	kfree(adsp2_alg);
2042 	return ret;
2043 }
2044 
2045 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
2046 				      __be32 xm_base, __be32 ym_base)
2047 {
2048 	static const int types[] = {
2049 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
2050 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
2051 	};
2052 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
2053 
2054 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
2055 }
2056 
2057 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
2058 {
2059 	struct wmfw_halo_id_hdr halo_id;
2060 	struct wmfw_halo_alg_hdr *halo_alg;
2061 	const struct cs_dsp_region *mem;
2062 	unsigned int pos, len;
2063 	size_t n_algs;
2064 	int i, ret;
2065 
2066 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
2067 	if (WARN_ON(!mem))
2068 		return -EINVAL;
2069 
2070 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
2071 			      sizeof(halo_id));
2072 	if (ret != 0) {
2073 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
2074 			   ret);
2075 		return ret;
2076 	}
2077 
2078 	n_algs = be32_to_cpu(halo_id.n_algs);
2079 
2080 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
2081 
2082 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
2083 					 halo_id.xm_base, halo_id.ym_base);
2084 	if (ret)
2085 		return ret;
2086 
2087 	/* Calculate offset and length in DSP words */
2088 	pos = sizeof(halo_id) / sizeof(u32);
2089 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
2090 
2091 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
2092 	if (IS_ERR(halo_alg))
2093 		return PTR_ERR(halo_alg);
2094 
2095 	for (i = 0; i < n_algs; i++) {
2096 		cs_dsp_dbg(dsp,
2097 			   "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
2098 			   i, be32_to_cpu(halo_alg[i].alg.id),
2099 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
2100 			   (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
2101 			   be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
2102 			   be32_to_cpu(halo_alg[i].xm_base),
2103 			   be32_to_cpu(halo_alg[i].ym_base));
2104 
2105 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
2106 						 halo_alg[i].alg.ver,
2107 						 halo_alg[i].xm_base,
2108 						 halo_alg[i].ym_base);
2109 		if (ret)
2110 			goto out;
2111 	}
2112 
2113 out:
2114 	kfree(halo_alg);
2115 	return ret;
2116 }
2117 
2118 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
2119 			     const char *file)
2120 {
2121 	LIST_HEAD(buf_list);
2122 	struct regmap *regmap = dsp->regmap;
2123 	struct wmfw_coeff_hdr *hdr;
2124 	struct wmfw_coeff_item *blk;
2125 	const struct cs_dsp_region *mem;
2126 	struct cs_dsp_alg_region *alg_region;
2127 	const char *region_name;
2128 	int ret, pos, blocks, type, offset, reg, version;
2129 	char *text = NULL;
2130 	struct cs_dsp_buf *buf;
2131 
2132 	if (!firmware)
2133 		return 0;
2134 
2135 	ret = -EINVAL;
2136 
2137 	if (sizeof(*hdr) >= firmware->size) {
2138 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
2139 			   file, firmware->size);
2140 		goto out_fw;
2141 	}
2142 
2143 	hdr = (void *)&firmware->data[0];
2144 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2145 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2146 		goto out_fw;
2147 	}
2148 
2149 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2150 	case 1:
2151 	case 2:
2152 		break;
2153 	default:
2154 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2155 			   file, be32_to_cpu(hdr->rev) & 0xff);
2156 		ret = -EINVAL;
2157 		goto out_fw;
2158 	}
2159 
2160 	cs_dsp_info(dsp, "%s: v%d.%d.%d\n", file,
2161 		    (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2162 		    (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2163 		    le32_to_cpu(hdr->ver) & 0xff);
2164 
2165 	pos = le32_to_cpu(hdr->len);
2166 
2167 	blocks = 0;
2168 	while (pos < firmware->size) {
2169 		/* Is there enough data for a complete block header? */
2170 		if (sizeof(*blk) > firmware->size - pos) {
2171 			ret = -EOVERFLOW;
2172 			goto out_fw;
2173 		}
2174 
2175 		blk = (void *)(&firmware->data[pos]);
2176 
2177 		if (le32_to_cpu(blk->len) > firmware->size - pos - sizeof(*blk)) {
2178 			ret = -EOVERFLOW;
2179 			goto out_fw;
2180 		}
2181 
2182 		type = le16_to_cpu(blk->type);
2183 		offset = le16_to_cpu(blk->offset);
2184 		version = le32_to_cpu(blk->ver) >> 8;
2185 
2186 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2187 			   file, blocks, le32_to_cpu(blk->id),
2188 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2189 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2190 			   le32_to_cpu(blk->ver) & 0xff);
2191 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2192 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2193 
2194 		reg = 0;
2195 		region_name = "Unknown";
2196 		switch (type) {
2197 		case (WMFW_NAME_TEXT << 8):
2198 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2199 			break;
2200 		case (WMFW_INFO_TEXT << 8):
2201 		case (WMFW_METADATA << 8):
2202 			break;
2203 		case (WMFW_ABSOLUTE << 8):
2204 			/*
2205 			 * Old files may use this for global
2206 			 * coefficients.
