xref: /openbmc/linux/drivers/firmware/cirrus/cs_dsp.c (revision 0980bb1f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * cs_dsp.c  --  Cirrus Logic DSP firmware support
4  *
5  * Based on sound/soc/codecs/wm_adsp.c
6  *
7  * Copyright 2012 Wolfson Microelectronics plc
8  * Copyright (C) 2015-2021 Cirrus Logic, Inc. and
9  *                         Cirrus Logic International Semiconductor Ltd.
10  */
11 
12 #include <linux/ctype.h>
13 #include <linux/debugfs.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 
20 #include <linux/firmware/cirrus/cs_dsp.h>
21 #include <linux/firmware/cirrus/wmfw.h>
22 
23 #define cs_dsp_err(_dsp, fmt, ...) \
24 	dev_err(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
25 #define cs_dsp_warn(_dsp, fmt, ...) \
26 	dev_warn(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
27 #define cs_dsp_info(_dsp, fmt, ...) \
28 	dev_info(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
29 #define cs_dsp_dbg(_dsp, fmt, ...) \
30 	dev_dbg(_dsp->dev, "%s: " fmt, _dsp->name, ##__VA_ARGS__)
31 
32 #define ADSP1_CONTROL_1                   0x00
33 #define ADSP1_CONTROL_2                   0x02
34 #define ADSP1_CONTROL_3                   0x03
35 #define ADSP1_CONTROL_4                   0x04
36 #define ADSP1_CONTROL_5                   0x06
37 #define ADSP1_CONTROL_6                   0x07
38 #define ADSP1_CONTROL_7                   0x08
39 #define ADSP1_CONTROL_8                   0x09
40 #define ADSP1_CONTROL_9                   0x0A
41 #define ADSP1_CONTROL_10                  0x0B
42 #define ADSP1_CONTROL_11                  0x0C
43 #define ADSP1_CONTROL_12                  0x0D
44 #define ADSP1_CONTROL_13                  0x0F
45 #define ADSP1_CONTROL_14                  0x10
46 #define ADSP1_CONTROL_15                  0x11
47 #define ADSP1_CONTROL_16                  0x12
48 #define ADSP1_CONTROL_17                  0x13
49 #define ADSP1_CONTROL_18                  0x14
50 #define ADSP1_CONTROL_19                  0x16
51 #define ADSP1_CONTROL_20                  0x17
52 #define ADSP1_CONTROL_21                  0x18
53 #define ADSP1_CONTROL_22                  0x1A
54 #define ADSP1_CONTROL_23                  0x1B
55 #define ADSP1_CONTROL_24                  0x1C
56 #define ADSP1_CONTROL_25                  0x1E
57 #define ADSP1_CONTROL_26                  0x20
58 #define ADSP1_CONTROL_27                  0x21
59 #define ADSP1_CONTROL_28                  0x22
60 #define ADSP1_CONTROL_29                  0x23
61 #define ADSP1_CONTROL_30                  0x24
62 #define ADSP1_CONTROL_31                  0x26
63 
64 /*
65  * ADSP1 Control 19
66  */
67 #define ADSP1_WDMA_BUFFER_LENGTH_MASK     0x00FF  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
68 #define ADSP1_WDMA_BUFFER_LENGTH_SHIFT         0  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
69 #define ADSP1_WDMA_BUFFER_LENGTH_WIDTH         8  /* DSP1_WDMA_BUFFER_LENGTH - [7:0] */
70 
71 /*
72  * ADSP1 Control 30
73  */
74 #define ADSP1_DBG_CLK_ENA                 0x0008  /* DSP1_DBG_CLK_ENA */
75 #define ADSP1_DBG_CLK_ENA_MASK            0x0008  /* DSP1_DBG_CLK_ENA */
76 #define ADSP1_DBG_CLK_ENA_SHIFT                3  /* DSP1_DBG_CLK_ENA */
77 #define ADSP1_DBG_CLK_ENA_WIDTH                1  /* DSP1_DBG_CLK_ENA */
78 #define ADSP1_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
79 #define ADSP1_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
80 #define ADSP1_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
81 #define ADSP1_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
82 #define ADSP1_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
83 #define ADSP1_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
84 #define ADSP1_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
85 #define ADSP1_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
86 #define ADSP1_START                       0x0001  /* DSP1_START */
87 #define ADSP1_START_MASK                  0x0001  /* DSP1_START */
88 #define ADSP1_START_SHIFT                      0  /* DSP1_START */
89 #define ADSP1_START_WIDTH                      1  /* DSP1_START */
90 
91 /*
92  * ADSP1 Control 31
93  */
94 #define ADSP1_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
95 #define ADSP1_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
96 #define ADSP1_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
97 
98 #define ADSP2_CONTROL                     0x0
99 #define ADSP2_CLOCKING                    0x1
100 #define ADSP2V2_CLOCKING                  0x2
101 #define ADSP2_STATUS1                     0x4
102 #define ADSP2_WDMA_CONFIG_1               0x30
103 #define ADSP2_WDMA_CONFIG_2               0x31
104 #define ADSP2V2_WDMA_CONFIG_2             0x32
105 #define ADSP2_RDMA_CONFIG_1               0x34
106 
107 #define ADSP2_SCRATCH0                    0x40
108 #define ADSP2_SCRATCH1                    0x41
109 #define ADSP2_SCRATCH2                    0x42
110 #define ADSP2_SCRATCH3                    0x43
111 
112 #define ADSP2V2_SCRATCH0_1                0x40
113 #define ADSP2V2_SCRATCH2_3                0x42
114 
115 /*
116  * ADSP2 Control
117  */
118 #define ADSP2_MEM_ENA                     0x0010  /* DSP1_MEM_ENA */
119 #define ADSP2_MEM_ENA_MASK                0x0010  /* DSP1_MEM_ENA */
120 #define ADSP2_MEM_ENA_SHIFT                    4  /* DSP1_MEM_ENA */
121 #define ADSP2_MEM_ENA_WIDTH                    1  /* DSP1_MEM_ENA */
122 #define ADSP2_SYS_ENA                     0x0004  /* DSP1_SYS_ENA */
123 #define ADSP2_SYS_ENA_MASK                0x0004  /* DSP1_SYS_ENA */
124 #define ADSP2_SYS_ENA_SHIFT                    2  /* DSP1_SYS_ENA */
125 #define ADSP2_SYS_ENA_WIDTH                    1  /* DSP1_SYS_ENA */
126 #define ADSP2_CORE_ENA                    0x0002  /* DSP1_CORE_ENA */
127 #define ADSP2_CORE_ENA_MASK               0x0002  /* DSP1_CORE_ENA */
128 #define ADSP2_CORE_ENA_SHIFT                   1  /* DSP1_CORE_ENA */
129 #define ADSP2_CORE_ENA_WIDTH                   1  /* DSP1_CORE_ENA */
130 #define ADSP2_START                       0x0001  /* DSP1_START */
131 #define ADSP2_START_MASK                  0x0001  /* DSP1_START */
132 #define ADSP2_START_SHIFT                      0  /* DSP1_START */
133 #define ADSP2_START_WIDTH                      1  /* DSP1_START */
134 
135 /*
136  * ADSP2 clocking
137  */
138 #define ADSP2_CLK_SEL_MASK                0x0007  /* CLK_SEL_ENA */
139 #define ADSP2_CLK_SEL_SHIFT                    0  /* CLK_SEL_ENA */
140 #define ADSP2_CLK_SEL_WIDTH                    3  /* CLK_SEL_ENA */
141 
142 /*
143  * ADSP2V2 clocking
144  */
145 #define ADSP2V2_CLK_SEL_MASK             0x70000  /* CLK_SEL_ENA */
146 #define ADSP2V2_CLK_SEL_SHIFT                 16  /* CLK_SEL_ENA */
147 #define ADSP2V2_CLK_SEL_WIDTH                  3  /* CLK_SEL_ENA */
148 
149 #define ADSP2V2_RATE_MASK                 0x7800  /* DSP_RATE */
150 #define ADSP2V2_RATE_SHIFT                    11  /* DSP_RATE */
151 #define ADSP2V2_RATE_WIDTH                     4  /* DSP_RATE */
152 
153 /*
154  * ADSP2 Status 1
155  */
156 #define ADSP2_RAM_RDY                     0x0001
157 #define ADSP2_RAM_RDY_MASK                0x0001
158 #define ADSP2_RAM_RDY_SHIFT                    0
159 #define ADSP2_RAM_RDY_WIDTH                    1
160 
161 /*
162  * ADSP2 Lock support
163  */
164 #define ADSP2_LOCK_CODE_0                    0x5555
165 #define ADSP2_LOCK_CODE_1                    0xAAAA
166 
167 #define ADSP2_WATCHDOG                       0x0A
168 #define ADSP2_BUS_ERR_ADDR                   0x52
169 #define ADSP2_REGION_LOCK_STATUS             0x64
170 #define ADSP2_LOCK_REGION_1_LOCK_REGION_0    0x66
171 #define ADSP2_LOCK_REGION_3_LOCK_REGION_2    0x68
172 #define ADSP2_LOCK_REGION_5_LOCK_REGION_4    0x6A
173 #define ADSP2_LOCK_REGION_7_LOCK_REGION_6    0x6C
174 #define ADSP2_LOCK_REGION_9_LOCK_REGION_8    0x6E
175 #define ADSP2_LOCK_REGION_CTRL               0x7A
176 #define ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR    0x7C
177 
178 #define ADSP2_REGION_LOCK_ERR_MASK           0x8000
179 #define ADSP2_ADDR_ERR_MASK                  0x4000
180 #define ADSP2_WDT_TIMEOUT_STS_MASK           0x2000
181 #define ADSP2_CTRL_ERR_PAUSE_ENA             0x0002
182 #define ADSP2_CTRL_ERR_EINT                  0x0001
183 
184 #define ADSP2_BUS_ERR_ADDR_MASK              0x00FFFFFF
185 #define ADSP2_XMEM_ERR_ADDR_MASK             0x0000FFFF
186 #define ADSP2_PMEM_ERR_ADDR_MASK             0x7FFF0000
187 #define ADSP2_PMEM_ERR_ADDR_SHIFT            16
188 #define ADSP2_WDT_ENA_MASK                   0xFFFFFFFD
189 
190 #define ADSP2_LOCK_REGION_SHIFT              16
191 
192 /*
193  * Event control messages
194  */
195 #define CS_DSP_FW_EVENT_SHUTDOWN             0x000001
196 
197 /*
198  * HALO system info
199  */
200 #define HALO_AHBM_WINDOW_DEBUG_0             0x02040
201 #define HALO_AHBM_WINDOW_DEBUG_1             0x02044
202 
203 /*
204  * HALO core
205  */
206 #define HALO_SCRATCH1                        0x005c0
207 #define HALO_SCRATCH2                        0x005c8
208 #define HALO_SCRATCH3                        0x005d0
209 #define HALO_SCRATCH4                        0x005d8
210 #define HALO_CCM_CORE_CONTROL                0x41000
211 #define HALO_CORE_SOFT_RESET                 0x00010
212 #define HALO_WDT_CONTROL                     0x47000
213 
214 /*
215  * HALO MPU banks
216  */
217 #define HALO_MPU_XMEM_ACCESS_0               0x43000
218 #define HALO_MPU_YMEM_ACCESS_0               0x43004
219 #define HALO_MPU_WINDOW_ACCESS_0             0x43008
220 #define HALO_MPU_XREG_ACCESS_0               0x4300C
221 #define HALO_MPU_YREG_ACCESS_0               0x43014
222 #define HALO_MPU_XMEM_ACCESS_1               0x43018
223 #define HALO_MPU_YMEM_ACCESS_1               0x4301C
224 #define HALO_MPU_WINDOW_ACCESS_1             0x43020
225 #define HALO_MPU_XREG_ACCESS_1               0x43024
226 #define HALO_MPU_YREG_ACCESS_1               0x4302C
227 #define HALO_MPU_XMEM_ACCESS_2               0x43030
228 #define HALO_MPU_YMEM_ACCESS_2               0x43034
229 #define HALO_MPU_WINDOW_ACCESS_2             0x43038
230 #define HALO_MPU_XREG_ACCESS_2               0x4303C
231 #define HALO_MPU_YREG_ACCESS_2               0x43044
232 #define HALO_MPU_XMEM_ACCESS_3               0x43048
233 #define HALO_MPU_YMEM_ACCESS_3               0x4304C
234 #define HALO_MPU_WINDOW_ACCESS_3             0x43050
235 #define HALO_MPU_XREG_ACCESS_3               0x43054
236 #define HALO_MPU_YREG_ACCESS_3               0x4305C
237 #define HALO_MPU_XM_VIO_ADDR                 0x43100
238 #define HALO_MPU_XM_VIO_STATUS               0x43104
239 #define HALO_MPU_YM_VIO_ADDR                 0x43108
240 #define HALO_MPU_YM_VIO_STATUS               0x4310C
241 #define HALO_MPU_PM_VIO_ADDR                 0x43110
242 #define HALO_MPU_PM_VIO_STATUS               0x43114
243 #define HALO_MPU_LOCK_CONFIG                 0x43140
244 
245 /*
246  * HALO_AHBM_WINDOW_DEBUG_1
247  */
248 #define HALO_AHBM_CORE_ERR_ADDR_MASK         0x0fffff00
249 #define HALO_AHBM_CORE_ERR_ADDR_SHIFT                 8
250 #define HALO_AHBM_FLAGS_ERR_MASK             0x000000ff
251 
252 /*
253  * HALO_CCM_CORE_CONTROL
254  */
255 #define HALO_CORE_RESET                     0x00000200
256 #define HALO_CORE_EN                        0x00000001
257 
258 /*
259  * HALO_CORE_SOFT_RESET
260  */
261 #define HALO_CORE_SOFT_RESET_MASK           0x00000001
262 
263 /*
264  * HALO_WDT_CONTROL
265  */
266 #define HALO_WDT_EN_MASK                    0x00000001
267 
268 /*
269  * HALO_MPU_?M_VIO_STATUS
270  */
271 #define HALO_MPU_VIO_STS_MASK               0x007e0000
272 #define HALO_MPU_VIO_STS_SHIFT                      17
273 #define HALO_MPU_VIO_ERR_WR_MASK            0x00008000
274 #define HALO_MPU_VIO_ERR_SRC_MASK           0x00007fff
275 #define HALO_MPU_VIO_ERR_SRC_SHIFT                   0
276 
277 struct cs_dsp_ops {
278 	bool (*validate_version)(struct cs_dsp *dsp, unsigned int version);
279 	unsigned int (*parse_sizes)(struct cs_dsp *dsp,
280 				    const char * const file,
281 				    unsigned int pos,
282 				    const struct firmware *firmware);
283 	int (*setup_algs)(struct cs_dsp *dsp);
284 	unsigned int (*region_to_reg)(struct cs_dsp_region const *mem,
285 				      unsigned int offset);
286 
287 	void (*show_fw_status)(struct cs_dsp *dsp);
288 	void (*stop_watchdog)(struct cs_dsp *dsp);
289 
290 	int (*enable_memory)(struct cs_dsp *dsp);
291 	void (*disable_memory)(struct cs_dsp *dsp);
292 	int (*lock_memory)(struct cs_dsp *dsp, unsigned int lock_regions);
293 
294 	int (*enable_core)(struct cs_dsp *dsp);
295 	void (*disable_core)(struct cs_dsp *dsp);
296 
297 	int (*start_core)(struct cs_dsp *dsp);
298 	void (*stop_core)(struct cs_dsp *dsp);
299 };
300 
301 static const struct cs_dsp_ops cs_dsp_adsp1_ops;
302 static const struct cs_dsp_ops cs_dsp_adsp2_ops[];
303 static const struct cs_dsp_ops cs_dsp_halo_ops;
304 
305 struct cs_dsp_buf {
306 	struct list_head list;
307 	void *buf;
308 };
309 
310 static struct cs_dsp_buf *cs_dsp_buf_alloc(const void *src, size_t len,
311 					   struct list_head *list)
312 {
313 	struct cs_dsp_buf *buf = kzalloc(sizeof(*buf), GFP_KERNEL);
314 
315 	if (buf == NULL)
316 		return NULL;
317 
318 	buf->buf = vmalloc(len);
319 	if (!buf->buf) {
320 		kfree(buf);
321 		return NULL;
322 	}
323 	memcpy(buf->buf, src, len);
324 
325 	if (list)
326 		list_add_tail(&buf->list, list);
327 
328 	return buf;
329 }
330 
331 static void cs_dsp_buf_free(struct list_head *list)
332 {
333 	while (!list_empty(list)) {
334 		struct cs_dsp_buf *buf = list_first_entry(list,
335 							  struct cs_dsp_buf,
336 							  list);
337 		list_del(&buf->list);
338 		vfree(buf->buf);
339 		kfree(buf);
340 	}
341 }
342 
343 /**
344  * cs_dsp_mem_region_name() - Return a name string for a memory type
345  * @type: the memory type to match
346  *
347  * Return: A const string identifying the memory region.