2207 			 */
2208 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2209 			    offset == 0) {
2210 				region_name = "global coefficients";
2211 				mem = cs_dsp_find_region(dsp, type);
2212 				if (!mem) {
2213 					cs_dsp_err(dsp, "No ZM\n");
2214 					break;
2215 				}
2216 				reg = dsp->ops->region_to_reg(mem, 0);
2217 
2218 			} else {
2219 				region_name = "register";
2220 				reg = offset;
2221 			}
2222 			break;
2223 
2224 		case WMFW_ADSP1_DM:
2225 		case WMFW_ADSP1_ZM:
2226 		case WMFW_ADSP2_XM:
2227 		case WMFW_ADSP2_YM:
2228 		case WMFW_HALO_XM_PACKED:
2229 		case WMFW_HALO_YM_PACKED:
2230 		case WMFW_HALO_PM_PACKED:
2231 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2232 				   file, blocks, le32_to_cpu(blk->len),
2233 				   type, le32_to_cpu(blk->id));
2234 
2235 			region_name = cs_dsp_mem_region_name(type);
2236 			mem = cs_dsp_find_region(dsp, type);
2237 			if (!mem) {
2238 				cs_dsp_err(dsp, "No base for region %x\n", type);
2239 				break;
2240 			}
2241 
2242 			alg_region = cs_dsp_find_alg_region(dsp, type,
2243 							    le32_to_cpu(blk->id));
2244 			if (alg_region) {
2245 				if (version != alg_region->ver)
2246 					cs_dsp_warn(dsp,
2247 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2248 						   (version >> 16) & 0xFF,
2249 						   (version >> 8) & 0xFF,
2250 						   version & 0xFF,
2251 						   (alg_region->ver >> 16) & 0xFF,
2252 						   (alg_region->ver >> 8) & 0xFF,
2253 						   alg_region->ver & 0xFF);
2254 
2255 				reg = alg_region->base;
2256 				reg = dsp->ops->region_to_reg(mem, reg);
2257 				reg += offset;
2258 			} else {
2259 				cs_dsp_err(dsp, "No %s for algorithm %x\n",
2260 					   region_name, le32_to_cpu(blk->id));
2261 			}
2262 			break;
2263 
2264 		default:
2265 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2266 				   file, blocks, type, pos);
2267 			break;
2268 		}
2269 
2270 		if (text) {
2271 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2272 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2273 			kfree(text);
2274 			text = NULL;
2275 		}
2276 
2277 		if (reg) {
2278 			buf = cs_dsp_buf_alloc(blk->data,
2279 					       le32_to_cpu(blk->len),
2280 					       &buf_list);
2281 			if (!buf) {
2282 				cs_dsp_err(dsp, "Out of memory\n");
2283 				ret = -ENOMEM;
2284 				goto out_fw;
2285 			}
2286 
2287 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2288 				   file, blocks, le32_to_cpu(blk->len),
2289 				   reg);
2290 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2291 						     le32_to_cpu(blk->len));
2292 			if (ret != 0) {
2293 				cs_dsp_err(dsp,
2294 					   "%s.%d: Failed to write to %x in %s: %d\n",
2295 					   file, blocks, reg, region_name, ret);
2296 			}
2297 		}
2298 
2299 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2300 		blocks++;
2301 	}
2302 
2303 	ret = regmap_async_complete(regmap);
2304 	if (ret != 0)
2305 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2306 
2307 	if (pos > firmware->size)
2308 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2309 			    file, blocks, pos - firmware->size);
2310 
2311 	cs_dsp_debugfs_save_binname(dsp, file);
2312 
2313 out_fw:
2314 	regmap_async_complete(regmap);
2315 	cs_dsp_buf_free(&buf_list);
2316 	kfree(text);
2317 
2318 	if (ret == -EOVERFLOW)
2319 		cs_dsp_err(dsp, "%s: file content overflows file data\n", file);
2320 
2321 	return ret;
2322 }
2323 
2324 static int cs_dsp_create_name(struct cs_dsp *dsp)
2325 {
2326 	if (!dsp->name) {
2327 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2328 					   dsp->num);
2329 		if (!dsp->name)
2330 			return -ENOMEM;
2331 	}
2332 
2333 	return 0;
2334 }
2335 
2336 static int cs_dsp_common_init(struct cs_dsp *dsp)
2337 {
2338 	int ret;
2339 
2340 	ret = cs_dsp_create_name(dsp);
2341 	if (ret)
2342 		return ret;
2343 
2344 	INIT_LIST_HEAD(&dsp->alg_regions);
2345 	INIT_LIST_HEAD(&dsp->ctl_list);
2346 
2347 	mutex_init(&dsp->pwr_lock);
2348 
2349 #ifdef CONFIG_DEBUG_FS
2350 	/* Ensure this is invalid if client never provides a debugfs root */
2351 	dsp->debugfs_root = ERR_PTR(-ENODEV);
2352 #endif
2353 
2354 	return 0;
2355 }
2356 
2357 /**
2358  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2359  * @dsp: pointer to DSP structure
2360  *
2361  * Return: Zero for success, a negative number on error.
2362  */
2363 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2364 {
2365 	dsp->ops = &cs_dsp_adsp1_ops;
2366 
2367 	return cs_dsp_common_init(dsp);
2368 }
2369 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_init, FW_CS_DSP);
2370 
2371 /**
2372  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2373  * @dsp: pointer to DSP structure
2374  * @wmfw_firmware: the firmware to be sent
2375  * @wmfw_filename: file name of firmware to be sent
2376  * @coeff_firmware: the coefficient data to be sent
2377  * @coeff_filename: file name of coefficient to data be sent
2378  * @fw_name: the user-friendly firmware name
2379  *
2380  * Return: Zero for success, a negative number on error.
2381  */
2382 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2383 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2384 			  const struct firmware *coeff_firmware, char *coeff_filename,
2385 			  const char *fw_name)
2386 {
2387 	unsigned int val;
2388 	int ret;
2389 
2390 	mutex_lock(&dsp->pwr_lock);
2391 
2392 	dsp->fw_name = fw_name;
2393 
2394 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2395 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2396 
2397 	/*
2398 	 * For simplicity set the DSP clock rate to be the
2399 	 * SYSCLK rate rather than making it configurable.
2400 	 */
2401 	if (dsp->sysclk_reg) {
2402 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2403 		if (ret != 0) {
2404 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2405 			goto err_mutex;
2406 		}
2407 
2408 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2409 
2410 		ret = regmap_update_bits(dsp->regmap,
2411 					 dsp->base + ADSP1_CONTROL_31,
2412 					 ADSP1_CLK_SEL_MASK, val);
2413 		if (ret != 0) {
2414 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2415 			goto err_mutex;
2416 		}
2417 	}
2418 
2419 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2420 	if (ret != 0)
2421 		goto err_ena;
2422 
2423 	ret = cs_dsp_adsp1_setup_algs(dsp);
2424 	if (ret != 0)
2425 		goto err_ena;
2426 
2427 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2428 	if (ret != 0)
2429 		goto err_ena;
2430 
2431 	/* Initialize caches for enabled and unset controls */
2432 	ret = cs_dsp_coeff_init_control_caches(dsp);
2433 	if (ret != 0)
2434 		goto err_ena;
2435 
2436 	/* Sync set controls */
2437 	ret = cs_dsp_coeff_sync_controls(dsp);
2438 	if (ret != 0)
2439 		goto err_ena;
2440 
2441 	dsp->booted = true;
2442 
2443 	/* Start the core running */
2444 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2445 			   ADSP1_CORE_ENA | ADSP1_START,
2446 			   ADSP1_CORE_ENA | ADSP1_START);
2447 
2448 	dsp->running = true;
2449 
2450 	mutex_unlock(&dsp->pwr_lock);
2451 
2452 	return 0;
2453 
2454 err_ena:
2455 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2456 			   ADSP1_SYS_ENA, 0);
2457 err_mutex:
2458 	mutex_unlock(&dsp->pwr_lock);
2459 	return ret;
2460 }
2461 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_up, FW_CS_DSP);
2462 
2463 /**
2464  * cs_dsp_adsp1_power_down() - Halts the DSP
2465  * @dsp: pointer to DSP structure
2466  */
2467 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2468 {
2469 	struct cs_dsp_coeff_ctl *ctl;
2470 
2471 	mutex_lock(&dsp->pwr_lock);
2472 
2473 	dsp->running = false;
2474 	dsp->booted = false;
2475 
2476 	/* Halt the core */
2477 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2478 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2479 
2480 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2481 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2482 
2483 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2484 			   ADSP1_SYS_ENA, 0);
2485 
2486 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2487 		ctl->enabled = 0;
2488 
2489 	cs_dsp_free_alg_regions(dsp);
2490 
2491 	mutex_unlock(&dsp->pwr_lock);
2492 }
2493 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp1_power_down, FW_CS_DSP);
2494 
2495 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2496 {
2497 	unsigned int val;
2498 	int ret, count;
2499 
2500 	/* Wait for the RAM to start, should be near instantaneous */
2501 	for (count = 0; count < 10; ++count) {
2502 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2503 		if (ret != 0)
2504 			return ret;
2505 
2506 		if (val & ADSP2_RAM_RDY)
2507 			break;
2508 
2509 		usleep_range(250, 500);
2510 	}
2511 
2512 	if (!(val & ADSP2_RAM_RDY)) {
2513 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2514 		return -EBUSY;
2515 	}
2516 
2517 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2518 
2519 	return 0;
2520 }
2521 
2522 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2523 {
2524 	int ret;
2525 
2526 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2527 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2528 	if (ret != 0)
2529 		return ret;
2530 
2531 	return cs_dsp_adsp2v2_enable_core(dsp);
2532 }
2533 
2534 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2535 {
2536 	struct regmap *regmap = dsp->regmap;
2537 	unsigned int code0, code1, lock_reg;
2538 
2539 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2540 		return 0;
2541 
2542 	lock_regions &= CS_ADSP2_REGION_ALL;
2543 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2544 
2545 	while (lock_regions) {
2546 		code0 = code1 = 0;
2547 		if (lock_regions & BIT(0)) {
2548 			code0 = ADSP2_LOCK_CODE_0;
2549 			code1 = ADSP2_LOCK_CODE_1;
2550 		}
2551 		if (lock_regions & BIT(1)) {
2552 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2553 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2554 		}
2555 		regmap_write(regmap, lock_reg, code0);
2556 		regmap_write(regmap, lock_reg, code1);
2557 		lock_regions >>= 2;
2558 		lock_reg += 2;
2559 	}
2560 
2561 	return 0;
2562 }
2563 
2564 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2565 {
2566 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2567 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2568 }
2569 
2570 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2571 {
2572 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2573 			   ADSP2_MEM_ENA, 0);
2574 }
2575 
2576 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2577 {
2578 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2579 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2580 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2581 
2582 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2583 			   ADSP2_SYS_ENA, 0);
2584 }
2585 
2586 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2587 {
2588 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2589 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2590 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2591 }
2592 
2593 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2594 {
2595 	struct reg_sequence config[] = {
2596 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2597 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2598 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2599 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2600 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2601 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2602 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2603 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2604 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2605 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2606 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2607 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2608 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2609 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2610 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2611 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2612 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2613 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2614 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2615 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2616 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2617 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2618 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2619 	};
2620 
2621 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2622 }
2623 
2624 /**
2625  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2626  * @dsp: pointer to DSP structure
2627  * @freq: clock rate to set
2628  *
2629  * This is only for use on ADSP2 cores.