348  */
349 const char *cs_dsp_mem_region_name(unsigned int type)
350 {
351 	switch (type) {
352 	case WMFW_ADSP1_PM:
353 		return "PM";
354 	case WMFW_HALO_PM_PACKED:
355 		return "PM_PACKED";
356 	case WMFW_ADSP1_DM:
357 		return "DM";
358 	case WMFW_ADSP2_XM:
359 		return "XM";
360 	case WMFW_HALO_XM_PACKED:
361 		return "XM_PACKED";
362 	case WMFW_ADSP2_YM:
363 		return "YM";
364 	case WMFW_HALO_YM_PACKED:
365 		return "YM_PACKED";
366 	case WMFW_ADSP1_ZM:
367 		return "ZM";
368 	default:
369 		return NULL;
370 	}
371 }
372 EXPORT_SYMBOL_GPL(cs_dsp_mem_region_name);
373 
374 #ifdef CONFIG_DEBUG_FS
375 static void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp, const char *s)
376 {
377 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
378 
379 	kfree(dsp->wmfw_file_name);
380 	dsp->wmfw_file_name = tmp;
381 }
382 
383 static void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp, const char *s)
384 {
385 	char *tmp = kasprintf(GFP_KERNEL, "%s\n", s);
386 
387 	kfree(dsp->bin_file_name);
388 	dsp->bin_file_name = tmp;
389 }
390 
391 static void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
392 {
393 	kfree(dsp->wmfw_file_name);
394 	kfree(dsp->bin_file_name);
395 	dsp->wmfw_file_name = NULL;
396 	dsp->bin_file_name = NULL;
397 }
398 
399 static ssize_t cs_dsp_debugfs_wmfw_read(struct file *file,
400 					char __user *user_buf,
401 					size_t count, loff_t *ppos)
402 {
403 	struct cs_dsp *dsp = file->private_data;
404 	ssize_t ret;
405 
406 	mutex_lock(&dsp->pwr_lock);
407 
408 	if (!dsp->wmfw_file_name || !dsp->booted)
409 		ret = 0;
410 	else
411 		ret = simple_read_from_buffer(user_buf, count, ppos,
412 					      dsp->wmfw_file_name,
413 					      strlen(dsp->wmfw_file_name));
414 
415 	mutex_unlock(&dsp->pwr_lock);
416 	return ret;
417 }
418 
419 static ssize_t cs_dsp_debugfs_bin_read(struct file *file,
420 				       char __user *user_buf,
421 				       size_t count, loff_t *ppos)
422 {
423 	struct cs_dsp *dsp = file->private_data;
424 	ssize_t ret;
425 
426 	mutex_lock(&dsp->pwr_lock);
427 
428 	if (!dsp->bin_file_name || !dsp->booted)
429 		ret = 0;
430 	else
431 		ret = simple_read_from_buffer(user_buf, count, ppos,
432 					      dsp->bin_file_name,
433 					      strlen(dsp->bin_file_name));
434 
435 	mutex_unlock(&dsp->pwr_lock);
436 	return ret;
437 }
438 
439 static const struct {
440 	const char *name;
441 	const struct file_operations fops;
442 } cs_dsp_debugfs_fops[] = {
443 	{
444 		.name = "wmfw_file_name",
445 		.fops = {
446 			.open = simple_open,
447 			.read = cs_dsp_debugfs_wmfw_read,
448 		},
449 	},
450 	{
451 		.name = "bin_file_name",
452 		.fops = {
453 			.open = simple_open,
454 			.read = cs_dsp_debugfs_bin_read,
455 		},
456 	},
457 };
458 
459 /**
460  * cs_dsp_init_debugfs() - Create and populate DSP representation in debugfs
461  * @dsp: pointer to DSP structure
462  * @debugfs_root: pointer to debugfs directory in which to create this DSP
463  *                representation
464  */
465 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
466 {
467 	struct dentry *root = NULL;
468 	int i;
469 
470 	root = debugfs_create_dir(dsp->name, debugfs_root);
471 
472 	debugfs_create_bool("booted", 0444, root, &dsp->booted);
473 	debugfs_create_bool("running", 0444, root, &dsp->running);
474 	debugfs_create_x32("fw_id", 0444, root, &dsp->fw_id);
475 	debugfs_create_x32("fw_version", 0444, root, &dsp->fw_id_version);
476 
477 	for (i = 0; i < ARRAY_SIZE(cs_dsp_debugfs_fops); ++i)
478 		debugfs_create_file(cs_dsp_debugfs_fops[i].name, 0444, root,
479 				    dsp, &cs_dsp_debugfs_fops[i].fops);
480 
481 	dsp->debugfs_root = root;
482 }
483 EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
484 
485 /**
486  * cs_dsp_cleanup_debugfs() - Removes DSP representation from debugfs
487  * @dsp: pointer to DSP structure
488  */
489 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
490 {
491 	cs_dsp_debugfs_clear(dsp);
492 	debugfs_remove_recursive(dsp->debugfs_root);
493 	dsp->debugfs_root = NULL;
494 }
495 EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
496 #else
497 void cs_dsp_init_debugfs(struct cs_dsp *dsp, struct dentry *debugfs_root)
498 {
499 }
500 EXPORT_SYMBOL_GPL(cs_dsp_init_debugfs);
501 
502 void cs_dsp_cleanup_debugfs(struct cs_dsp *dsp)
503 {
504 }
505 EXPORT_SYMBOL_GPL(cs_dsp_cleanup_debugfs);
506 
507 static inline void cs_dsp_debugfs_save_wmfwname(struct cs_dsp *dsp,
508 						const char *s)
509 {
510 }
511 
512 static inline void cs_dsp_debugfs_save_binname(struct cs_dsp *dsp,
513 					       const char *s)
514 {
515 }
516 
517 static inline void cs_dsp_debugfs_clear(struct cs_dsp *dsp)
518 {
519 }
520 #endif
521 
522 static const struct cs_dsp_region *cs_dsp_find_region(struct cs_dsp *dsp,
523 						      int type)
524 {
525 	int i;
526 
527 	for (i = 0; i < dsp->num_mems; i++)
528 		if (dsp->mem[i].type == type)
529 			return &dsp->mem[i];
530 
531 	return NULL;
532 }
533 
534 static unsigned int cs_dsp_region_to_reg(struct cs_dsp_region const *mem,
535 					 unsigned int offset)
536 {
537 	switch (mem->type) {
538 	case WMFW_ADSP1_PM:
539 		return mem->base + (offset * 3);
540 	case WMFW_ADSP1_DM:
541 	case WMFW_ADSP2_XM:
542 	case WMFW_ADSP2_YM:
543 	case WMFW_ADSP1_ZM:
544 		return mem->base + (offset * 2);
545 	default:
546 		WARN(1, "Unknown memory region type");
547 		return offset;
548 	}
549 }
550 
551 static unsigned int cs_dsp_halo_region_to_reg(struct cs_dsp_region const *mem,
552 					      unsigned int offset)
553 {
554 	switch (mem->type) {
555 	case WMFW_ADSP2_XM:
556 	case WMFW_ADSP2_YM:
557 		return mem->base + (offset * 4);
558 	case WMFW_HALO_XM_PACKED:
559 	case WMFW_HALO_YM_PACKED:
560 		return (mem->base + (offset * 3)) & ~0x3;
561 	case WMFW_HALO_PM_PACKED:
562 		return mem->base + (offset * 5);
563 	default:
564 		WARN(1, "Unknown memory region type");
565 		return offset;
566 	}
567 }
568 
569 static void cs_dsp_read_fw_status(struct cs_dsp *dsp,
570 				  int noffs, unsigned int *offs)
571 {
572 	unsigned int i;
573 	int ret;
574 
575 	for (i = 0; i < noffs; ++i) {
576 		ret = regmap_read(dsp->regmap, dsp->base + offs[i], &offs[i]);
577 		if (ret) {
578 			cs_dsp_err(dsp, "Failed to read SCRATCH%u: %d\n", i, ret);
579 			return;
580 		}
581 	}
582 }
583 
584 static void cs_dsp_adsp2_show_fw_status(struct cs_dsp *dsp)
585 {
586 	unsigned int offs[] = {
587 		ADSP2_SCRATCH0, ADSP2_SCRATCH1, ADSP2_SCRATCH2, ADSP2_SCRATCH3,
588 	};
589 
590 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
591 
592 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
593 		   offs[0], offs[1], offs[2], offs[3]);
594 }
595 
596 static void cs_dsp_adsp2v2_show_fw_status(struct cs_dsp *dsp)
597 {
598 	unsigned int offs[] = { ADSP2V2_SCRATCH0_1, ADSP2V2_SCRATCH2_3 };
599 
600 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
601 
602 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
603 		   offs[0] & 0xFFFF, offs[0] >> 16,
604 		   offs[1] & 0xFFFF, offs[1] >> 16);
605 }
606 
607 static void cs_dsp_halo_show_fw_status(struct cs_dsp *dsp)
608 {
609 	unsigned int offs[] = {
610 		HALO_SCRATCH1, HALO_SCRATCH2, HALO_SCRATCH3, HALO_SCRATCH4,
611 	};
612 
613 	cs_dsp_read_fw_status(dsp, ARRAY_SIZE(offs), offs);
614 
615 	cs_dsp_dbg(dsp, "FW SCRATCH 0:0x%x 1:0x%x 2:0x%x 3:0x%x\n",
616 		   offs[0], offs[1], offs[2], offs[3]);
617 }
618 
619 static int cs_dsp_coeff_base_reg(struct cs_dsp_coeff_ctl *ctl, unsigned int *reg,
620 				 unsigned int off)
621 {
622 	const struct cs_dsp_alg_region *alg_region = &ctl->alg_region;
623 	struct cs_dsp *dsp = ctl->dsp;
624 	const struct cs_dsp_region *mem;
625 
626 	mem = cs_dsp_find_region(dsp, alg_region->type);
627 	if (!mem) {
628 		cs_dsp_err(dsp, "No base for region %x\n",
629 			   alg_region->type);
630 		return -EINVAL;
631 	}
632 
633 	*reg = dsp->ops->region_to_reg(mem, ctl->alg_region.base + ctl->offset + off);
634 
635 	return 0;
636 }
637 
638 /**
639  * cs_dsp_coeff_write_acked_control() - Sends event_id to the acked control
640  * @ctl: pointer to acked coefficient control
641  * @event_id: the value to write to the given acked control
642  *
643  * Once the value has been written to the control the function shall block
644  * until the running firmware acknowledges the write or timeout is exceeded.
645  *
646  * Must be called with pwr_lock held.
647  *
648  * Return: Zero for success, a negative number on error.
649  */
650 int cs_dsp_coeff_write_acked_control(struct cs_dsp_coeff_ctl *ctl, unsigned int event_id)
651 {
652 	struct cs_dsp *dsp = ctl->dsp;
653 	__be32 val = cpu_to_be32(event_id);
654 	unsigned int reg;
655 	int i, ret;
656 
657 	lockdep_assert_held(&dsp->pwr_lock);
658 
659 	if (!dsp->running)
660 		return -EPERM;
661 
662 	ret = cs_dsp_coeff_base_reg(ctl, &reg, 0);
663 	if (ret)
664 		return ret;
665 
666 	cs_dsp_dbg(dsp, "Sending 0x%x to acked control alg 0x%x %s:0x%x\n",
667 		   event_id, ctl->alg_region.alg,
668 		   cs_dsp_mem_region_name(ctl->alg_region.type), ctl->offset);
669 
670 	ret = regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
671 	if (ret) {
672 		cs_dsp_err(dsp, "Failed to write %x: %d\n", reg, ret);
673 		return ret;
674 	}
675 
676 	/*
677 	 * Poll for ack, we initially poll at ~1ms intervals for firmwares
678 	 * that respond quickly, then go to ~10ms polls. A firmware is unlikely
679 	 * to ack instantly so we do the first 1ms delay before reading the
680 	 * control to avoid a pointless bus transaction
681 	 */
682 	for (i = 0; i < CS_DSP_ACKED_CTL_TIMEOUT_MS;) {
683 		switch (i) {
684 		case 0 ... CS_DSP_ACKED_CTL_N_QUICKPOLLS - 1:
685 			usleep_range(1000, 2000);
686 			i++;
687 			break;
688 		default:
689 			usleep_range(10000, 20000);
690 			i += 10;
691 			break;
692 		}
693 
694 		ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
695 		if (ret) {
696 			cs_dsp_err(dsp, "Failed to read %x: %d\n", reg, ret);
697 			return ret;
698 		}
699 
700 		if (val == 0) {
701 			cs_dsp_dbg(dsp, "Acked control ACKED at poll %u\n", i);
702 			return 0;
703 		}
704 	}
705 
706 	cs_dsp_warn(dsp, "Acked control @0x%x alg:0x%x %s:0x%x timed out\n",
707 		    reg, ctl->alg_region.alg,
708 		    cs_dsp_mem_region_name(ctl->alg_region.type),
709 		    ctl->offset);
710 
711 	return -ETIMEDOUT;
712 }
713 EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_acked_control);
714 
715 static int cs_dsp_coeff_write_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
716 				       unsigned int off, const void *buf, size_t len)
717 {
718 	struct cs_dsp *dsp = ctl->dsp;
719 	void *scratch;
720 	int ret;
721 	unsigned int reg;
722 
723 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
724 	if (ret)
725 		return ret;
726 
727 	scratch = kmemdup(buf, len, GFP_KERNEL | GFP_DMA);
728 	if (!scratch)
729 		return -ENOMEM;
730 
731 	ret = regmap_raw_write(dsp->regmap, reg, scratch,
732 			       len);
733 	if (ret) {
734 		cs_dsp_err(dsp, "Failed to write %zu bytes to %x: %d\n",
735 			   len, reg, ret);
736 		kfree(scratch);
737 		return ret;
738 	}
739 	cs_dsp_dbg(dsp, "Wrote %zu bytes to %x\n", len, reg);
740 
741 	kfree(scratch);
742 
743 	return 0;
744 }
745 
746 /**
747  * cs_dsp_coeff_write_ctrl() - Writes the given buffer to the given coefficient control
748  * @ctl: pointer to coefficient control
749  * @off: word offset at which data should be written
750  * @buf: the buffer to write to the given control
751  * @len: the length of the buffer in bytes
752  *
753  * Must be called with pwr_lock held.
754  *
755  * Return: Zero for success, a negative number on error.
756  */
757 int cs_dsp_coeff_write_ctrl(struct cs_dsp_coeff_ctl *ctl,
758 			    unsigned int off, const void *buf, size_t len)
759 {
760 	int ret = 0;
761 
762 	if (!ctl)
763 		return -ENOENT;
764 
765 	lockdep_assert_held(&ctl->dsp->pwr_lock);
766 
767 	if (len + off * sizeof(u32) > ctl->len)
768 		return -EINVAL;
769 
770 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
771 		ret = -EPERM;
772 	else if (buf != ctl->cache)
773 		memcpy(ctl->cache + off * sizeof(u32), buf, len);
774 
775 	ctl->set = 1;
776 	if (ctl->enabled && ctl->dsp->running)
777 		ret = cs_dsp_coeff_write_ctrl_raw(ctl, off, buf, len);
778 
779 	return ret;
780 }
781 EXPORT_SYMBOL_GPL(cs_dsp_coeff_write_ctrl);
782 
783 static int cs_dsp_coeff_read_ctrl_raw(struct cs_dsp_coeff_ctl *ctl,
784 				      unsigned int off, void *buf, size_t len)
785 {
786 	struct cs_dsp *dsp = ctl->dsp;
787 	void *scratch;
788 	int ret;
789 	unsigned int reg;
790 
791 	ret = cs_dsp_coeff_base_reg(ctl, &reg, off);
792 	if (ret)
793 		return ret;
794 
795 	scratch = kmalloc(len, GFP_KERNEL | GFP_DMA);
796 	if (!scratch)
797 		return -ENOMEM;
798 
799 	ret = regmap_raw_read(dsp->regmap, reg, scratch, len);
800 	if (ret) {
801 		cs_dsp_err(dsp, "Failed to read %zu bytes from %x: %d\n",
802 			   len, reg, ret);
803 		kfree(scratch);
804 		return ret;
805 	}
806 	cs_dsp_dbg(dsp, "Read %zu bytes from %x\n", len, reg);
807 
808 	memcpy(buf, scratch, len);
809 	kfree(scratch);
810 
811 	return 0;
812 }
813 
814 /**
815  * cs_dsp_coeff_read_ctrl() - Reads the given coefficient control into the given buffer
816  * @ctl: pointer to coefficient control
817  * @off: word offset at which data should be read
818  * @buf: the buffer to store to the given control
819  * @len: the length of the buffer in bytes
820  *
821  * Must be called with pwr_lock held.