2630  *
2631  * Return: Zero for success, a negative number on error.
2632  */
2633 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2634 {
2635 	int ret;
2636 
2637 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2638 				 ADSP2_CLK_SEL_MASK,
2639 				 freq << ADSP2_CLK_SEL_SHIFT);
2640 	if (ret)
2641 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2642 
2643 	return ret;
2644 }
2645 EXPORT_SYMBOL_NS_GPL(cs_dsp_set_dspclk, FW_CS_DSP);
2646 
2647 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2648 {
2649 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2650 			   ADSP2_WDT_ENA_MASK, 0);
2651 }
2652 
2653 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2654 {
2655 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2656 			   HALO_WDT_EN_MASK, 0);
2657 }
2658 
2659 /**
2660  * cs_dsp_power_up() - Downloads firmware to the DSP
2661  * @dsp: pointer to DSP structure
2662  * @wmfw_firmware: the firmware to be sent
2663  * @wmfw_filename: file name of firmware to be sent
2664  * @coeff_firmware: the coefficient data to be sent
2665  * @coeff_filename: file name of coefficient to data be sent
2666  * @fw_name: the user-friendly firmware name
2667  *
2668  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2669  * and downloads the firmware but does not start the firmware running. The
2670  * cs_dsp booted flag will be set once completed and if the core has a low-power
2671  * memory retention mode it will be put into this state after the firmware is
2672  * downloaded.
2673  *
2674  * Return: Zero for success, a negative number on error.
2675  */
2676 int cs_dsp_power_up(struct cs_dsp *dsp,
2677 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2678 		    const struct firmware *coeff_firmware, char *coeff_filename,
2679 		    const char *fw_name)
2680 {
2681 	int ret;
2682 
2683 	mutex_lock(&dsp->pwr_lock);
2684 
2685 	dsp->fw_name = fw_name;
2686 
2687 	if (dsp->ops->enable_memory) {
2688 		ret = dsp->ops->enable_memory(dsp);
2689 		if (ret != 0)
2690 			goto err_mutex;
2691 	}
2692 
2693 	if (dsp->ops->enable_core) {
2694 		ret = dsp->ops->enable_core(dsp);
2695 		if (ret != 0)
2696 			goto err_mem;
2697 	}
2698 
2699 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2700 	if (ret != 0)
2701 		goto err_ena;
2702 
2703 	ret = dsp->ops->setup_algs(dsp);
2704 	if (ret != 0)
2705 		goto err_ena;
2706 
2707 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2708 	if (ret != 0)
2709 		goto err_ena;
2710 
2711 	/* Initialize caches for enabled and unset controls */
2712 	ret = cs_dsp_coeff_init_control_caches(dsp);
2713 	if (ret != 0)
2714 		goto err_ena;
2715 
2716 	if (dsp->ops->disable_core)
2717 		dsp->ops->disable_core(dsp);
2718 
2719 	dsp->booted = true;
2720 
2721 	mutex_unlock(&dsp->pwr_lock);
2722 
2723 	return 0;
2724 err_ena:
2725 	if (dsp->ops->disable_core)
2726 		dsp->ops->disable_core(dsp);
2727 err_mem:
2728 	if (dsp->ops->disable_memory)
2729 		dsp->ops->disable_memory(dsp);
2730 err_mutex:
2731 	mutex_unlock(&dsp->pwr_lock);
2732 
2733 	return ret;
2734 }
2735 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_up, FW_CS_DSP);
2736 
2737 /**
2738  * cs_dsp_power_down() - Powers-down the DSP
2739  * @dsp: pointer to DSP structure
2740  *
2741  * cs_dsp_stop() must have been called before this function. The core will be
2742  * fully powered down and so the memory will not be retained.
2743  */
2744 void cs_dsp_power_down(struct cs_dsp *dsp)
2745 {
2746 	struct cs_dsp_coeff_ctl *ctl;
2747 
2748 	mutex_lock(&dsp->pwr_lock);
2749 
2750 	cs_dsp_debugfs_clear(dsp);
2751 
2752 	dsp->fw_id = 0;
2753 	dsp->fw_id_version = 0;
2754 
2755 	dsp->booted = false;
2756 
2757 	if (dsp->ops->disable_memory)
2758 		dsp->ops->disable_memory(dsp);
2759 
2760 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2761 		ctl->enabled = 0;
2762 
2763 	cs_dsp_free_alg_regions(dsp);
2764 
2765 	mutex_unlock(&dsp->pwr_lock);
2766 
2767 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2768 }
2769 EXPORT_SYMBOL_NS_GPL(cs_dsp_power_down, FW_CS_DSP);
2770 
2771 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2772 {
2773 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2774 				  ADSP2_CORE_ENA | ADSP2_START,
2775 				  ADSP2_CORE_ENA | ADSP2_START);
2776 }
2777 
2778 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2779 {
2780 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2781 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2782 }
2783 
2784 /**
2785  * cs_dsp_run() - Starts the firmware running
2786  * @dsp: pointer to DSP structure
2787  *
2788  * cs_dsp_power_up() must have previously been called successfully.
2789  *
2790  * Return: Zero for success, a negative number on error.
2791  */
2792 int cs_dsp_run(struct cs_dsp *dsp)
2793 {
2794 	int ret;
2795 
2796 	mutex_lock(&dsp->pwr_lock);
2797 
2798 	if (!dsp->booted) {
2799 		ret = -EIO;
2800 		goto err;
2801 	}
2802 
2803 	if (dsp->ops->enable_core) {
2804 		ret = dsp->ops->enable_core(dsp);
2805 		if (ret != 0)
2806 			goto err;
2807 	}
2808 
2809 	if (dsp->client_ops->pre_run) {
2810 		ret = dsp->client_ops->pre_run(dsp);
2811 		if (ret)
2812 			goto err;
2813 	}
2814 
2815 	/* Sync set controls */
2816 	ret = cs_dsp_coeff_sync_controls(dsp);
2817 	if (ret != 0)
2818 		goto err;
2819 
2820 	if (dsp->ops->lock_memory) {
2821 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2822 		if (ret != 0) {
2823 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2824 			goto err;
2825 		}
2826 	}
2827 
2828 	if (dsp->ops->start_core) {
2829 		ret = dsp->ops->start_core(dsp);
2830 		if (ret != 0)
2831 			goto err;
2832 	}
2833 
2834 	dsp->running = true;
2835 
2836 	if (dsp->client_ops->post_run) {
2837 		ret = dsp->client_ops->post_run(dsp);
2838 		if (ret)
2839 			goto err;
2840 	}
2841 
2842 	mutex_unlock(&dsp->pwr_lock);
2843 
2844 	return 0;
2845 
2846 err:
2847 	if (dsp->ops->stop_core)
2848 		dsp->ops->stop_core(dsp);
2849 	if (dsp->ops->disable_core)
2850 		dsp->ops->disable_core(dsp);
2851 	mutex_unlock(&dsp->pwr_lock);
2852 
2853 	return ret;
2854 }
2855 EXPORT_SYMBOL_NS_GPL(cs_dsp_run, FW_CS_DSP);
2856 
2857 /**
2858  * cs_dsp_stop() - Stops the firmware
2859  * @dsp: pointer to DSP structure
2860  *
2861  * Memory will not be disabled so firmware will remain loaded.
2862  */
2863 void cs_dsp_stop(struct cs_dsp *dsp)
2864 {
2865 	/* Tell the firmware to cleanup */
2866 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2867 
2868 	if (dsp->ops->stop_watchdog)
2869 		dsp->ops->stop_watchdog(dsp);
2870 
2871 	/* Log firmware state, it can be useful for analysis */
2872 	if (dsp->ops->show_fw_status)
2873 		dsp->ops->show_fw_status(dsp);
2874 
2875 	mutex_lock(&dsp->pwr_lock);
2876 
2877 	if (dsp->client_ops->pre_stop)
2878 		dsp->client_ops->pre_stop(dsp);
2879 
2880 	dsp->running = false;
2881 
2882 	if (dsp->ops->stop_core)
2883 		dsp->ops->stop_core(dsp);
2884 	if (dsp->ops->disable_core)
2885 		dsp->ops->disable_core(dsp);
2886 
2887 	if (dsp->client_ops->post_stop)
2888 		dsp->client_ops->post_stop(dsp);
2889 
2890 	mutex_unlock(&dsp->pwr_lock);
2891 
2892 	cs_dsp_dbg(dsp, "Execution stopped\n");
2893 }
2894 EXPORT_SYMBOL_NS_GPL(cs_dsp_stop, FW_CS_DSP);
2895 
2896 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2897 {
2898 	int ret;
2899 
2900 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2901 				 HALO_CORE_RESET | HALO_CORE_EN,
2902 				 HALO_CORE_RESET | HALO_CORE_EN);
2903 	if (ret)
2904 		return ret;
2905 
2906 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2907 				  HALO_CORE_RESET, 0);
2908 }
2909 
2910 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2911 {
2912 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2913 			   HALO_CORE_EN, 0);
2914 
2915 	/* reset halo core with CORE_SOFT_RESET */
2916 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2917 			   HALO_CORE_SOFT_RESET_MASK, 1);
2918 }
2919 
2920 /**
2921  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2922  * @dsp: pointer to DSP structure
2923  *
2924  * Return: Zero for success, a negative number on error.
2925  */
2926 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2927 {
2928 	int ret;
2929 
2930 	switch (dsp->rev) {
2931 	case 0:
2932 		/*
2933 		 * Disable the DSP memory by default when in reset for a small
2934 		 * power saving.