822  *
823  * Return: Zero for success, a negative number on error.
824  */
825 int cs_dsp_coeff_read_ctrl(struct cs_dsp_coeff_ctl *ctl,
826 			   unsigned int off, void *buf, size_t len)
827 {
828 	int ret = 0;
829 
830 	if (!ctl)
831 		return -ENOENT;
832 
833 	lockdep_assert_held(&ctl->dsp->pwr_lock);
834 
835 	if (len + off * sizeof(u32) > ctl->len)
836 		return -EINVAL;
837 
838 	if (ctl->flags & WMFW_CTL_FLAG_VOLATILE) {
839 		if (ctl->enabled && ctl->dsp->running)
840 			return cs_dsp_coeff_read_ctrl_raw(ctl, off, buf, len);
841 		else
842 			return -EPERM;
843 	} else {
844 		if (!ctl->flags && ctl->enabled && ctl->dsp->running)
845 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
846 
847 		if (buf != ctl->cache)
848 			memcpy(buf, ctl->cache + off * sizeof(u32), len);
849 	}
850 
851 	return ret;
852 }
853 EXPORT_SYMBOL_GPL(cs_dsp_coeff_read_ctrl);
854 
855 static int cs_dsp_coeff_init_control_caches(struct cs_dsp *dsp)
856 {
857 	struct cs_dsp_coeff_ctl *ctl;
858 	int ret;
859 
860 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
861 		if (!ctl->enabled || ctl->set)
862 			continue;
863 		if (ctl->flags & WMFW_CTL_FLAG_VOLATILE)
864 			continue;
865 
866 		/*
867 		 * For readable controls populate the cache from the DSP memory.
868 		 * For non-readable controls the cache was zero-filled when
869 		 * created so we don't need to do anything.
870 		 */
871 		if (!ctl->flags || (ctl->flags & WMFW_CTL_FLAG_READABLE)) {
872 			ret = cs_dsp_coeff_read_ctrl_raw(ctl, 0, ctl->cache, ctl->len);
873 			if (ret < 0)
874 				return ret;
875 		}
876 	}
877 
878 	return 0;
879 }
880 
881 static int cs_dsp_coeff_sync_controls(struct cs_dsp *dsp)
882 {
883 	struct cs_dsp_coeff_ctl *ctl;
884 	int ret;
885 
886 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
887 		if (!ctl->enabled)
888 			continue;
889 		if (ctl->set && !(ctl->flags & WMFW_CTL_FLAG_VOLATILE)) {
890 			ret = cs_dsp_coeff_write_ctrl_raw(ctl, 0, ctl->cache,
891 							  ctl->len);
892 			if (ret < 0)
893 				return ret;
894 		}
895 	}
896 
897 	return 0;
898 }
899 
900 static void cs_dsp_signal_event_controls(struct cs_dsp *dsp,
901 					 unsigned int event)
902 {
903 	struct cs_dsp_coeff_ctl *ctl;
904 	int ret;
905 
906 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
907 		if (ctl->type != WMFW_CTL_TYPE_HOSTEVENT)
908 			continue;
909 
910 		if (!ctl->enabled)
911 			continue;
912 
913 		ret = cs_dsp_coeff_write_acked_control(ctl, event);
914 		if (ret)
915 			cs_dsp_warn(dsp,
916 				    "Failed to send 0x%x event to alg 0x%x (%d)\n",
917 				    event, ctl->alg_region.alg, ret);
918 	}
919 }
920 
921 static void cs_dsp_free_ctl_blk(struct cs_dsp_coeff_ctl *ctl)
922 {
923 	kfree(ctl->cache);
924 	kfree(ctl->subname);
925 	kfree(ctl);
926 }
927 
928 static int cs_dsp_create_control(struct cs_dsp *dsp,
929 				 const struct cs_dsp_alg_region *alg_region,
930 				 unsigned int offset, unsigned int len,
931 				 const char *subname, unsigned int subname_len,
932 				 unsigned int flags, unsigned int type)
933 {
934 	struct cs_dsp_coeff_ctl *ctl;
935 	int ret;
936 
937 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
938 		if (ctl->fw_name == dsp->fw_name &&
939 		    ctl->alg_region.alg == alg_region->alg &&
940 		    ctl->alg_region.type == alg_region->type) {
941 			if ((!subname && !ctl->subname) ||
942 			    (subname && !strncmp(ctl->subname, subname, ctl->subname_len))) {
943 				if (!ctl->enabled)
944 					ctl->enabled = 1;
945 				return 0;
946 			}
947 		}
948 	}
949 
950 	ctl = kzalloc(sizeof(*ctl), GFP_KERNEL);
951 	if (!ctl)
952 		return -ENOMEM;
953 
954 	ctl->fw_name = dsp->fw_name;
955 	ctl->alg_region = *alg_region;
956 	if (subname && dsp->fw_ver >= 2) {
957 		ctl->subname_len = subname_len;
958 		ctl->subname = kasprintf(GFP_KERNEL, "%.*s", subname_len, subname);
959 		if (!ctl->subname) {
960 			ret = -ENOMEM;
961 			goto err_ctl;
962 		}
963 	}
964 	ctl->enabled = 1;
965 	ctl->set = 0;
966 	ctl->dsp = dsp;
967 
968 	ctl->flags = flags;
969 	ctl->type = type;
970 	ctl->offset = offset;
971 	ctl->len = len;
972 	ctl->cache = kzalloc(ctl->len, GFP_KERNEL);
973 	if (!ctl->cache) {
974 		ret = -ENOMEM;
975 		goto err_ctl_subname;
976 	}
977 
978 	list_add(&ctl->list, &dsp->ctl_list);
979 
980 	if (dsp->client_ops->control_add) {
981 		ret = dsp->client_ops->control_add(ctl);
982 		if (ret)
983 			goto err_list_del;
984 	}
985 
986 	return 0;
987 
988 err_list_del:
989 	list_del(&ctl->list);
990 	kfree(ctl->cache);
991 err_ctl_subname:
992 	kfree(ctl->subname);
993 err_ctl:
994 	kfree(ctl);
995 
996 	return ret;
997 }
998 
999 struct cs_dsp_coeff_parsed_alg {
1000 	int id;
1001 	const u8 *name;
1002 	int name_len;
1003 	int ncoeff;
1004 };
1005 
1006 struct cs_dsp_coeff_parsed_coeff {
1007 	int offset;
1008 	int mem_type;
1009 	const u8 *name;
1010 	int name_len;
1011 	unsigned int ctl_type;
1012 	int flags;
1013 	int len;
1014 };
1015 
1016 static int cs_dsp_coeff_parse_string(int bytes, const u8 **pos, const u8 **str)
1017 {
1018 	int length;
1019 
1020 	switch (bytes) {
1021 	case 1:
1022 		length = **pos;
1023 		break;
1024 	case 2:
1025 		length = le16_to_cpu(*((__le16 *)*pos));
1026 		break;
1027 	default:
1028 		return 0;
1029 	}
1030 
1031 	if (str)
1032 		*str = *pos + bytes;
1033 
1034 	*pos += ((length + bytes) + 3) & ~0x03;
1035 
1036 	return length;
1037 }
1038 
1039 static int cs_dsp_coeff_parse_int(int bytes, const u8 **pos)
1040 {
1041 	int val = 0;
1042 
1043 	switch (bytes) {
1044 	case 2:
1045 		val = le16_to_cpu(*((__le16 *)*pos));
1046 		break;
1047 	case 4:
1048 		val = le32_to_cpu(*((__le32 *)*pos));
1049 		break;
1050 	default:
1051 		break;
1052 	}
1053 
1054 	*pos += bytes;
1055 
1056 	return val;
1057 }
1058 
1059 static inline void cs_dsp_coeff_parse_alg(struct cs_dsp *dsp, const u8 **data,
1060 					  struct cs_dsp_coeff_parsed_alg *blk)
1061 {
1062 	const struct wmfw_adsp_alg_data *raw;
1063 
1064 	switch (dsp->fw_ver) {
1065 	case 0:
1066 	case 1:
1067 		raw = (const struct wmfw_adsp_alg_data *)*data;
1068 		*data = raw->data;
1069 
1070 		blk->id = le32_to_cpu(raw->id);
1071 		blk->name = raw->name;
1072 		blk->name_len = strlen(raw->name);
1073 		blk->ncoeff = le32_to_cpu(raw->ncoeff);
1074 		break;
1075 	default:
1076 		blk->id = cs_dsp_coeff_parse_int(sizeof(raw->id), data);
1077 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), data,
1078 							  &blk->name);
1079 		cs_dsp_coeff_parse_string(sizeof(u16), data, NULL);
1080 		blk->ncoeff = cs_dsp_coeff_parse_int(sizeof(raw->ncoeff), data);
1081 		break;
1082 	}
1083 
1084 	cs_dsp_dbg(dsp, "Algorithm ID: %#x\n", blk->id);
1085 	cs_dsp_dbg(dsp, "Algorithm name: %.*s\n", blk->name_len, blk->name);
1086 	cs_dsp_dbg(dsp, "# of coefficient descriptors: %#x\n", blk->ncoeff);
1087 }
1088 
1089 static inline void cs_dsp_coeff_parse_coeff(struct cs_dsp *dsp, const u8 **data,
1090 					    struct cs_dsp_coeff_parsed_coeff *blk)
1091 {
1092 	const struct wmfw_adsp_coeff_data *raw;
1093 	const u8 *tmp;
1094 	int length;
1095 
1096 	switch (dsp->fw_ver) {
1097 	case 0:
1098 	case 1:
1099 		raw = (const struct wmfw_adsp_coeff_data *)*data;
1100 		*data = *data + sizeof(raw->hdr) + le32_to_cpu(raw->hdr.size);
1101 
1102 		blk->offset = le16_to_cpu(raw->hdr.offset);
1103 		blk->mem_type = le16_to_cpu(raw->hdr.type);
1104 		blk->name = raw->name;
1105 		blk->name_len = strlen(raw->name);
1106 		blk->ctl_type = le16_to_cpu(raw->ctl_type);
1107 		blk->flags = le16_to_cpu(raw->flags);
1108 		blk->len = le32_to_cpu(raw->len);
1109 		break;
1110 	default:
1111 		tmp = *data;
1112 		blk->offset = cs_dsp_coeff_parse_int(sizeof(raw->hdr.offset), &tmp);
1113 		blk->mem_type = cs_dsp_coeff_parse_int(sizeof(raw->hdr.type), &tmp);
1114 		length = cs_dsp_coeff_parse_int(sizeof(raw->hdr.size), &tmp);
1115 		blk->name_len = cs_dsp_coeff_parse_string(sizeof(u8), &tmp,
1116 							  &blk->name);
1117 		cs_dsp_coeff_parse_string(sizeof(u8), &tmp, NULL);
1118 		cs_dsp_coeff_parse_string(sizeof(u16), &tmp, NULL);
1119 		blk->ctl_type = cs_dsp_coeff_parse_int(sizeof(raw->ctl_type), &tmp);
1120 		blk->flags = cs_dsp_coeff_parse_int(sizeof(raw->flags), &tmp);
1121 		blk->len = cs_dsp_coeff_parse_int(sizeof(raw->len), &tmp);
1122 
1123 		*data = *data + sizeof(raw->hdr) + length;
1124 		break;
1125 	}
1126 
1127 	cs_dsp_dbg(dsp, "\tCoefficient type: %#x\n", blk->mem_type);
1128 	cs_dsp_dbg(dsp, "\tCoefficient offset: %#x\n", blk->offset);
1129 	cs_dsp_dbg(dsp, "\tCoefficient name: %.*s\n", blk->name_len, blk->name);
1130 	cs_dsp_dbg(dsp, "\tCoefficient flags: %#x\n", blk->flags);
1131 	cs_dsp_dbg(dsp, "\tALSA control type: %#x\n", blk->ctl_type);
1132 	cs_dsp_dbg(dsp, "\tALSA control len: %#x\n", blk->len);
1133 }
1134 
1135 static int cs_dsp_check_coeff_flags(struct cs_dsp *dsp,
1136 				    const struct cs_dsp_coeff_parsed_coeff *coeff_blk,
1137 				    unsigned int f_required,
1138 				    unsigned int f_illegal)
1139 {
1140 	if ((coeff_blk->flags & f_illegal) ||
1141 	    ((coeff_blk->flags & f_required) != f_required)) {
1142 		cs_dsp_err(dsp, "Illegal flags 0x%x for control type 0x%x\n",
1143 			   coeff_blk->flags, coeff_blk->ctl_type);
1144 		return -EINVAL;
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static int cs_dsp_parse_coeff(struct cs_dsp *dsp,
1151 			      const struct wmfw_region *region)
1152 {
1153 	struct cs_dsp_alg_region alg_region = {};
1154 	struct cs_dsp_coeff_parsed_alg alg_blk;
1155 	struct cs_dsp_coeff_parsed_coeff coeff_blk;
1156 	const u8 *data = region->data;
1157 	int i, ret;
1158 
1159 	cs_dsp_coeff_parse_alg(dsp, &data, &alg_blk);
1160 	for (i = 0; i < alg_blk.ncoeff; i++) {
1161 		cs_dsp_coeff_parse_coeff(dsp, &data, &coeff_blk);
1162 
1163 		switch (coeff_blk.ctl_type) {
1164 		case WMFW_CTL_TYPE_BYTES:
1165 			break;
1166 		case WMFW_CTL_TYPE_ACKED:
1167 			if (coeff_blk.flags & WMFW_CTL_FLAG_SYS)
1168 				continue;	/* ignore */
1169 
1170 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1171 						       WMFW_CTL_FLAG_VOLATILE |
1172 						       WMFW_CTL_FLAG_WRITEABLE |
1173 						       WMFW_CTL_FLAG_READABLE,
1174 						       0);
1175 			if (ret)
1176 				return -EINVAL;
1177 			break;
1178 		case WMFW_CTL_TYPE_HOSTEVENT:
1179 		case WMFW_CTL_TYPE_FWEVENT:
1180 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1181 						       WMFW_CTL_FLAG_SYS |
1182 						       WMFW_CTL_FLAG_VOLATILE |
1183 						       WMFW_CTL_FLAG_WRITEABLE |
1184 						       WMFW_CTL_FLAG_READABLE,
1185 						       0);
1186 			if (ret)
1187 				return -EINVAL;
1188 			break;
1189 		case WMFW_CTL_TYPE_HOST_BUFFER:
1190 			ret = cs_dsp_check_coeff_flags(dsp, &coeff_blk,
1191 						       WMFW_CTL_FLAG_SYS |
1192 						       WMFW_CTL_FLAG_VOLATILE |
1193 						       WMFW_CTL_FLAG_READABLE,
1194 						       0);
1195 			if (ret)
1196 				return -EINVAL;
1197 			break;
1198 		default:
1199 			cs_dsp_err(dsp, "Unknown control type: %d\n",
1200 				   coeff_blk.ctl_type);
1201 			return -EINVAL;