2935 		 */
2936 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2937 					 ADSP2_MEM_ENA, 0);
2938 		if (ret) {
2939 			cs_dsp_err(dsp,
2940 				   "Failed to clear memory retention: %d\n", ret);
2941 			return ret;
2942 		}
2943 
2944 		dsp->ops = &cs_dsp_adsp2_ops[0];
2945 		break;
2946 	case 1:
2947 		dsp->ops = &cs_dsp_adsp2_ops[1];
2948 		break;
2949 	default:
2950 		dsp->ops = &cs_dsp_adsp2_ops[2];
2951 		break;
2952 	}
2953 
2954 	return cs_dsp_common_init(dsp);
2955 }
2956 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_init, FW_CS_DSP);
2957 
2958 /**
2959  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2960  * @dsp: pointer to DSP structure
2961  *
2962  * Return: Zero for success, a negative number on error.
2963  */
2964 int cs_dsp_halo_init(struct cs_dsp *dsp)
2965 {
2966 	if (dsp->no_core_startstop)
2967 		dsp->ops = &cs_dsp_halo_ao_ops;
2968 	else
2969 		dsp->ops = &cs_dsp_halo_ops;
2970 
2971 	return cs_dsp_common_init(dsp);
2972 }
2973 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_init, FW_CS_DSP);
2974 
2975 /**
2976  * cs_dsp_remove() - Clean a cs_dsp before deletion
2977  * @dsp: pointer to DSP structure
2978  */
2979 void cs_dsp_remove(struct cs_dsp *dsp)
2980 {
2981 	struct cs_dsp_coeff_ctl *ctl;
2982 
2983 	while (!list_empty(&dsp->ctl_list)) {
2984 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2985 
2986 		if (dsp->client_ops->control_remove)
2987 			dsp->client_ops->control_remove(ctl);
2988 
2989 		list_del(&ctl->list);
2990 		cs_dsp_free_ctl_blk(ctl);
2991 	}
2992 }
2993 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove, FW_CS_DSP);
2994 
2995 /**
2996  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2997  * @dsp: pointer to DSP structure
2998  * @mem_type: the type of DSP memory containing the data to be read
2999  * @mem_addr: the address of the data within the memory region
3000  * @num_words: the length of the data to read
3001  * @data: a buffer to store the fetched data
3002  *
3003  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
3004  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
3005  * cs_dsp_remove_padding()
3006  *
3007  * Return: Zero for success, a negative number on error.
3008  */
3009 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
3010 			       unsigned int num_words, __be32 *data)
3011 {
3012 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3013 	unsigned int reg;
3014 	int ret;
3015 
3016 	lockdep_assert_held(&dsp->pwr_lock);
3017 
3018 	if (!mem)
3019 		return -EINVAL;
3020 
3021 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3022 
3023 	ret = regmap_raw_read(dsp->regmap, reg, data,
3024 			      sizeof(*data) * num_words);
3025 	if (ret < 0)
3026 		return ret;
3027 
3028 	return 0;
3029 }
3030 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_raw_data_block, FW_CS_DSP);
3031 
3032 /**
3033  * cs_dsp_read_data_word() - Reads a word from DSP memory
3034  * @dsp: pointer to DSP structure
3035  * @mem_type: the type of DSP memory containing the data to be read
3036  * @mem_addr: the address of the data within the memory region
3037  * @data: a buffer to store the fetched data
3038  *
3039  * Return: Zero for success, a negative number on error.
3040  */
3041 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
3042 {
3043 	__be32 raw;
3044 	int ret;
3045 
3046 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
3047 	if (ret < 0)
3048 		return ret;
3049 
3050 	*data = be32_to_cpu(raw) & 0x00ffffffu;
3051 
3052 	return 0;
3053 }
3054 EXPORT_SYMBOL_NS_GPL(cs_dsp_read_data_word, FW_CS_DSP);
3055 
3056 /**
3057  * cs_dsp_write_data_word() - Writes a word to DSP memory
3058  * @dsp: pointer to DSP structure
3059  * @mem_type: the type of DSP memory containing the data to be written
3060  * @mem_addr: the address of the data within the memory region
3061  * @data: the data to be written
3062  *
3063  * Return: Zero for success, a negative number on error.
3064  */
3065 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
3066 {
3067 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
3068 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
3069 	unsigned int reg;
3070 
3071 	lockdep_assert_held(&dsp->pwr_lock);
3072 
3073 	if (!mem)
3074 		return -EINVAL;
3075 
3076 	reg = dsp->ops->region_to_reg(mem, mem_addr);
3077 
3078 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
3079 }
3080 EXPORT_SYMBOL_NS_GPL(cs_dsp_write_data_word, FW_CS_DSP);
3081 
3082 /**
3083  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
3084  * @buf: buffer containing DSP words read from DSP memory
3085  * @nwords: number of words to convert
3086  *
3087  * DSP words from the register map have pad bytes and the data bytes
3088  * are in swapped order. This swaps to the native endian order and
3089  * strips the pad bytes.
3090  */
3091 void cs_dsp_remove_padding(u32 *buf, int nwords)
3092 {
3093 	const __be32 *pack_in = (__be32 *)buf;
3094 	u8 *pack_out = (u8 *)buf;
3095 	int i;
3096 
3097 	for (i = 0; i < nwords; i++) {
3098 		u32 word = be32_to_cpu(*pack_in++);
3099 		*pack_out++ = (u8)word;
3100 		*pack_out++ = (u8)(word >> 8);
3101 		*pack_out++ = (u8)(word >> 16);
3102 	}
3103 }
3104 EXPORT_SYMBOL_NS_GPL(cs_dsp_remove_padding, FW_CS_DSP);
3105 
3106 /**
3107  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
3108  * @dsp: pointer to DSP structure
3109  *
3110  * The firmware and DSP state will be logged for future analysis.