1202 		}
1203 
1204 		alg_region.type = coeff_blk.mem_type;
1205 		alg_region.alg = alg_blk.id;
1206 
1207 		ret = cs_dsp_create_control(dsp, &alg_region,
1208 					    coeff_blk.offset,
1209 					    coeff_blk.len,
1210 					    coeff_blk.name,
1211 					    coeff_blk.name_len,
1212 					    coeff_blk.flags,
1213 					    coeff_blk.ctl_type);
1214 		if (ret < 0)
1215 			cs_dsp_err(dsp, "Failed to create control: %.*s, %d\n",
1216 				   coeff_blk.name_len, coeff_blk.name, ret);
1217 	}
1218 
1219 	return 0;
1220 }
1221 
1222 static unsigned int cs_dsp_adsp1_parse_sizes(struct cs_dsp *dsp,
1223 					     const char * const file,
1224 					     unsigned int pos,
1225 					     const struct firmware *firmware)
1226 {
1227 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1228 
1229 	adsp1_sizes = (void *)&firmware->data[pos];
1230 
1231 	cs_dsp_dbg(dsp, "%s: %d DM, %d PM, %d ZM\n", file,
1232 		   le32_to_cpu(adsp1_sizes->dm), le32_to_cpu(adsp1_sizes->pm),
1233 		   le32_to_cpu(adsp1_sizes->zm));
1234 
1235 	return pos + sizeof(*adsp1_sizes);
1236 }
1237 
1238 static unsigned int cs_dsp_adsp2_parse_sizes(struct cs_dsp *dsp,
1239 					     const char * const file,
1240 					     unsigned int pos,
1241 					     const struct firmware *firmware)
1242 {
1243 	const struct wmfw_adsp2_sizes *adsp2_sizes;
1244 
1245 	adsp2_sizes = (void *)&firmware->data[pos];
1246 
1247 	cs_dsp_dbg(dsp, "%s: %d XM, %d YM %d PM, %d ZM\n", file,
1248 		   le32_to_cpu(adsp2_sizes->xm), le32_to_cpu(adsp2_sizes->ym),
1249 		   le32_to_cpu(adsp2_sizes->pm), le32_to_cpu(adsp2_sizes->zm));
1250 
1251 	return pos + sizeof(*adsp2_sizes);
1252 }
1253 
1254 static bool cs_dsp_validate_version(struct cs_dsp *dsp, unsigned int version)
1255 {
1256 	switch (version) {
1257 	case 0:
1258 		cs_dsp_warn(dsp, "Deprecated file format %d\n", version);
1259 		return true;
1260 	case 1:
1261 	case 2:
1262 		return true;
1263 	default:
1264 		return false;
1265 	}
1266 }
1267 
1268 static bool cs_dsp_halo_validate_version(struct cs_dsp *dsp, unsigned int version)
1269 {
1270 	switch (version) {
1271 	case 3:
1272 		return true;
1273 	default:
1274 		return false;
1275 	}
1276 }
1277 
1278 static int cs_dsp_load(struct cs_dsp *dsp, const struct firmware *firmware,
1279 		       const char *file)
1280 {
1281 	LIST_HEAD(buf_list);
1282 	struct regmap *regmap = dsp->regmap;
1283 	unsigned int pos = 0;
1284 	const struct wmfw_header *header;
1285 	const struct wmfw_adsp1_sizes *adsp1_sizes;
1286 	const struct wmfw_footer *footer;
1287 	const struct wmfw_region *region;
1288 	const struct cs_dsp_region *mem;
1289 	const char *region_name;
1290 	char *text = NULL;
1291 	struct cs_dsp_buf *buf;
1292 	unsigned int reg;
1293 	int regions = 0;
1294 	int ret, offset, type;
1295 
1296 	ret = -EINVAL;
1297 
1298 	pos = sizeof(*header) + sizeof(*adsp1_sizes) + sizeof(*footer);
1299 	if (pos >= firmware->size) {
1300 		cs_dsp_err(dsp, "%s: file too short, %zu bytes\n",
1301 			   file, firmware->size);
1302 		goto out_fw;
1303 	}
1304 
1305 	header = (void *)&firmware->data[0];
1306 
1307 	if (memcmp(&header->magic[0], "WMFW", 4) != 0) {
1308 		cs_dsp_err(dsp, "%s: invalid magic\n", file);
1309 		goto out_fw;
1310 	}
1311 
1312 	if (!dsp->ops->validate_version(dsp, header->ver)) {
1313 		cs_dsp_err(dsp, "%s: unknown file format %d\n",
1314 			   file, header->ver);
1315 		goto out_fw;
1316 	}
1317 
1318 	cs_dsp_info(dsp, "Firmware version: %d\n", header->ver);
1319 	dsp->fw_ver = header->ver;
1320 
1321 	if (header->core != dsp->type) {
1322 		cs_dsp_err(dsp, "%s: invalid core %d != %d\n",
1323 			   file, header->core, dsp->type);
1324 		goto out_fw;
1325 	}
1326 
1327 	pos = sizeof(*header);
1328 	pos = dsp->ops->parse_sizes(dsp, file, pos, firmware);
1329 
1330 	footer = (void *)&firmware->data[pos];
1331 	pos += sizeof(*footer);
1332 
1333 	if (le32_to_cpu(header->len) != pos) {
1334 		cs_dsp_err(dsp, "%s: unexpected header length %d\n",
1335 			   file, le32_to_cpu(header->len));
1336 		goto out_fw;
1337 	}
1338 
1339 	cs_dsp_dbg(dsp, "%s: timestamp %llu\n", file,
1340 		   le64_to_cpu(footer->timestamp));
1341 
1342 	while (pos < firmware->size &&
1343 	       sizeof(*region) < firmware->size - pos) {
1344 		region = (void *)&(firmware->data[pos]);
1345 		region_name = "Unknown";
1346 		reg = 0;
1347 		text = NULL;
1348 		offset = le32_to_cpu(region->offset) & 0xffffff;
1349 		type = be32_to_cpu(region->type) & 0xff;
1350 
1351 		switch (type) {
1352 		case WMFW_NAME_TEXT:
1353 			region_name = "Firmware name";
1354 			text = kzalloc(le32_to_cpu(region->len) + 1,
1355 				       GFP_KERNEL);
1356 			break;
1357 		case WMFW_ALGORITHM_DATA:
1358 			region_name = "Algorithm";
1359 			ret = cs_dsp_parse_coeff(dsp, region);
1360 			if (ret != 0)
1361 				goto out_fw;
1362 			break;
1363 		case WMFW_INFO_TEXT:
1364 			region_name = "Information";
1365 			text = kzalloc(le32_to_cpu(region->len) + 1,
1366 				       GFP_KERNEL);
1367 			break;
1368 		case WMFW_ABSOLUTE:
1369 			region_name = "Absolute";
1370 			reg = offset;
1371 			break;
1372 		case WMFW_ADSP1_PM:
1373 		case WMFW_ADSP1_DM:
1374 		case WMFW_ADSP2_XM:
1375 		case WMFW_ADSP2_YM:
1376 		case WMFW_ADSP1_ZM:
1377 		case WMFW_HALO_PM_PACKED:
1378 		case WMFW_HALO_XM_PACKED:
1379 		case WMFW_HALO_YM_PACKED:
1380 			mem = cs_dsp_find_region(dsp, type);
1381 			if (!mem) {
1382 				cs_dsp_err(dsp, "No region of type: %x\n", type);
1383 				ret = -EINVAL;
1384 				goto out_fw;
1385 			}
1386 
1387 			region_name = cs_dsp_mem_region_name(type);
1388 			reg = dsp->ops->region_to_reg(mem, offset);
1389 			break;
1390 		default:
1391 			cs_dsp_warn(dsp,
1392 				    "%s.%d: Unknown region type %x at %d(%x)\n",
1393 				    file, regions, type, pos, pos);
1394 			break;
1395 		}
1396 
1397 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at %d in %s\n", file,
1398 			   regions, le32_to_cpu(region->len), offset,
1399 			   region_name);
1400 
1401 		if (le32_to_cpu(region->len) >
1402 		    firmware->size - pos - sizeof(*region)) {
1403 			cs_dsp_err(dsp,
1404 				   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
1405 				   file, regions, region_name,
1406 				   le32_to_cpu(region->len), firmware->size);
1407 			ret = -EINVAL;
1408 			goto out_fw;
1409 		}
1410 
1411 		if (text) {
1412 			memcpy(text, region->data, le32_to_cpu(region->len));
1413 			cs_dsp_info(dsp, "%s: %s\n", file, text);
1414 			kfree(text);
1415 			text = NULL;
1416 		}
1417 
1418 		if (reg) {
1419 			buf = cs_dsp_buf_alloc(region->data,
1420 					       le32_to_cpu(region->len),
1421 					       &buf_list);
1422 			if (!buf) {
1423 				cs_dsp_err(dsp, "Out of memory\n");
1424 				ret = -ENOMEM;
1425 				goto out_fw;
1426 			}
1427 
1428 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
1429 						     le32_to_cpu(region->len));
1430 			if (ret != 0) {
1431 				cs_dsp_err(dsp,
1432 					   "%s.%d: Failed to write %d bytes at %d in %s: %d\n",
1433 					   file, regions,
1434 					   le32_to_cpu(region->len), offset,
1435 					   region_name, ret);
1436 				goto out_fw;
1437 			}
1438 		}
1439 
1440 		pos += le32_to_cpu(region->len) + sizeof(*region);
1441 		regions++;
1442 	}
1443 
1444 	ret = regmap_async_complete(regmap);
1445 	if (ret != 0) {
1446 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
1447 		goto out_fw;
1448 	}
1449 
1450 	if (pos > firmware->size)
1451 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
1452 			    file, regions, pos - firmware->size);
1453 
1454 	cs_dsp_debugfs_save_wmfwname(dsp, file);
1455 
1456 out_fw:
1457 	regmap_async_complete(regmap);
1458 	cs_dsp_buf_free(&buf_list);
1459 	kfree(text);
1460 
1461 	return ret;
1462 }
1463 
1464 /**
1465  * cs_dsp_get_ctl() - Finds a matching coefficient control
1466  * @dsp: pointer to DSP structure
1467  * @name: pointer to string to match with a control's subname
1468  * @type: the algorithm type to match
1469  * @alg: the algorithm id to match
1470  *
1471  * Find cs_dsp_coeff_ctl with input name as its subname
1472  *
1473  * Return: pointer to the control on success, NULL if not found
1474  */
1475 struct cs_dsp_coeff_ctl *cs_dsp_get_ctl(struct cs_dsp *dsp, const char *name, int type,
1476 					unsigned int alg)
1477 {
1478 	struct cs_dsp_coeff_ctl *pos, *rslt = NULL;
1479 
1480 	lockdep_assert_held(&dsp->pwr_lock);
1481 
1482 	list_for_each_entry(pos, &dsp->ctl_list, list) {
1483 		if (!pos->subname)
1484 			continue;
1485 		if (strncmp(pos->subname, name, pos->subname_len) == 0 &&
1486 		    pos->fw_name == dsp->fw_name &&
1487 		    pos->alg_region.alg == alg &&
1488 		    pos->alg_region.type == type) {
1489 			rslt = pos;
1490 			break;
1491 		}
1492 	}
1493 
1494 	return rslt;
1495 }
1496 EXPORT_SYMBOL_GPL(cs_dsp_get_ctl);
1497 
1498 static void cs_dsp_ctl_fixup_base(struct cs_dsp *dsp,
1499 				  const struct cs_dsp_alg_region *alg_region)
1500 {
1501 	struct cs_dsp_coeff_ctl *ctl;
1502 
1503 	list_for_each_entry(ctl, &dsp->ctl_list, list) {
1504 		if (ctl->fw_name == dsp->fw_name &&
1505 		    alg_region->alg == ctl->alg_region.alg &&
1506 		    alg_region->type == ctl->alg_region.type) {
1507 			ctl->alg_region.base = alg_region->base;
1508 		}
1509 	}
1510 }
1511 
1512 static void *cs_dsp_read_algs(struct cs_dsp *dsp, size_t n_algs,
1513 			      const struct cs_dsp_region *mem,
1514 			      unsigned int pos, unsigned int len)
1515 {
1516 	void *alg;
1517 	unsigned int reg;
1518 	int ret;
1519 	__be32 val;
1520 
1521 	if (n_algs == 0) {
1522 		cs_dsp_err(dsp, "No algorithms\n");
1523 		return ERR_PTR(-EINVAL);
1524 	}
1525 
1526 	if (n_algs > 1024) {
1527 		cs_dsp_err(dsp, "Algorithm count %zx excessive\n", n_algs);
1528 		return ERR_PTR(-EINVAL);
1529 	}
1530 
1531 	/* Read the terminator first to validate the length */
1532 	reg = dsp->ops->region_to_reg(mem, pos + len);
1533 
1534 	ret = regmap_raw_read(dsp->regmap, reg, &val, sizeof(val));
1535 	if (ret != 0) {
1536 		cs_dsp_err(dsp, "Failed to read algorithm list end: %d\n",
1537 			   ret);
1538 		return ERR_PTR(ret);
1539 	}
1540 
1541 	if (be32_to_cpu(val) != 0xbedead)
1542 		cs_dsp_warn(dsp, "Algorithm list end %x 0x%x != 0xbedead\n",
1543 			    reg, be32_to_cpu(val));
1544 
1545 	/* Convert length from DSP words to bytes */
1546 	len *= sizeof(u32);
1547 
1548 	alg = kzalloc(len, GFP_KERNEL | GFP_DMA);
1549 	if (!alg)
1550 		return ERR_PTR(-ENOMEM);
1551 
1552 	reg = dsp->ops->region_to_reg(mem, pos);
1553 
1554 	ret = regmap_raw_read(dsp->regmap, reg, alg, len);
1555 	if (ret != 0) {
1556 		cs_dsp_err(dsp, "Failed to read algorithm list: %d\n", ret);
1557 		kfree(alg);
1558 		return ERR_PTR(ret);
1559 	}
1560 
1561 	return alg;
1562 }
1563 
1564 /**
1565  * cs_dsp_find_alg_region() - Finds a matching algorithm region
1566  * @dsp: pointer to DSP structure
1567  * @type: the algorithm type to match
1568  * @id: the algorithm id to match
1569  *
1570  * Return: Pointer to matching algorithm region, or NULL if not found.