3111  */
3112 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
3113 {
3114 	unsigned int val;
3115 	struct regmap *regmap = dsp->regmap;
3116 	int ret = 0;
3117 
3118 	mutex_lock(&dsp->pwr_lock);
3119 
3120 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
3121 	if (ret) {
3122 		cs_dsp_err(dsp,
3123 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
3124 		goto error;
3125 	}
3126 
3127 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
3128 		cs_dsp_err(dsp, "watchdog timeout error\n");
3129 		dsp->ops->stop_watchdog(dsp);
3130 		if (dsp->client_ops->watchdog_expired)
3131 			dsp->client_ops->watchdog_expired(dsp);
3132 	}
3133 
3134 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
3135 		if (val & ADSP2_ADDR_ERR_MASK)
3136 			cs_dsp_err(dsp, "bus error: address error\n");
3137 		else
3138 			cs_dsp_err(dsp, "bus error: region lock error\n");
3139 
3140 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
3141 		if (ret) {
3142 			cs_dsp_err(dsp,
3143 				   "Failed to read Bus Err Addr register: %d\n",
3144 				   ret);
3145 			goto error;
3146 		}
3147 
3148 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
3149 			   val & ADSP2_BUS_ERR_ADDR_MASK);
3150 
3151 		ret = regmap_read(regmap,
3152 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3153 				  &val);
3154 		if (ret) {
3155 			cs_dsp_err(dsp,
3156 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3157 				   ret);
3158 			goto error;
3159 		}
3160 
3161 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3162 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3163 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3164 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3165 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3166 	}
3167 
3168 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3169 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3170 
3171 error:
3172 	mutex_unlock(&dsp->pwr_lock);
3173 }
3174 EXPORT_SYMBOL_NS_GPL(cs_dsp_adsp2_bus_error, FW_CS_DSP);
3175 
3176 /**
3177  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3178  * @dsp: pointer to DSP structure
3179  *
3180  * The firmware and DSP state will be logged for future analysis.
3181  */
3182 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3183 {
3184 	struct regmap *regmap = dsp->regmap;
3185 	unsigned int fault[6];
3186 	struct reg_sequence clear[] = {
3187 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3188 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3189 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3190 	};
3191 	int ret;
3192 
3193 	mutex_lock(&dsp->pwr_lock);
3194 
3195 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3196 			  fault);
3197 	if (ret) {
3198 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3199 		goto exit_unlock;
3200 	}
3201 
3202 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3203 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3204 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3205 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3206 
3207 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3208 			  fault);
3209 	if (ret) {
3210 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3211 		goto exit_unlock;
3212 	}
3213 
3214 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3215 
3216 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3217 			       fault, ARRAY_SIZE(fault));
3218 	if (ret) {
3219 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3220 		goto exit_unlock;
3221 	}
3222 
3223 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3224 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3225 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3226 
3227 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3228 	if (ret)
3229 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3230 
3231 exit_unlock:
3232 	mutex_unlock(&dsp->pwr_lock);
3233 }
3234 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_bus_error, FW_CS_DSP);
3235 
3236 /**
3237  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3238  * @dsp: pointer to DSP structure
3239  *
3240  * This is logged for future analysis.
3241  */
3242 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3243 {
3244 	mutex_lock(&dsp->pwr_lock);
3245 
3246 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3247 
3248 	dsp->ops->stop_watchdog(dsp);
3249 	if (dsp->client_ops->watchdog_expired)
3250 		dsp->client_ops->watchdog_expired(dsp);
3251 
3252 	mutex_unlock(&dsp->pwr_lock);
3253 }
3254 EXPORT_SYMBOL_NS_GPL(cs_dsp_halo_wdt_expire, FW_CS_DSP);
3255 
3256 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3257 	.validate_version = cs_dsp_validate_version,
3258 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3259 	.region_to_reg = cs_dsp_region_to_reg,
3260 };
3261 
3262 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3263 	{
3264 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3265 		.validate_version = cs_dsp_validate_version,
3266 		.setup_algs = cs_dsp_adsp2_setup_algs,
3267 		.region_to_reg = cs_dsp_region_to_reg,
3268 
3269 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3270 
3271 		.enable_memory = cs_dsp_adsp2_enable_memory,
3272 		.disable_memory = cs_dsp_adsp2_disable_memory,
3273 
3274 		.enable_core = cs_dsp_adsp2_enable_core,
3275 		.disable_core = cs_dsp_adsp2_disable_core,
3276 
3277 		.start_core = cs_dsp_adsp2_start_core,
3278 		.stop_core = cs_dsp_adsp2_stop_core,
3279 
3280 	},
3281 	{
3282 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3283 		.validate_version = cs_dsp_validate_version,