1571  */
1572 struct cs_dsp_alg_region *cs_dsp_find_alg_region(struct cs_dsp *dsp,
1573 						 int type, unsigned int id)
1574 {
1575 	struct cs_dsp_alg_region *alg_region;
1576 
1577 	lockdep_assert_held(&dsp->pwr_lock);
1578 
1579 	list_for_each_entry(alg_region, &dsp->alg_regions, list) {
1580 		if (id == alg_region->alg && type == alg_region->type)
1581 			return alg_region;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 EXPORT_SYMBOL_GPL(cs_dsp_find_alg_region);
1587 
1588 static struct cs_dsp_alg_region *cs_dsp_create_region(struct cs_dsp *dsp,
1589 						      int type, __be32 id,
1590 						      __be32 ver, __be32 base)
1591 {
1592 	struct cs_dsp_alg_region *alg_region;
1593 
1594 	alg_region = kzalloc(sizeof(*alg_region), GFP_KERNEL);
1595 	if (!alg_region)
1596 		return ERR_PTR(-ENOMEM);
1597 
1598 	alg_region->type = type;
1599 	alg_region->alg = be32_to_cpu(id);
1600 	alg_region->ver = be32_to_cpu(ver);
1601 	alg_region->base = be32_to_cpu(base);
1602 
1603 	list_add_tail(&alg_region->list, &dsp->alg_regions);
1604 
1605 	if (dsp->fw_ver > 0)
1606 		cs_dsp_ctl_fixup_base(dsp, alg_region);
1607 
1608 	return alg_region;
1609 }
1610 
1611 static void cs_dsp_free_alg_regions(struct cs_dsp *dsp)
1612 {
1613 	struct cs_dsp_alg_region *alg_region;
1614 
1615 	while (!list_empty(&dsp->alg_regions)) {
1616 		alg_region = list_first_entry(&dsp->alg_regions,
1617 					      struct cs_dsp_alg_region,
1618 					      list);
1619 		list_del(&alg_region->list);
1620 		kfree(alg_region);
1621 	}
1622 }
1623 
1624 static void cs_dsp_parse_wmfw_id_header(struct cs_dsp *dsp,
1625 					struct wmfw_id_hdr *fw, int nalgs)
1626 {
1627 	dsp->fw_id = be32_to_cpu(fw->id);
1628 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1629 
1630 	cs_dsp_info(dsp, "Firmware: %x v%d.%d.%d, %d algorithms\n",
1631 		    dsp->fw_id, (dsp->fw_id_version & 0xff0000) >> 16,
1632 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1633 		    nalgs);
1634 }
1635 
1636 static void cs_dsp_parse_wmfw_v3_id_header(struct cs_dsp *dsp,
1637 					   struct wmfw_v3_id_hdr *fw, int nalgs)
1638 {
1639 	dsp->fw_id = be32_to_cpu(fw->id);
1640 	dsp->fw_id_version = be32_to_cpu(fw->ver);
1641 	dsp->fw_vendor_id = be32_to_cpu(fw->vendor_id);
1642 
1643 	cs_dsp_info(dsp, "Firmware: %x vendor: 0x%x v%d.%d.%d, %d algorithms\n",
1644 		    dsp->fw_id, dsp->fw_vendor_id,
1645 		    (dsp->fw_id_version & 0xff0000) >> 16,
1646 		    (dsp->fw_id_version & 0xff00) >> 8, dsp->fw_id_version & 0xff,
1647 		    nalgs);
1648 }
1649 
1650 static int cs_dsp_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1651 				 int nregions, const int *type, __be32 *base)
1652 {
1653 	struct cs_dsp_alg_region *alg_region;
1654 	int i;
1655 
1656 	for (i = 0; i < nregions; i++) {
1657 		alg_region = cs_dsp_create_region(dsp, type[i], id, ver, base[i]);
1658 		if (IS_ERR(alg_region))
1659 			return PTR_ERR(alg_region);
1660 	}
1661 
1662 	return 0;
1663 }
1664 
1665 static int cs_dsp_adsp1_setup_algs(struct cs_dsp *dsp)
1666 {
1667 	struct wmfw_adsp1_id_hdr adsp1_id;
1668 	struct wmfw_adsp1_alg_hdr *adsp1_alg;
1669 	struct cs_dsp_alg_region *alg_region;
1670 	const struct cs_dsp_region *mem;
1671 	unsigned int pos, len;
1672 	size_t n_algs;
1673 	int i, ret;
1674 
1675 	mem = cs_dsp_find_region(dsp, WMFW_ADSP1_DM);
1676 	if (WARN_ON(!mem))
1677 		return -EINVAL;
1678 
1679 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp1_id,
1680 			      sizeof(adsp1_id));
1681 	if (ret != 0) {
1682 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1683 			   ret);
1684 		return ret;
1685 	}
1686 
1687 	n_algs = be32_to_cpu(adsp1_id.n_algs);
1688 
1689 	cs_dsp_parse_wmfw_id_header(dsp, &adsp1_id.fw, n_algs);
1690 
1691 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1692 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1693 					  adsp1_id.zm);
1694 	if (IS_ERR(alg_region))
1695 		return PTR_ERR(alg_region);
1696 
1697 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1698 					  adsp1_id.fw.id, adsp1_id.fw.ver,
1699 					  adsp1_id.dm);
1700 	if (IS_ERR(alg_region))
1701 		return PTR_ERR(alg_region);
1702 
1703 	/* Calculate offset and length in DSP words */
1704 	pos = sizeof(adsp1_id) / sizeof(u32);
1705 	len = (sizeof(*adsp1_alg) * n_algs) / sizeof(u32);
1706 
1707 	adsp1_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1708 	if (IS_ERR(adsp1_alg))
1709 		return PTR_ERR(adsp1_alg);
1710 
1711 	for (i = 0; i < n_algs; i++) {
1712 		cs_dsp_info(dsp, "%d: ID %x v%d.%d.%d DM@%x ZM@%x\n",
1713 			    i, be32_to_cpu(adsp1_alg[i].alg.id),
1714 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff0000) >> 16,
1715 			    (be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff00) >> 8,
1716 			    be32_to_cpu(adsp1_alg[i].alg.ver) & 0xff,
1717 			    be32_to_cpu(adsp1_alg[i].dm),
1718 			    be32_to_cpu(adsp1_alg[i].zm));
1719 
1720 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_DM,
1721 						  adsp1_alg[i].alg.id,
1722 						  adsp1_alg[i].alg.ver,
1723 						  adsp1_alg[i].dm);
1724 		if (IS_ERR(alg_region)) {
1725 			ret = PTR_ERR(alg_region);
1726 			goto out;
1727 		}
1728 		if (dsp->fw_ver == 0) {
1729 			if (i + 1 < n_algs) {
1730 				len = be32_to_cpu(adsp1_alg[i + 1].dm);
1731 				len -= be32_to_cpu(adsp1_alg[i].dm);
1732 				len *= 4;
1733 				cs_dsp_create_control(dsp, alg_region, 0,
1734 						      len, NULL, 0, 0,
1735 						      WMFW_CTL_TYPE_BYTES);
1736 			} else {
1737 				cs_dsp_warn(dsp, "Missing length info for region DM with ID %x\n",
1738 					    be32_to_cpu(adsp1_alg[i].alg.id));
1739 			}
1740 		}
1741 
1742 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP1_ZM,
1743 						  adsp1_alg[i].alg.id,
1744 						  adsp1_alg[i].alg.ver,
1745 						  adsp1_alg[i].zm);
1746 		if (IS_ERR(alg_region)) {
1747 			ret = PTR_ERR(alg_region);
1748 			goto out;
1749 		}
1750 		if (dsp->fw_ver == 0) {
1751 			if (i + 1 < n_algs) {
1752 				len = be32_to_cpu(adsp1_alg[i + 1].zm);
1753 				len -= be32_to_cpu(adsp1_alg[i].zm);
1754 				len *= 4;
1755 				cs_dsp_create_control(dsp, alg_region, 0,
1756 						      len, NULL, 0, 0,
1757 						      WMFW_CTL_TYPE_BYTES);
1758 			} else {
1759 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1760 					    be32_to_cpu(adsp1_alg[i].alg.id));
1761 			}
1762 		}
1763 	}
1764 
1765 out:
1766 	kfree(adsp1_alg);
1767 	return ret;
1768 }
1769 
1770 static int cs_dsp_adsp2_setup_algs(struct cs_dsp *dsp)
1771 {
1772 	struct wmfw_adsp2_id_hdr adsp2_id;
1773 	struct wmfw_adsp2_alg_hdr *adsp2_alg;
1774 	struct cs_dsp_alg_region *alg_region;
1775 	const struct cs_dsp_region *mem;
1776 	unsigned int pos, len;
1777 	size_t n_algs;
1778 	int i, ret;
1779 
1780 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1781 	if (WARN_ON(!mem))
1782 		return -EINVAL;
1783 
1784 	ret = regmap_raw_read(dsp->regmap, mem->base, &adsp2_id,
1785 			      sizeof(adsp2_id));
1786 	if (ret != 0) {
1787 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1788 			   ret);
1789 		return ret;
1790 	}
1791 
1792 	n_algs = be32_to_cpu(adsp2_id.n_algs);
1793 
1794 	cs_dsp_parse_wmfw_id_header(dsp, &adsp2_id.fw, n_algs);
1795 
1796 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1797 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1798 					  adsp2_id.xm);
1799 	if (IS_ERR(alg_region))
1800 		return PTR_ERR(alg_region);
1801 
1802 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1803 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1804 					  adsp2_id.ym);
1805 	if (IS_ERR(alg_region))
1806 		return PTR_ERR(alg_region);
1807 
1808 	alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1809 					  adsp2_id.fw.id, adsp2_id.fw.ver,
1810 					  adsp2_id.zm);
1811 	if (IS_ERR(alg_region))
1812 		return PTR_ERR(alg_region);
1813 
1814 	/* Calculate offset and length in DSP words */
1815 	pos = sizeof(adsp2_id) / sizeof(u32);
1816 	len = (sizeof(*adsp2_alg) * n_algs) / sizeof(u32);
1817 
1818 	adsp2_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1819 	if (IS_ERR(adsp2_alg))
1820 		return PTR_ERR(adsp2_alg);
1821 
1822 	for (i = 0; i < n_algs; i++) {
1823 		cs_dsp_info(dsp,
1824 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x ZM@%x\n",
1825 			    i, be32_to_cpu(adsp2_alg[i].alg.id),
1826 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff0000) >> 16,
1827 			    (be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff00) >> 8,
1828 			    be32_to_cpu(adsp2_alg[i].alg.ver) & 0xff,
1829 			    be32_to_cpu(adsp2_alg[i].xm),
1830 			    be32_to_cpu(adsp2_alg[i].ym),
1831 			    be32_to_cpu(adsp2_alg[i].zm));
1832 
1833 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_XM,
1834 						  adsp2_alg[i].alg.id,
1835 						  adsp2_alg[i].alg.ver,
1836 						  adsp2_alg[i].xm);
1837 		if (IS_ERR(alg_region)) {
1838 			ret = PTR_ERR(alg_region);
1839 			goto out;
1840 		}
1841 		if (dsp->fw_ver == 0) {
1842 			if (i + 1 < n_algs) {
1843 				len = be32_to_cpu(adsp2_alg[i + 1].xm);
1844 				len -= be32_to_cpu(adsp2_alg[i].xm);
1845 				len *= 4;
1846 				cs_dsp_create_control(dsp, alg_region, 0,
1847 						      len, NULL, 0, 0,
1848 						      WMFW_CTL_TYPE_BYTES);
1849 			} else {
1850 				cs_dsp_warn(dsp, "Missing length info for region XM with ID %x\n",
1851 					    be32_to_cpu(adsp2_alg[i].alg.id));
1852 			}
1853 		}
1854 
1855 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_YM,
1856 						  adsp2_alg[i].alg.id,
1857 						  adsp2_alg[i].alg.ver,
1858 						  adsp2_alg[i].ym);
1859 		if (IS_ERR(alg_region)) {
1860 			ret = PTR_ERR(alg_region);
1861 			goto out;
1862 		}
1863 		if (dsp->fw_ver == 0) {
1864 			if (i + 1 < n_algs) {
1865 				len = be32_to_cpu(adsp2_alg[i + 1].ym);
1866 				len -= be32_to_cpu(adsp2_alg[i].ym);
1867 				len *= 4;
1868 				cs_dsp_create_control(dsp, alg_region, 0,
1869 						      len, NULL, 0, 0,
1870 						      WMFW_CTL_TYPE_BYTES);
1871 			} else {
1872 				cs_dsp_warn(dsp, "Missing length info for region YM with ID %x\n",
1873 					    be32_to_cpu(adsp2_alg[i].alg.id));
1874 			}
1875 		}
1876 
1877 		alg_region = cs_dsp_create_region(dsp, WMFW_ADSP2_ZM,
1878 						  adsp2_alg[i].alg.id,
1879 						  adsp2_alg[i].alg.ver,
1880 						  adsp2_alg[i].zm);
1881 		if (IS_ERR(alg_region)) {
1882 			ret = PTR_ERR(alg_region);
1883 			goto out;
1884 		}
1885 		if (dsp->fw_ver == 0) {
1886 			if (i + 1 < n_algs) {
1887 				len = be32_to_cpu(adsp2_alg[i + 1].zm);
1888 				len -= be32_to_cpu(adsp2_alg[i].zm);
1889 				len *= 4;
1890 				cs_dsp_create_control(dsp, alg_region, 0,
1891 						      len, NULL, 0, 0,
1892 						      WMFW_CTL_TYPE_BYTES);
1893 			} else {
1894 				cs_dsp_warn(dsp, "Missing length info for region ZM with ID %x\n",
1895 					    be32_to_cpu(adsp2_alg[i].alg.id));
1896 			}
1897 		}
1898 	}
1899 
1900 out:
1901 	kfree(adsp2_alg);
1902 	return ret;
1903 }
1904 
1905 static int cs_dsp_halo_create_regions(struct cs_dsp *dsp, __be32 id, __be32 ver,
1906 				      __be32 xm_base, __be32 ym_base)
1907 {
1908 	static const int types[] = {
1909 		WMFW_ADSP2_XM, WMFW_HALO_XM_PACKED,
1910 		WMFW_ADSP2_YM, WMFW_HALO_YM_PACKED
1911 	};
1912 	__be32 bases[] = { xm_base, xm_base, ym_base, ym_base };
1913 
1914 	return cs_dsp_create_regions(dsp, id, ver, ARRAY_SIZE(types), types, bases);
1915 }
1916 
1917 static int cs_dsp_halo_setup_algs(struct cs_dsp *dsp)
1918 {
1919 	struct wmfw_halo_id_hdr halo_id;
1920 	struct wmfw_halo_alg_hdr *halo_alg;
1921 	const struct cs_dsp_region *mem;
1922 	unsigned int pos, len;
1923 	size_t n_algs;
1924 	int i, ret;
1925 
1926 	mem = cs_dsp_find_region(dsp, WMFW_ADSP2_XM);
1927 	if (WARN_ON(!mem))
1928 		return -EINVAL;
1929 
1930 	ret = regmap_raw_read(dsp->regmap, mem->base, &halo_id,
1931 			      sizeof(halo_id));
1932 	if (ret != 0) {
1933 		cs_dsp_err(dsp, "Failed to read algorithm info: %d\n",
1934 			   ret);
1935 		return ret;
1936 	}
1937 
1938 	n_algs = be32_to_cpu(halo_id.n_algs);
1939 
1940 	cs_dsp_parse_wmfw_v3_id_header(dsp, &halo_id.fw, n_algs);
1941 
1942 	ret = cs_dsp_halo_create_regions(dsp, halo_id.fw.id, halo_id.fw.ver,
1943 					 halo_id.xm_base, halo_id.ym_base);
1944 	if (ret)
1945 		return ret;
1946 
1947 	/* Calculate offset and length in DSP words */
1948 	pos = sizeof(halo_id) / sizeof(u32);
1949 	len = (sizeof(*halo_alg) * n_algs) / sizeof(u32);
1950 
1951 	halo_alg = cs_dsp_read_algs(dsp, n_algs, mem, pos, len);
1952 	if (IS_ERR(halo_alg))
1953 		return PTR_ERR(halo_alg);
1954 
1955 	for (i = 0; i < n_algs; i++) {
1956 		cs_dsp_info(dsp,
1957 			    "%d: ID %x v%d.%d.%d XM@%x YM@%x\n",
1958 			    i, be32_to_cpu(halo_alg[i].alg.id),
1959 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff0000) >> 16,
1960 			    (be32_to_cpu(halo_alg[i].alg.ver) & 0xff00) >> 8,
1961 			    be32_to_cpu(halo_alg[i].alg.ver) & 0xff,
1962 			    be32_to_cpu(halo_alg[i].xm_base),
1963 			    be32_to_cpu(halo_alg[i].ym_base));
1964 
1965 		ret = cs_dsp_halo_create_regions(dsp, halo_alg[i].alg.id,
1966 						 halo_alg[i].alg.ver,
1967 						 halo_alg[i].xm_base,
1968 						 halo_alg[i].ym_base);
1969 		if (ret)
1970 			goto out;
1971 	}
1972 
1973 out:
1974 	kfree(halo_alg);
1975 	return ret;
1976 }
1977 
1978 static int cs_dsp_load_coeff(struct cs_dsp *dsp, const struct firmware *firmware,
1979 			     const char *file)
1980 {
1981 	LIST_HEAD(buf_list);
1982 	struct regmap *regmap = dsp->regmap;
1983 	struct wmfw_coeff_hdr *hdr;
1984 	struct wmfw_coeff_item *blk;
1985 	const struct cs_dsp_region *mem;
1986 	struct cs_dsp_alg_region *alg_region;
1987 	const char *region_name;
1988 	int ret, pos, blocks, type, offset, reg, version;
1989 	char *text = NULL;
1990 	struct cs_dsp_buf *buf;
1991 
1992 	if (!firmware)
1993 		return 0;
1994 
1995 	ret = -EINVAL;
1996 
1997 	if (sizeof(*hdr) >= firmware->size) {
1998 		cs_dsp_err(dsp, "%s: coefficient file too short, %zu bytes\n",
1999 			   file, firmware->size);
2000 		goto out_fw;
2001 	}
2002 
2003 	hdr = (void *)&firmware->data[0];
2004 	if (memcmp(hdr->magic, "WMDR", 4) != 0) {
2005 		cs_dsp_err(dsp, "%s: invalid coefficient magic\n", file);
2006 		goto out_fw;
2007 	}
2008 
2009 	switch (be32_to_cpu(hdr->rev) & 0xff) {
2010 	case 1:
2011 	case 2:
2012 		break;
2013 	default:
2014 		cs_dsp_err(dsp, "%s: Unsupported coefficient file format %d\n",
2015 			   file, be32_to_cpu(hdr->rev) & 0xff);
2016 		ret = -EINVAL;
2017 		goto out_fw;
2018 	}
2019 
2020 	cs_dsp_dbg(dsp, "%s: v%d.%d.%d\n", file,
2021 		   (le32_to_cpu(hdr->ver) >> 16) & 0xff,
2022 		   (le32_to_cpu(hdr->ver) >>  8) & 0xff,
2023 		   le32_to_cpu(hdr->ver) & 0xff);
2024 
2025 	pos = le32_to_cpu(hdr->len);
2026 
2027 	blocks = 0;
2028 	while (pos < firmware->size &&
2029 	       sizeof(*blk) < firmware->size - pos) {
2030 		blk = (void *)(&firmware->data[pos]);
2031 
2032 		type = le16_to_cpu(blk->type);
2033 		offset = le16_to_cpu(blk->offset);
2034 		version = le32_to_cpu(blk->ver) >> 8;
2035 
2036 		cs_dsp_dbg(dsp, "%s.%d: %x v%d.%d.%d\n",
2037 			   file, blocks, le32_to_cpu(blk->id),
2038 			   (le32_to_cpu(blk->ver) >> 16) & 0xff,
2039 			   (le32_to_cpu(blk->ver) >>  8) & 0xff,
2040 			   le32_to_cpu(blk->ver) & 0xff);
2041 		cs_dsp_dbg(dsp, "%s.%d: %d bytes at 0x%x in %x\n",
2042 			   file, blocks, le32_to_cpu(blk->len), offset, type);
2043 
2044 		reg = 0;
2045 		region_name = "Unknown";
2046 		switch (type) {
2047 		case (WMFW_NAME_TEXT << 8):
2048 			text = kzalloc(le32_to_cpu(blk->len) + 1, GFP_KERNEL);
2049 			break;
2050 		case (WMFW_INFO_TEXT << 8):
2051 		case (WMFW_METADATA << 8):
2052 			break;
2053 		case (WMFW_ABSOLUTE << 8):
2054 			/*
2055 			 * Old files may use this for global
2056 			 * coefficients.
2057 			 */
2058 			if (le32_to_cpu(blk->id) == dsp->fw_id &&
2059 			    offset == 0) {
2060 				region_name = "global coefficients";
2061 				mem = cs_dsp_find_region(dsp, type);
2062 				if (!mem) {
2063 					cs_dsp_err(dsp, "No ZM\n");
2064 					break;
2065 				}
2066 				reg = dsp->ops->region_to_reg(mem, 0);
2067 
2068 			} else {
2069 				region_name = "register";
2070 				reg = offset;
2071 			}
2072 			break;
2073 
2074 		case WMFW_ADSP1_DM:
2075 		case WMFW_ADSP1_ZM:
2076 		case WMFW_ADSP2_XM:
2077 		case WMFW_ADSP2_YM:
2078 		case WMFW_HALO_XM_PACKED:
2079 		case WMFW_HALO_YM_PACKED:
2080 		case WMFW_HALO_PM_PACKED:
2081 			cs_dsp_dbg(dsp, "%s.%d: %d bytes in %x for %x\n",
2082 				   file, blocks, le32_to_cpu(blk->len),
2083 				   type, le32_to_cpu(blk->id));
2084 
2085 			mem = cs_dsp_find_region(dsp, type);
2086 			if (!mem) {
2087 				cs_dsp_err(dsp, "No base for region %x\n", type);
2088 				break;
2089 			}
2090 
2091 			alg_region = cs_dsp_find_alg_region(dsp, type,
2092 							    le32_to_cpu(blk->id));
2093 			if (alg_region) {
2094 				if (version != alg_region->ver)
2095 					cs_dsp_warn(dsp,
2096 						    "Algorithm coefficient version %d.%d.%d but expected %d.%d.%d\n",
2097 						   (version >> 16) & 0xFF,
2098 						   (version >> 8) & 0xFF,
2099 						   version & 0xFF,
2100 						   (alg_region->ver >> 16) & 0xFF,
2101 						   (alg_region->ver >> 8) & 0xFF,
2102 						   alg_region->ver & 0xFF);
2103 
2104 				reg = alg_region->base;
2105 				reg = dsp->ops->region_to_reg(mem, reg);
2106 				reg += offset;
2107 			} else {
2108 				cs_dsp_err(dsp, "No %x for algorithm %x\n",
2109 					   type, le32_to_cpu(blk->id));
2110 			}
2111 			break;
2112 
2113 		default:
2114 			cs_dsp_err(dsp, "%s.%d: Unknown region type %x at %d\n",
2115 				   file, blocks, type, pos);
2116 			break;
2117 		}
2118 
2119 		if (text) {
2120 			memcpy(text, blk->data, le32_to_cpu(blk->len));
2121 			cs_dsp_info(dsp, "%s: %s\n", dsp->fw_name, text);
2122 			kfree(text);
2123 			text = NULL;
2124 		}
2125 
2126 		if (reg) {
2127 			if (le32_to_cpu(blk->len) >
2128 			    firmware->size - pos - sizeof(*blk)) {
2129 				cs_dsp_err(dsp,
2130 					   "%s.%d: %s region len %d bytes exceeds file length %zu\n",
2131 					   file, blocks, region_name,
2132 					   le32_to_cpu(blk->len),
2133 					   firmware->size);
2134 				ret = -EINVAL;
2135 				goto out_fw;
2136 			}
2137 
2138 			buf = cs_dsp_buf_alloc(blk->data,
2139 					       le32_to_cpu(blk->len),
2140 					       &buf_list);
2141 			if (!buf) {
2142 				cs_dsp_err(dsp, "Out of memory\n");
2143 				ret = -ENOMEM;
2144 				goto out_fw;
2145 			}
2146 
2147 			cs_dsp_dbg(dsp, "%s.%d: Writing %d bytes at %x\n",
2148 				   file, blocks, le32_to_cpu(blk->len),
2149 				   reg);
2150 			ret = regmap_raw_write_async(regmap, reg, buf->buf,
2151 						     le32_to_cpu(blk->len));
2152 			if (ret != 0) {
2153 				cs_dsp_err(dsp,
2154 					   "%s.%d: Failed to write to %x in %s: %d\n",
2155 					   file, blocks, reg, region_name, ret);
2156 			}
2157 		}
2158 
2159 		pos += (le32_to_cpu(blk->len) + sizeof(*blk) + 3) & ~0x03;
2160 		blocks++;
2161 	}
2162 
2163 	ret = regmap_async_complete(regmap);
2164 	if (ret != 0)
2165 		cs_dsp_err(dsp, "Failed to complete async write: %d\n", ret);
2166 
2167 	if (pos > firmware->size)
2168 		cs_dsp_warn(dsp, "%s.%d: %zu bytes at end of file\n",
2169 			    file, blocks, pos - firmware->size);
2170 
2171 	cs_dsp_debugfs_save_binname(dsp, file);
2172 
2173 out_fw:
2174 	regmap_async_complete(regmap);
2175 	cs_dsp_buf_free(&buf_list);
2176 	kfree(text);
2177 	return ret;
2178 }
2179 
2180 static int cs_dsp_create_name(struct cs_dsp *dsp)
2181 {
2182 	if (!dsp->name) {
2183 		dsp->name = devm_kasprintf(dsp->dev, GFP_KERNEL, "DSP%d",
2184 					   dsp->num);
2185 		if (!dsp->name)
2186 			return -ENOMEM;
2187 	}
2188 
2189 	return 0;
2190 }
2191 
2192 static int cs_dsp_common_init(struct cs_dsp *dsp)
2193 {
2194 	int ret;
2195 
2196 	ret = cs_dsp_create_name(dsp);
2197 	if (ret)
2198 		return ret;
2199 
2200 	INIT_LIST_HEAD(&dsp->alg_regions);
2201 	INIT_LIST_HEAD(&dsp->ctl_list);
2202 
2203 	mutex_init(&dsp->pwr_lock);
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * cs_dsp_adsp1_init() - Initialise a cs_dsp structure representing a ADSP1 device
2210  * @dsp: pointer to DSP structure
2211  *
2212  * Return: Zero for success, a negative number on error.
2213  */
2214 int cs_dsp_adsp1_init(struct cs_dsp *dsp)
2215 {
2216 	dsp->ops = &cs_dsp_adsp1_ops;
2217 
2218 	return cs_dsp_common_init(dsp);
2219 }
2220 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_init);
2221 
2222 /**
2223  * cs_dsp_adsp1_power_up() - Load and start the named firmware
2224  * @dsp: pointer to DSP structure
2225  * @wmfw_firmware: the firmware to be sent
2226  * @wmfw_filename: file name of firmware to be sent
2227  * @coeff_firmware: the coefficient data to be sent
2228  * @coeff_filename: file name of coefficient to data be sent
2229  * @fw_name: the user-friendly firmware name
2230  *
2231  * Return: Zero for success, a negative number on error.
2232  */
2233 int cs_dsp_adsp1_power_up(struct cs_dsp *dsp,
2234 			  const struct firmware *wmfw_firmware, char *wmfw_filename,
2235 			  const struct firmware *coeff_firmware, char *coeff_filename,
2236 			  const char *fw_name)
2237 {
2238 	unsigned int val;
2239 	int ret;
2240 
2241 	mutex_lock(&dsp->pwr_lock);
2242 
2243 	dsp->fw_name = fw_name;
2244 
2245 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2246 			   ADSP1_SYS_ENA, ADSP1_SYS_ENA);
2247 
2248 	/*
2249 	 * For simplicity set the DSP clock rate to be the
2250 	 * SYSCLK rate rather than making it configurable.
2251 	 */
2252 	if (dsp->sysclk_reg) {
2253 		ret = regmap_read(dsp->regmap, dsp->sysclk_reg, &val);
2254 		if (ret != 0) {
2255 			cs_dsp_err(dsp, "Failed to read SYSCLK state: %d\n", ret);
2256 			goto err_mutex;
2257 		}
2258 
2259 		val = (val & dsp->sysclk_mask) >> dsp->sysclk_shift;
2260 
2261 		ret = regmap_update_bits(dsp->regmap,
2262 					 dsp->base + ADSP1_CONTROL_31,
2263 					 ADSP1_CLK_SEL_MASK, val);
2264 		if (ret != 0) {
2265 			cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2266 			goto err_mutex;
2267 		}
2268 	}
2269 
2270 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2271 	if (ret != 0)
2272 		goto err_ena;
2273 
2274 	ret = cs_dsp_adsp1_setup_algs(dsp);
2275 	if (ret != 0)
2276 		goto err_ena;
2277 
2278 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2279 	if (ret != 0)
2280 		goto err_ena;
2281 
2282 	/* Initialize caches for enabled and unset controls */
2283 	ret = cs_dsp_coeff_init_control_caches(dsp);
2284 	if (ret != 0)
2285 		goto err_ena;
2286 
2287 	/* Sync set controls */
2288 	ret = cs_dsp_coeff_sync_controls(dsp);
2289 	if (ret != 0)
2290 		goto err_ena;
2291 
2292 	dsp->booted = true;
2293 
2294 	/* Start the core running */
2295 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2296 			   ADSP1_CORE_ENA | ADSP1_START,
2297 			   ADSP1_CORE_ENA | ADSP1_START);
2298 
2299 	dsp->running = true;
2300 
2301 	mutex_unlock(&dsp->pwr_lock);
2302 
2303 	return 0;
2304 
2305 err_ena:
2306 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2307 			   ADSP1_SYS_ENA, 0);
2308 err_mutex:
2309 	mutex_unlock(&dsp->pwr_lock);
2310 	return ret;
2311 }
2312 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_up);
2313 
2314 /**
2315  * cs_dsp_adsp1_power_down() - Halts the DSP
2316  * @dsp: pointer to DSP structure
2317  */
2318 void cs_dsp_adsp1_power_down(struct cs_dsp *dsp)
2319 {
2320 	struct cs_dsp_coeff_ctl *ctl;
2321 
2322 	mutex_lock(&dsp->pwr_lock);
2323 
2324 	dsp->running = false;
2325 	dsp->booted = false;
2326 
2327 	/* Halt the core */
2328 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2329 			   ADSP1_CORE_ENA | ADSP1_START, 0);
2330 
2331 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_19,
2332 			   ADSP1_WDMA_BUFFER_LENGTH_MASK, 0);
2333 
2334 	regmap_update_bits(dsp->regmap, dsp->base + ADSP1_CONTROL_30,
2335 			   ADSP1_SYS_ENA, 0);
2336 
2337 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2338 		ctl->enabled = 0;
2339 
2340 	cs_dsp_free_alg_regions(dsp);
2341 
2342 	mutex_unlock(&dsp->pwr_lock);
2343 }
2344 EXPORT_SYMBOL_GPL(cs_dsp_adsp1_power_down);
2345 
2346 static int cs_dsp_adsp2v2_enable_core(struct cs_dsp *dsp)
2347 {
2348 	unsigned int val;
2349 	int ret, count;
2350 
2351 	/* Wait for the RAM to start, should be near instantaneous */
2352 	for (count = 0; count < 10; ++count) {
2353 		ret = regmap_read(dsp->regmap, dsp->base + ADSP2_STATUS1, &val);
2354 		if (ret != 0)
2355 			return ret;
2356 
2357 		if (val & ADSP2_RAM_RDY)
2358 			break;
2359 
2360 		usleep_range(250, 500);
2361 	}
2362 
2363 	if (!(val & ADSP2_RAM_RDY)) {
2364 		cs_dsp_err(dsp, "Failed to start DSP RAM\n");
2365 		return -EBUSY;
2366 	}
2367 
2368 	cs_dsp_dbg(dsp, "RAM ready after %d polls\n", count);
2369 
2370 	return 0;
2371 }
2372 
2373 static int cs_dsp_adsp2_enable_core(struct cs_dsp *dsp)
2374 {
2375 	int ret;
2376 
2377 	ret = regmap_update_bits_async(dsp->regmap, dsp->base + ADSP2_CONTROL,
2378 				       ADSP2_SYS_ENA, ADSP2_SYS_ENA);
2379 	if (ret != 0)
2380 		return ret;
2381 
2382 	return cs_dsp_adsp2v2_enable_core(dsp);
2383 }
2384 
2385 static int cs_dsp_adsp2_lock(struct cs_dsp *dsp, unsigned int lock_regions)
2386 {
2387 	struct regmap *regmap = dsp->regmap;
2388 	unsigned int code0, code1, lock_reg;
2389 
2390 	if (!(lock_regions & CS_ADSP2_REGION_ALL))
2391 		return 0;
2392 
2393 	lock_regions &= CS_ADSP2_REGION_ALL;
2394 	lock_reg = dsp->base + ADSP2_LOCK_REGION_1_LOCK_REGION_0;
2395 
2396 	while (lock_regions) {
2397 		code0 = code1 = 0;
2398 		if (lock_regions & BIT(0)) {
2399 			code0 = ADSP2_LOCK_CODE_0;
2400 			code1 = ADSP2_LOCK_CODE_1;
2401 		}
2402 		if (lock_regions & BIT(1)) {
2403 			code0 |= ADSP2_LOCK_CODE_0 << ADSP2_LOCK_REGION_SHIFT;
2404 			code1 |= ADSP2_LOCK_CODE_1 << ADSP2_LOCK_REGION_SHIFT;
2405 		}
2406 		regmap_write(regmap, lock_reg, code0);
2407 		regmap_write(regmap, lock_reg, code1);
2408 		lock_regions >>= 2;
2409 		lock_reg += 2;
2410 	}
2411 
2412 	return 0;
2413 }
2414 
2415 static int cs_dsp_adsp2_enable_memory(struct cs_dsp *dsp)
2416 {
2417 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2418 				  ADSP2_MEM_ENA, ADSP2_MEM_ENA);
2419 }
2420 
2421 static void cs_dsp_adsp2_disable_memory(struct cs_dsp *dsp)
2422 {
2423 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2424 			   ADSP2_MEM_ENA, 0);
2425 }
2426 
2427 static void cs_dsp_adsp2_disable_core(struct cs_dsp *dsp)
2428 {
2429 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2430 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2431 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_2, 0);
2432 
2433 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2434 			   ADSP2_SYS_ENA, 0);
2435 }
2436 
2437 static void cs_dsp_adsp2v2_disable_core(struct cs_dsp *dsp)
2438 {
2439 	regmap_write(dsp->regmap, dsp->base + ADSP2_RDMA_CONFIG_1, 0);
2440 	regmap_write(dsp->regmap, dsp->base + ADSP2_WDMA_CONFIG_1, 0);
2441 	regmap_write(dsp->regmap, dsp->base + ADSP2V2_WDMA_CONFIG_2, 0);
2442 }
2443 
2444 static int cs_dsp_halo_configure_mpu(struct cs_dsp *dsp, unsigned int lock_regions)
2445 {
2446 	struct reg_sequence config[] = {
2447 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0x5555 },
2448 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0xAAAA },
2449 		{ dsp->base + HALO_MPU_XMEM_ACCESS_0,   0xFFFFFFFF },
2450 		{ dsp->base + HALO_MPU_YMEM_ACCESS_0,   0xFFFFFFFF },
2451 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_0, lock_regions },
2452 		{ dsp->base + HALO_MPU_XREG_ACCESS_0,   lock_regions },
2453 		{ dsp->base + HALO_MPU_YREG_ACCESS_0,   lock_regions },
2454 		{ dsp->base + HALO_MPU_XMEM_ACCESS_1,   0xFFFFFFFF },
2455 		{ dsp->base + HALO_MPU_YMEM_ACCESS_1,   0xFFFFFFFF },
2456 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_1, lock_regions },
2457 		{ dsp->base + HALO_MPU_XREG_ACCESS_1,   lock_regions },
2458 		{ dsp->base + HALO_MPU_YREG_ACCESS_1,   lock_regions },
2459 		{ dsp->base + HALO_MPU_XMEM_ACCESS_2,   0xFFFFFFFF },
2460 		{ dsp->base + HALO_MPU_YMEM_ACCESS_2,   0xFFFFFFFF },
2461 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_2, lock_regions },
2462 		{ dsp->base + HALO_MPU_XREG_ACCESS_2,   lock_regions },
2463 		{ dsp->base + HALO_MPU_YREG_ACCESS_2,   lock_regions },
2464 		{ dsp->base + HALO_MPU_XMEM_ACCESS_3,   0xFFFFFFFF },
2465 		{ dsp->base + HALO_MPU_YMEM_ACCESS_3,   0xFFFFFFFF },
2466 		{ dsp->base + HALO_MPU_WINDOW_ACCESS_3, lock_regions },
2467 		{ dsp->base + HALO_MPU_XREG_ACCESS_3,   lock_regions },
2468 		{ dsp->base + HALO_MPU_YREG_ACCESS_3,   lock_regions },
2469 		{ dsp->base + HALO_MPU_LOCK_CONFIG,     0 },
2470 	};
2471 
2472 	return regmap_multi_reg_write(dsp->regmap, config, ARRAY_SIZE(config));
2473 }
2474 
2475 /**
2476  * cs_dsp_set_dspclk() - Applies the given frequency to the given cs_dsp
2477  * @dsp: pointer to DSP structure
2478  * @freq: clock rate to set
2479  *
2480  * This is only for use on ADSP2 cores.