3284 		.setup_algs = cs_dsp_adsp2_setup_algs,
3285 		.region_to_reg = cs_dsp_region_to_reg,
3286 
3287 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3288 
3289 		.enable_memory = cs_dsp_adsp2_enable_memory,
3290 		.disable_memory = cs_dsp_adsp2_disable_memory,
3291 		.lock_memory = cs_dsp_adsp2_lock,
3292 
3293 		.enable_core = cs_dsp_adsp2v2_enable_core,
3294 		.disable_core = cs_dsp_adsp2v2_disable_core,
3295 
3296 		.start_core = cs_dsp_adsp2_start_core,
3297 		.stop_core = cs_dsp_adsp2_stop_core,
3298 	},
3299 	{
3300 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3301 		.validate_version = cs_dsp_validate_version,
3302 		.setup_algs = cs_dsp_adsp2_setup_algs,
3303 		.region_to_reg = cs_dsp_region_to_reg,
3304 
3305 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3306 		.stop_watchdog = cs_dsp_stop_watchdog,
3307 
3308 		.enable_memory = cs_dsp_adsp2_enable_memory,
3309 		.disable_memory = cs_dsp_adsp2_disable_memory,
3310 		.lock_memory = cs_dsp_adsp2_lock,
3311 
3312 		.enable_core = cs_dsp_adsp2v2_enable_core,
3313 		.disable_core = cs_dsp_adsp2v2_disable_core,
3314 
3315 		.start_core = cs_dsp_adsp2_start_core,
3316 		.stop_core = cs_dsp_adsp2_stop_core,
3317 	},
3318 };
3319 
3320 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3321 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3322 	.validate_version = cs_dsp_halo_validate_version,
3323 	.setup_algs = cs_dsp_halo_setup_algs,
3324 	.region_to_reg = cs_dsp_halo_region_to_reg,
3325 
3326 	.show_fw_status = cs_dsp_halo_show_fw_status,
3327 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3328 
3329 	.lock_memory = cs_dsp_halo_configure_mpu,
3330 
3331 	.start_core = cs_dsp_halo_start_core,
3332 	.stop_core = cs_dsp_halo_stop_core,
3333 };
3334 
3335 static const struct cs_dsp_ops cs_dsp_halo_ao_ops = {
3336 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3337 	.validate_version = cs_dsp_halo_validate_version,
3338 	.setup_algs = cs_dsp_halo_setup_algs,
3339 	.region_to_reg = cs_dsp_halo_region_to_reg,
3340 	.show_fw_status = cs_dsp_halo_show_fw_status,
3341 };
3342 
3343 /**
3344  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3345  * @ch: Pointer to the chunk structure
3346  * @nbits: Number of bits to write
3347  * @val: Value to write
3348  *
3349  * This function sequentially writes values into the format required for DSP
3350  * memory, it handles both inserting of the padding bytes and converting to
3351  * big endian. Note that data is only committed to the chunk when a whole DSP
3352  * words worth of data is available.
3353  *
3354  * Return: Zero for success, a negative number on error.
3355  */
3356 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3357 {
3358 	int nwrite, i;
3359 
3360 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3361 
3362 	ch->cache <<= nwrite;
3363 	ch->cache |= val >> (nbits - nwrite);
3364 	ch->cachebits += nwrite;
3365 	nbits -= nwrite;
3366 
3367 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3368 		if (cs_dsp_chunk_end(ch))
3369 			return -ENOSPC;
3370 
3371 		ch->cache &= 0xFFFFFF;
3372 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3373 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3374 
3375 		ch->bytes += sizeof(ch->cache);
3376 		ch->cachebits = 0;
3377 	}
3378 
3379 	if (nbits)
3380 		return cs_dsp_chunk_write(ch, nbits, val);
3381 
3382 	return 0;
3383 }
3384 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_write, FW_CS_DSP);
3385 
3386 /**
3387  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3388  * @ch: Pointer to the chunk structure
3389  *
3390  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3391  * be written out it is possible that some data will remain in the cache, this
3392  * function will pad that data with zeros upto a whole DSP word and write out.
3393  *
3394  * Return: Zero for success, a negative number on error.
3395  */
3396 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3397 {
3398 	if (!ch->cachebits)
3399 		return 0;
3400 
3401 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3402 }
3403 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_flush, FW_CS_DSP);
3404 
3405 /**
3406  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3407  * @ch: Pointer to the chunk structure
3408  * @nbits: Number of bits to read
3409  *
3410  * This function sequentially reads values from a DSP memory formatted buffer,
3411  * it handles both removing of the padding bytes and converting from big endian.
3412  *
3413  * Return: A negative number is returned on error, otherwise the read value.
3414  */
3415 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3416 {
3417 	int nread, i;
3418 	u32 result;
3419 
3420 	if (!ch->cachebits) {
3421 		if (cs_dsp_chunk_end(ch))
3422 			return -ENOSPC;
3423 
3424 		ch->cache = 0;
3425 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3426 
3427 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3428 			ch->cache |= *ch->data++;
3429 
3430 		ch->bytes += sizeof(ch->cache);
3431 	}
3432 
3433 	nread = min(ch->cachebits, nbits);
3434 	nbits -= nread;
3435 
3436 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3437 	ch->cache <<= nread;
3438 	ch->cachebits -= nread;
3439 
3440 	if (nbits)
3441 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3442 
3443 	return result;
3444 }
3445 EXPORT_SYMBOL_NS_GPL(cs_dsp_chunk_read, FW_CS_DSP);
3446 
3447 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3448 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3449 MODULE_LICENSE("GPL v2");
3450