2481  *
2482  * Return: Zero for success, a negative number on error.
2483  */
2484 int cs_dsp_set_dspclk(struct cs_dsp *dsp, unsigned int freq)
2485 {
2486 	int ret;
2487 
2488 	ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CLOCKING,
2489 				 ADSP2_CLK_SEL_MASK,
2490 				 freq << ADSP2_CLK_SEL_SHIFT);
2491 	if (ret)
2492 		cs_dsp_err(dsp, "Failed to set clock rate: %d\n", ret);
2493 
2494 	return ret;
2495 }
2496 EXPORT_SYMBOL_GPL(cs_dsp_set_dspclk);
2497 
2498 static void cs_dsp_stop_watchdog(struct cs_dsp *dsp)
2499 {
2500 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_WATCHDOG,
2501 			   ADSP2_WDT_ENA_MASK, 0);
2502 }
2503 
2504 static void cs_dsp_halo_stop_watchdog(struct cs_dsp *dsp)
2505 {
2506 	regmap_update_bits(dsp->regmap, dsp->base + HALO_WDT_CONTROL,
2507 			   HALO_WDT_EN_MASK, 0);
2508 }
2509 
2510 /**
2511  * cs_dsp_power_up() - Downloads firmware to the DSP
2512  * @dsp: pointer to DSP structure
2513  * @wmfw_firmware: the firmware to be sent
2514  * @wmfw_filename: file name of firmware to be sent
2515  * @coeff_firmware: the coefficient data to be sent
2516  * @coeff_filename: file name of coefficient to data be sent
2517  * @fw_name: the user-friendly firmware name
2518  *
2519  * This function is used on ADSP2 and Halo DSP cores, it powers-up the DSP core
2520  * and downloads the firmware but does not start the firmware running. The
2521  * cs_dsp booted flag will be set once completed and if the core has a low-power
2522  * memory retention mode it will be put into this state after the firmware is
2523  * downloaded.
2524  *
2525  * Return: Zero for success, a negative number on error.
2526  */
2527 int cs_dsp_power_up(struct cs_dsp *dsp,
2528 		    const struct firmware *wmfw_firmware, char *wmfw_filename,
2529 		    const struct firmware *coeff_firmware, char *coeff_filename,
2530 		    const char *fw_name)
2531 {
2532 	int ret;
2533 
2534 	mutex_lock(&dsp->pwr_lock);
2535 
2536 	dsp->fw_name = fw_name;
2537 
2538 	if (dsp->ops->enable_memory) {
2539 		ret = dsp->ops->enable_memory(dsp);
2540 		if (ret != 0)
2541 			goto err_mutex;
2542 	}
2543 
2544 	if (dsp->ops->enable_core) {
2545 		ret = dsp->ops->enable_core(dsp);
2546 		if (ret != 0)
2547 			goto err_mem;
2548 	}
2549 
2550 	ret = cs_dsp_load(dsp, wmfw_firmware, wmfw_filename);
2551 	if (ret != 0)
2552 		goto err_ena;
2553 
2554 	ret = dsp->ops->setup_algs(dsp);
2555 	if (ret != 0)
2556 		goto err_ena;
2557 
2558 	ret = cs_dsp_load_coeff(dsp, coeff_firmware, coeff_filename);
2559 	if (ret != 0)
2560 		goto err_ena;
2561 
2562 	/* Initialize caches for enabled and unset controls */
2563 	ret = cs_dsp_coeff_init_control_caches(dsp);
2564 	if (ret != 0)
2565 		goto err_ena;
2566 
2567 	if (dsp->ops->disable_core)
2568 		dsp->ops->disable_core(dsp);
2569 
2570 	dsp->booted = true;
2571 
2572 	mutex_unlock(&dsp->pwr_lock);
2573 
2574 	return 0;
2575 err_ena:
2576 	if (dsp->ops->disable_core)
2577 		dsp->ops->disable_core(dsp);
2578 err_mem:
2579 	if (dsp->ops->disable_memory)
2580 		dsp->ops->disable_memory(dsp);
2581 err_mutex:
2582 	mutex_unlock(&dsp->pwr_lock);
2583 
2584 	return ret;
2585 }
2586 EXPORT_SYMBOL_GPL(cs_dsp_power_up);
2587 
2588 /**
2589  * cs_dsp_power_down() - Powers-down the DSP
2590  * @dsp: pointer to DSP structure
2591  *
2592  * cs_dsp_stop() must have been called before this function. The core will be
2593  * fully powered down and so the memory will not be retained.
2594  */
2595 void cs_dsp_power_down(struct cs_dsp *dsp)
2596 {
2597 	struct cs_dsp_coeff_ctl *ctl;
2598 
2599 	mutex_lock(&dsp->pwr_lock);
2600 
2601 	cs_dsp_debugfs_clear(dsp);
2602 
2603 	dsp->fw_id = 0;
2604 	dsp->fw_id_version = 0;
2605 
2606 	dsp->booted = false;
2607 
2608 	if (dsp->ops->disable_memory)
2609 		dsp->ops->disable_memory(dsp);
2610 
2611 	list_for_each_entry(ctl, &dsp->ctl_list, list)
2612 		ctl->enabled = 0;
2613 
2614 	cs_dsp_free_alg_regions(dsp);
2615 
2616 	mutex_unlock(&dsp->pwr_lock);
2617 
2618 	cs_dsp_dbg(dsp, "Shutdown complete\n");
2619 }
2620 EXPORT_SYMBOL_GPL(cs_dsp_power_down);
2621 
2622 static int cs_dsp_adsp2_start_core(struct cs_dsp *dsp)
2623 {
2624 	return regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2625 				  ADSP2_CORE_ENA | ADSP2_START,
2626 				  ADSP2_CORE_ENA | ADSP2_START);
2627 }
2628 
2629 static void cs_dsp_adsp2_stop_core(struct cs_dsp *dsp)
2630 {
2631 	regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2632 			   ADSP2_CORE_ENA | ADSP2_START, 0);
2633 }
2634 
2635 /**
2636  * cs_dsp_run() - Starts the firmware running
2637  * @dsp: pointer to DSP structure
2638  *
2639  * cs_dsp_power_up() must have previously been called successfully.
2640  *
2641  * Return: Zero for success, a negative number on error.
2642  */
2643 int cs_dsp_run(struct cs_dsp *dsp)
2644 {
2645 	int ret;
2646 
2647 	mutex_lock(&dsp->pwr_lock);
2648 
2649 	if (!dsp->booted) {
2650 		ret = -EIO;
2651 		goto err;
2652 	}
2653 
2654 	if (dsp->ops->enable_core) {
2655 		ret = dsp->ops->enable_core(dsp);
2656 		if (ret != 0)
2657 			goto err;
2658 	}
2659 
2660 	if (dsp->client_ops->pre_run) {
2661 		ret = dsp->client_ops->pre_run(dsp);
2662 		if (ret)
2663 			goto err;
2664 	}
2665 
2666 	/* Sync set controls */
2667 	ret = cs_dsp_coeff_sync_controls(dsp);
2668 	if (ret != 0)
2669 		goto err;
2670 
2671 	if (dsp->ops->lock_memory) {
2672 		ret = dsp->ops->lock_memory(dsp, dsp->lock_regions);
2673 		if (ret != 0) {
2674 			cs_dsp_err(dsp, "Error configuring MPU: %d\n", ret);
2675 			goto err;
2676 		}
2677 	}
2678 
2679 	if (dsp->ops->start_core) {
2680 		ret = dsp->ops->start_core(dsp);
2681 		if (ret != 0)
2682 			goto err;
2683 	}
2684 
2685 	dsp->running = true;
2686 
2687 	if (dsp->client_ops->post_run) {
2688 		ret = dsp->client_ops->post_run(dsp);
2689 		if (ret)
2690 			goto err;
2691 	}
2692 
2693 	mutex_unlock(&dsp->pwr_lock);
2694 
2695 	return 0;
2696 
2697 err:
2698 	if (dsp->ops->stop_core)
2699 		dsp->ops->stop_core(dsp);
2700 	if (dsp->ops->disable_core)
2701 		dsp->ops->disable_core(dsp);
2702 	mutex_unlock(&dsp->pwr_lock);
2703 
2704 	return ret;
2705 }
2706 EXPORT_SYMBOL_GPL(cs_dsp_run);
2707 
2708 /**
2709  * cs_dsp_stop() - Stops the firmware
2710  * @dsp: pointer to DSP structure
2711  *
2712  * Memory will not be disabled so firmware will remain loaded.
2713  */
2714 void cs_dsp_stop(struct cs_dsp *dsp)
2715 {
2716 	/* Tell the firmware to cleanup */
2717 	cs_dsp_signal_event_controls(dsp, CS_DSP_FW_EVENT_SHUTDOWN);
2718 
2719 	if (dsp->ops->stop_watchdog)
2720 		dsp->ops->stop_watchdog(dsp);
2721 
2722 	/* Log firmware state, it can be useful for analysis */
2723 	if (dsp->ops->show_fw_status)
2724 		dsp->ops->show_fw_status(dsp);
2725 
2726 	mutex_lock(&dsp->pwr_lock);
2727 
2728 	if (dsp->client_ops->pre_stop)
2729 		dsp->client_ops->pre_stop(dsp);
2730 
2731 	dsp->running = false;
2732 
2733 	if (dsp->ops->stop_core)
2734 		dsp->ops->stop_core(dsp);
2735 	if (dsp->ops->disable_core)
2736 		dsp->ops->disable_core(dsp);
2737 
2738 	if (dsp->client_ops->post_stop)
2739 		dsp->client_ops->post_stop(dsp);
2740 
2741 	mutex_unlock(&dsp->pwr_lock);
2742 
2743 	cs_dsp_dbg(dsp, "Execution stopped\n");
2744 }
2745 EXPORT_SYMBOL_GPL(cs_dsp_stop);
2746 
2747 static int cs_dsp_halo_start_core(struct cs_dsp *dsp)
2748 {
2749 	int ret;
2750 
2751 	ret = regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2752 				 HALO_CORE_RESET | HALO_CORE_EN,
2753 				 HALO_CORE_RESET | HALO_CORE_EN);
2754 	if (ret)
2755 		return ret;
2756 
2757 	return regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2758 				  HALO_CORE_RESET, 0);
2759 }
2760 
2761 static void cs_dsp_halo_stop_core(struct cs_dsp *dsp)
2762 {
2763 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CCM_CORE_CONTROL,
2764 			   HALO_CORE_EN, 0);
2765 
2766 	/* reset halo core with CORE_SOFT_RESET */
2767 	regmap_update_bits(dsp->regmap, dsp->base + HALO_CORE_SOFT_RESET,
2768 			   HALO_CORE_SOFT_RESET_MASK, 1);
2769 }
2770 
2771 /**
2772  * cs_dsp_adsp2_init() - Initialise a cs_dsp structure representing a ADSP2 core
2773  * @dsp: pointer to DSP structure
2774  *
2775  * Return: Zero for success, a negative number on error.
2776  */
2777 int cs_dsp_adsp2_init(struct cs_dsp *dsp)
2778 {
2779 	int ret;
2780 
2781 	switch (dsp->rev) {
2782 	case 0:
2783 		/*
2784 		 * Disable the DSP memory by default when in reset for a small
2785 		 * power saving.
2786 		 */
2787 		ret = regmap_update_bits(dsp->regmap, dsp->base + ADSP2_CONTROL,
2788 					 ADSP2_MEM_ENA, 0);
2789 		if (ret) {
2790 			cs_dsp_err(dsp,
2791 				   "Failed to clear memory retention: %d\n", ret);
2792 			return ret;
2793 		}
2794 
2795 		dsp->ops = &cs_dsp_adsp2_ops[0];
2796 		break;
2797 	case 1:
2798 		dsp->ops = &cs_dsp_adsp2_ops[1];
2799 		break;
2800 	default:
2801 		dsp->ops = &cs_dsp_adsp2_ops[2];
2802 		break;
2803 	}
2804 
2805 	return cs_dsp_common_init(dsp);
2806 }
2807 EXPORT_SYMBOL_GPL(cs_dsp_adsp2_init);
2808 
2809 /**
2810  * cs_dsp_halo_init() - Initialise a cs_dsp structure representing a HALO Core DSP
2811  * @dsp: pointer to DSP structure
2812  *
2813  * Return: Zero for success, a negative number on error.
2814  */
2815 int cs_dsp_halo_init(struct cs_dsp *dsp)
2816 {
2817 	dsp->ops = &cs_dsp_halo_ops;
2818 
2819 	return cs_dsp_common_init(dsp);
2820 }
2821 EXPORT_SYMBOL_GPL(cs_dsp_halo_init);
2822 
2823 /**
2824  * cs_dsp_remove() - Clean a cs_dsp before deletion
2825  * @dsp: pointer to DSP structure
2826  */
2827 void cs_dsp_remove(struct cs_dsp *dsp)
2828 {
2829 	struct cs_dsp_coeff_ctl *ctl;
2830 
2831 	while (!list_empty(&dsp->ctl_list)) {
2832 		ctl = list_first_entry(&dsp->ctl_list, struct cs_dsp_coeff_ctl, list);
2833 
2834 		if (dsp->client_ops->control_remove)
2835 			dsp->client_ops->control_remove(ctl);
2836 
2837 		list_del(&ctl->list);
2838 		cs_dsp_free_ctl_blk(ctl);
2839 	}
2840 }
2841 EXPORT_SYMBOL_GPL(cs_dsp_remove);
2842 
2843 /**
2844  * cs_dsp_read_raw_data_block() - Reads a block of data from DSP memory
2845  * @dsp: pointer to DSP structure
2846  * @mem_type: the type of DSP memory containing the data to be read
2847  * @mem_addr: the address of the data within the memory region
2848  * @num_words: the length of the data to read
2849  * @data: a buffer to store the fetched data
2850  *
2851  * If this is used to read unpacked 24-bit memory, each 24-bit DSP word will
2852  * occupy 32-bits in data (MSbyte will be 0). This padding can be removed using
2853  * cs_dsp_remove_padding()
2854  *
2855  * Return: Zero for success, a negative number on error.
2856  */
2857 int cs_dsp_read_raw_data_block(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr,
2858 			       unsigned int num_words, __be32 *data)
2859 {
2860 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2861 	unsigned int reg;
2862 	int ret;
2863 
2864 	lockdep_assert_held(&dsp->pwr_lock);
2865 
2866 	if (!mem)
2867 		return -EINVAL;
2868 
2869 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2870 
2871 	ret = regmap_raw_read(dsp->regmap, reg, data,
2872 			      sizeof(*data) * num_words);
2873 	if (ret < 0)
2874 		return ret;
2875 
2876 	return 0;
2877 }
2878 EXPORT_SYMBOL_GPL(cs_dsp_read_raw_data_block);
2879 
2880 /**
2881  * cs_dsp_read_data_word() - Reads a word from DSP memory
2882  * @dsp: pointer to DSP structure
2883  * @mem_type: the type of DSP memory containing the data to be read
2884  * @mem_addr: the address of the data within the memory region
2885  * @data: a buffer to store the fetched data
2886  *
2887  * Return: Zero for success, a negative number on error.
2888  */
2889 int cs_dsp_read_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 *data)
2890 {
2891 	__be32 raw;
2892 	int ret;
2893 
2894 	ret = cs_dsp_read_raw_data_block(dsp, mem_type, mem_addr, 1, &raw);
2895 	if (ret < 0)
2896 		return ret;
2897 
2898 	*data = be32_to_cpu(raw) & 0x00ffffffu;
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(cs_dsp_read_data_word);
2903 
2904 /**
2905  * cs_dsp_write_data_word() - Writes a word to DSP memory
2906  * @dsp: pointer to DSP structure
2907  * @mem_type: the type of DSP memory containing the data to be written
2908  * @mem_addr: the address of the data within the memory region
2909  * @data: the data to be written
2910  *
2911  * Return: Zero for success, a negative number on error.
2912  */
2913 int cs_dsp_write_data_word(struct cs_dsp *dsp, int mem_type, unsigned int mem_addr, u32 data)
2914 {
2915 	struct cs_dsp_region const *mem = cs_dsp_find_region(dsp, mem_type);
2916 	__be32 val = cpu_to_be32(data & 0x00ffffffu);
2917 	unsigned int reg;
2918 
2919 	lockdep_assert_held(&dsp->pwr_lock);
2920 
2921 	if (!mem)
2922 		return -EINVAL;
2923 
2924 	reg = dsp->ops->region_to_reg(mem, mem_addr);
2925 
2926 	return regmap_raw_write(dsp->regmap, reg, &val, sizeof(val));
2927 }
2928 EXPORT_SYMBOL_GPL(cs_dsp_write_data_word);
2929 
2930 /**
2931  * cs_dsp_remove_padding() - Convert unpacked words to packed bytes
2932  * @buf: buffer containing DSP words read from DSP memory
2933  * @nwords: number of words to convert
2934  *
2935  * DSP words from the register map have pad bytes and the data bytes
2936  * are in swapped order. This swaps to the native endian order and
2937  * strips the pad bytes.
2938  */
2939 void cs_dsp_remove_padding(u32 *buf, int nwords)
2940 {
2941 	const __be32 *pack_in = (__be32 *)buf;
2942 	u8 *pack_out = (u8 *)buf;
2943 	int i;
2944 
2945 	for (i = 0; i < nwords; i++) {
2946 		u32 word = be32_to_cpu(*pack_in++);
2947 		*pack_out++ = (u8)word;
2948 		*pack_out++ = (u8)(word >> 8);
2949 		*pack_out++ = (u8)(word >> 16);
2950 	}
2951 }
2952 EXPORT_SYMBOL_GPL(cs_dsp_remove_padding);
2953 
2954 /**
2955  * cs_dsp_adsp2_bus_error() - Handle a DSP bus error interrupt
2956  * @dsp: pointer to DSP structure
2957  *
2958  * The firmware and DSP state will be logged for future analysis.
2959  */
2960 void cs_dsp_adsp2_bus_error(struct cs_dsp *dsp)
2961 {
2962 	unsigned int val;
2963 	struct regmap *regmap = dsp->regmap;
2964 	int ret = 0;
2965 
2966 	mutex_lock(&dsp->pwr_lock);
2967 
2968 	ret = regmap_read(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL, &val);
2969 	if (ret) {
2970 		cs_dsp_err(dsp,
2971 			   "Failed to read Region Lock Ctrl register: %d\n", ret);
2972 		goto error;
2973 	}
2974 
2975 	if (val & ADSP2_WDT_TIMEOUT_STS_MASK) {
2976 		cs_dsp_err(dsp, "watchdog timeout error\n");
2977 		dsp->ops->stop_watchdog(dsp);
2978 		if (dsp->client_ops->watchdog_expired)
2979 			dsp->client_ops->watchdog_expired(dsp);
2980 	}
2981 
2982 	if (val & (ADSP2_ADDR_ERR_MASK | ADSP2_REGION_LOCK_ERR_MASK)) {
2983 		if (val & ADSP2_ADDR_ERR_MASK)
2984 			cs_dsp_err(dsp, "bus error: address error\n");
2985 		else
2986 			cs_dsp_err(dsp, "bus error: region lock error\n");
2987 
2988 		ret = regmap_read(regmap, dsp->base + ADSP2_BUS_ERR_ADDR, &val);
2989 		if (ret) {
2990 			cs_dsp_err(dsp,
2991 				   "Failed to read Bus Err Addr register: %d\n",
2992 				   ret);
2993 			goto error;
2994 		}
2995 
2996 		cs_dsp_err(dsp, "bus error address = 0x%x\n",
2997 			   val & ADSP2_BUS_ERR_ADDR_MASK);
2998 
2999 		ret = regmap_read(regmap,
3000 				  dsp->base + ADSP2_PMEM_ERR_ADDR_XMEM_ERR_ADDR,
3001 				  &val);
3002 		if (ret) {
3003 			cs_dsp_err(dsp,
3004 				   "Failed to read Pmem Xmem Err Addr register: %d\n",
3005 				   ret);
3006 			goto error;
3007 		}
3008 
3009 		cs_dsp_err(dsp, "xmem error address = 0x%x\n",
3010 			   val & ADSP2_XMEM_ERR_ADDR_MASK);
3011 		cs_dsp_err(dsp, "pmem error address = 0x%x\n",
3012 			   (val & ADSP2_PMEM_ERR_ADDR_MASK) >>
3013 			   ADSP2_PMEM_ERR_ADDR_SHIFT);
3014 	}
3015 
3016 	regmap_update_bits(regmap, dsp->base + ADSP2_LOCK_REGION_CTRL,
3017 			   ADSP2_CTRL_ERR_EINT, ADSP2_CTRL_ERR_EINT);
3018 
3019 error:
3020 	mutex_unlock(&dsp->pwr_lock);
3021 }
3022 EXPORT_SYMBOL_GPL(cs_dsp_adsp2_bus_error);
3023 
3024 /**
3025  * cs_dsp_halo_bus_error() - Handle a DSP bus error interrupt
3026  * @dsp: pointer to DSP structure
3027  *
3028  * The firmware and DSP state will be logged for future analysis.
3029  */
3030 void cs_dsp_halo_bus_error(struct cs_dsp *dsp)
3031 {
3032 	struct regmap *regmap = dsp->regmap;
3033 	unsigned int fault[6];
3034 	struct reg_sequence clear[] = {
3035 		{ dsp->base + HALO_MPU_XM_VIO_STATUS,     0x0 },
3036 		{ dsp->base + HALO_MPU_YM_VIO_STATUS,     0x0 },
3037 		{ dsp->base + HALO_MPU_PM_VIO_STATUS,     0x0 },
3038 	};
3039 	int ret;
3040 
3041 	mutex_lock(&dsp->pwr_lock);
3042 
3043 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_1,
3044 			  fault);
3045 	if (ret) {
3046 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_1: %d\n", ret);
3047 		goto exit_unlock;
3048 	}
3049 
3050 	cs_dsp_warn(dsp, "AHB: STATUS: 0x%x ADDR: 0x%x\n",
3051 		    *fault & HALO_AHBM_FLAGS_ERR_MASK,
3052 		    (*fault & HALO_AHBM_CORE_ERR_ADDR_MASK) >>
3053 		    HALO_AHBM_CORE_ERR_ADDR_SHIFT);
3054 
3055 	ret = regmap_read(regmap, dsp->base_sysinfo + HALO_AHBM_WINDOW_DEBUG_0,
3056 			  fault);
3057 	if (ret) {
3058 		cs_dsp_warn(dsp, "Failed to read AHB DEBUG_0: %d\n", ret);
3059 		goto exit_unlock;
3060 	}
3061 
3062 	cs_dsp_warn(dsp, "AHB: SYS_ADDR: 0x%x\n", *fault);
3063 
3064 	ret = regmap_bulk_read(regmap, dsp->base + HALO_MPU_XM_VIO_ADDR,
3065 			       fault, ARRAY_SIZE(fault));
3066 	if (ret) {
3067 		cs_dsp_warn(dsp, "Failed to read MPU fault info: %d\n", ret);
3068 		goto exit_unlock;
3069 	}
3070 
3071 	cs_dsp_warn(dsp, "XM: STATUS:0x%x ADDR:0x%x\n", fault[1], fault[0]);
3072 	cs_dsp_warn(dsp, "YM: STATUS:0x%x ADDR:0x%x\n", fault[3], fault[2]);
3073 	cs_dsp_warn(dsp, "PM: STATUS:0x%x ADDR:0x%x\n", fault[5], fault[4]);
3074 
3075 	ret = regmap_multi_reg_write(dsp->regmap, clear, ARRAY_SIZE(clear));
3076 	if (ret)
3077 		cs_dsp_warn(dsp, "Failed to clear MPU status: %d\n", ret);
3078 
3079 exit_unlock:
3080 	mutex_unlock(&dsp->pwr_lock);
3081 }
3082 EXPORT_SYMBOL_GPL(cs_dsp_halo_bus_error);
3083 
3084 /**
3085  * cs_dsp_halo_wdt_expire() - Handle DSP watchdog expiry
3086  * @dsp: pointer to DSP structure
3087  *
3088  * This is logged for future analysis.
3089  */
3090 void cs_dsp_halo_wdt_expire(struct cs_dsp *dsp)
3091 {
3092 	mutex_lock(&dsp->pwr_lock);
3093 
3094 	cs_dsp_warn(dsp, "WDT Expiry Fault\n");
3095 
3096 	dsp->ops->stop_watchdog(dsp);
3097 	if (dsp->client_ops->watchdog_expired)
3098 		dsp->client_ops->watchdog_expired(dsp);
3099 
3100 	mutex_unlock(&dsp->pwr_lock);
3101 }
3102 EXPORT_SYMBOL_GPL(cs_dsp_halo_wdt_expire);
3103 
3104 static const struct cs_dsp_ops cs_dsp_adsp1_ops = {
3105 	.validate_version = cs_dsp_validate_version,
3106 	.parse_sizes = cs_dsp_adsp1_parse_sizes,
3107 	.region_to_reg = cs_dsp_region_to_reg,
3108 };
3109 
3110 static const struct cs_dsp_ops cs_dsp_adsp2_ops[] = {
3111 	{
3112 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3113 		.validate_version = cs_dsp_validate_version,
3114 		.setup_algs = cs_dsp_adsp2_setup_algs,
3115 		.region_to_reg = cs_dsp_region_to_reg,
3116 
3117 		.show_fw_status = cs_dsp_adsp2_show_fw_status,
3118 
3119 		.enable_memory = cs_dsp_adsp2_enable_memory,
3120 		.disable_memory = cs_dsp_adsp2_disable_memory,
3121 
3122 		.enable_core = cs_dsp_adsp2_enable_core,
3123 		.disable_core = cs_dsp_adsp2_disable_core,
3124 
3125 		.start_core = cs_dsp_adsp2_start_core,
3126 		.stop_core = cs_dsp_adsp2_stop_core,
3127 
3128 	},
3129 	{
3130 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3131 		.validate_version = cs_dsp_validate_version,
3132 		.setup_algs = cs_dsp_adsp2_setup_algs,
3133 		.region_to_reg = cs_dsp_region_to_reg,
3134 
3135 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3136 
3137 		.enable_memory = cs_dsp_adsp2_enable_memory,
3138 		.disable_memory = cs_dsp_adsp2_disable_memory,
3139 		.lock_memory = cs_dsp_adsp2_lock,
3140 
3141 		.enable_core = cs_dsp_adsp2v2_enable_core,
3142 		.disable_core = cs_dsp_adsp2v2_disable_core,
3143 
3144 		.start_core = cs_dsp_adsp2_start_core,
3145 		.stop_core = cs_dsp_adsp2_stop_core,
3146 	},
3147 	{
3148 		.parse_sizes = cs_dsp_adsp2_parse_sizes,
3149 		.validate_version = cs_dsp_validate_version,
3150 		.setup_algs = cs_dsp_adsp2_setup_algs,
3151 		.region_to_reg = cs_dsp_region_to_reg,
3152 
3153 		.show_fw_status = cs_dsp_adsp2v2_show_fw_status,
3154 		.stop_watchdog = cs_dsp_stop_watchdog,
3155 
3156 		.enable_memory = cs_dsp_adsp2_enable_memory,
3157 		.disable_memory = cs_dsp_adsp2_disable_memory,
3158 		.lock_memory = cs_dsp_adsp2_lock,
3159 
3160 		.enable_core = cs_dsp_adsp2v2_enable_core,
3161 		.disable_core = cs_dsp_adsp2v2_disable_core,
3162 
3163 		.start_core = cs_dsp_adsp2_start_core,
3164 		.stop_core = cs_dsp_adsp2_stop_core,
3165 	},
3166 };
3167 
3168 static const struct cs_dsp_ops cs_dsp_halo_ops = {
3169 	.parse_sizes = cs_dsp_adsp2_parse_sizes,
3170 	.validate_version = cs_dsp_halo_validate_version,
3171 	.setup_algs = cs_dsp_halo_setup_algs,
3172 	.region_to_reg = cs_dsp_halo_region_to_reg,
3173 
3174 	.show_fw_status = cs_dsp_halo_show_fw_status,
3175 	.stop_watchdog = cs_dsp_halo_stop_watchdog,
3176 
3177 	.lock_memory = cs_dsp_halo_configure_mpu,
3178 
3179 	.start_core = cs_dsp_halo_start_core,
3180 	.stop_core = cs_dsp_halo_stop_core,
3181 };
3182 
3183 /**
3184  * cs_dsp_chunk_write() - Format data to a DSP memory chunk
3185  * @ch: Pointer to the chunk structure
3186  * @nbits: Number of bits to write
3187  * @val: Value to write
3188  *
3189  * This function sequentially writes values into the format required for DSP
3190  * memory, it handles both inserting of the padding bytes and converting to
3191  * big endian. Note that data is only committed to the chunk when a whole DSP
3192  * words worth of data is available.
3193  *
3194  * Return: Zero for success, a negative number on error.
3195  */
3196 int cs_dsp_chunk_write(struct cs_dsp_chunk *ch, int nbits, u32 val)
3197 {
3198 	int nwrite, i;
3199 
3200 	nwrite = min(CS_DSP_DATA_WORD_BITS - ch->cachebits, nbits);
3201 
3202 	ch->cache <<= nwrite;
3203 	ch->cache |= val >> (nbits - nwrite);
3204 	ch->cachebits += nwrite;
3205 	nbits -= nwrite;
3206 
3207 	if (ch->cachebits == CS_DSP_DATA_WORD_BITS) {
3208 		if (cs_dsp_chunk_end(ch))
3209 			return -ENOSPC;
3210 
3211 		ch->cache &= 0xFFFFFF;
3212 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3213 			*ch->data++ = (ch->cache & 0xFF000000) >> CS_DSP_DATA_WORD_BITS;
3214 
3215 		ch->bytes += sizeof(ch->cache);
3216 		ch->cachebits = 0;
3217 	}
3218 
3219 	if (nbits)
3220 		return cs_dsp_chunk_write(ch, nbits, val);
3221 
3222 	return 0;
3223 }
3224 EXPORT_SYMBOL_GPL(cs_dsp_chunk_write);
3225 
3226 /**
3227  * cs_dsp_chunk_flush() - Pad remaining data with zero and commit to chunk
3228  * @ch: Pointer to the chunk structure
3229  *
3230  * As cs_dsp_chunk_write only writes data when a whole DSP word is ready to
3231  * be written out it is possible that some data will remain in the cache, this
3232  * function will pad that data with zeros upto a whole DSP word and write out.
3233  *
3234  * Return: Zero for success, a negative number on error.
3235  */
3236 int cs_dsp_chunk_flush(struct cs_dsp_chunk *ch)
3237 {
3238 	if (!ch->cachebits)
3239 		return 0;
3240 
3241 	return cs_dsp_chunk_write(ch, CS_DSP_DATA_WORD_BITS - ch->cachebits, 0);
3242 }
3243 EXPORT_SYMBOL_GPL(cs_dsp_chunk_flush);
3244 
3245 /**
3246  * cs_dsp_chunk_read() - Parse data from a DSP memory chunk
3247  * @ch: Pointer to the chunk structure
3248  * @nbits: Number of bits to read
3249  *
3250  * This function sequentially reads values from a DSP memory formatted buffer,
3251  * it handles both removing of the padding bytes and converting from big endian.
3252  *
3253  * Return: A negative number is returned on error, otherwise the read value.
3254  */
3255 int cs_dsp_chunk_read(struct cs_dsp_chunk *ch, int nbits)
3256 {
3257 	int nread, i;
3258 	u32 result;
3259 
3260 	if (!ch->cachebits) {
3261 		if (cs_dsp_chunk_end(ch))
3262 			return -ENOSPC;
3263 
3264 		ch->cache = 0;
3265 		ch->cachebits = CS_DSP_DATA_WORD_BITS;
3266 
3267 		for (i = 0; i < sizeof(ch->cache); i++, ch->cache <<= BITS_PER_BYTE)
3268 			ch->cache |= *ch->data++;
3269 
3270 		ch->bytes += sizeof(ch->cache);
3271 	}
3272 
3273 	nread = min(ch->cachebits, nbits);
3274 	nbits -= nread;
3275 
3276 	result = ch->cache >> ((sizeof(ch->cache) * BITS_PER_BYTE) - nread);
3277 	ch->cache <<= nread;
3278 	ch->cachebits -= nread;
3279 
3280 	if (nbits)
3281 		result = (result << nbits) | cs_dsp_chunk_read(ch, nbits);
3282 
3283 	return result;
3284 }
3285 EXPORT_SYMBOL_GPL(cs_dsp_chunk_read);
3286 
3287 MODULE_DESCRIPTION("Cirrus Logic DSP Support");
3288 MODULE_AUTHOR("Simon Trimmer <simont@opensource.cirrus.com>");
3289 MODULE_LICENSE("GPL v2");
3290