1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Notification support 4 * 5 * Copyright (C) 2020-2021 ARM Ltd. 6 */ 7 /** 8 * DOC: Theory of operation 9 * 10 * SCMI Protocol specification allows the platform to signal events to 11 * interested agents via notification messages: this is an implementation 12 * of the dispatch and delivery of such notifications to the interested users 13 * inside the Linux kernel. 14 * 15 * An SCMI Notification core instance is initialized for each active platform 16 * instance identified by the means of the usual &struct scmi_handle. 17 * 18 * Each SCMI Protocol implementation, during its initialization, registers with 19 * this core its set of supported events using scmi_register_protocol_events(): 20 * all the needed descriptors are stored in the &struct registered_protocols and 21 * &struct registered_events arrays. 22 * 23 * Kernel users interested in some specific event can register their callbacks 24 * providing the usual notifier_block descriptor, since this core implements 25 * events' delivery using the standard Kernel notification chains machinery. 26 * 27 * Given the number of possible events defined by SCMI and the extensibility 28 * of the SCMI Protocol itself, the underlying notification chains are created 29 * and destroyed dynamically on demand depending on the number of users 30 * effectively registered for an event, so that no support structures or chains 31 * are allocated until at least one user has registered a notifier_block for 32 * such event. Similarly, events' generation itself is enabled at the platform 33 * level only after at least one user has registered, and it is shutdown after 34 * the last user for that event has gone. 35 * 36 * All users provided callbacks and allocated notification-chains are stored in 37 * the @registered_events_handlers hashtable. Callbacks' registration requests 38 * for still to be registered events are instead kept in the dedicated common 39 * hashtable @pending_events_handlers. 40 * 41 * An event is identified univocally by the tuple (proto_id, evt_id, src_id) 42 * and is served by its own dedicated notification chain; information contained 43 * in such tuples is used, in a few different ways, to generate the needed 44 * hash-keys. 45 * 46 * Here proto_id and evt_id are simply the protocol_id and message_id numbers 47 * as described in the SCMI Protocol specification, while src_id represents an 48 * optional, protocol dependent, source identifier (like domain_id, perf_id 49 * or sensor_id and so forth). 50 * 51 * Upon reception of a notification message from the platform the SCMI RX ISR 52 * passes the received message payload and some ancillary information (including 53 * an arrival timestamp in nanoseconds) to the core via @scmi_notify() which 54 * pushes the event-data itself on a protocol-dedicated kfifo queue for further 55 * deferred processing as specified in @scmi_events_dispatcher(). 56 * 57 * Each protocol has it own dedicated work_struct and worker which, once kicked 58 * by the ISR, takes care to empty its own dedicated queue, deliverying the 59 * queued items into the proper notification-chain: notifications processing can 60 * proceed concurrently on distinct workers only between events belonging to 61 * different protocols while delivery of events within the same protocol is 62 * still strictly sequentially ordered by time of arrival. 63 * 64 * Events' information is then extracted from the SCMI Notification messages and 65 * conveyed, converted into a custom per-event report struct, as the void *data 66 * param to the user callback provided by the registered notifier_block, so that 67 * from the user perspective his callback will look invoked like: 68 * 69 * int user_cb(struct notifier_block *nb, unsigned long event_id, void *report) 70 * 71 */ 72 73 #define dev_fmt(fmt) "SCMI Notifications - " fmt 74 #define pr_fmt(fmt) "SCMI Notifications - " fmt 75 76 #include <linux/bitfield.h> 77 #include <linux/bug.h> 78 #include <linux/compiler.h> 79 #include <linux/device.h> 80 #include <linux/err.h> 81 #include <linux/hashtable.h> 82 #include <linux/kernel.h> 83 #include <linux/ktime.h> 84 #include <linux/kfifo.h> 85 #include <linux/list.h> 86 #include <linux/mutex.h> 87 #include <linux/notifier.h> 88 #include <linux/refcount.h> 89 #include <linux/scmi_protocol.h> 90 #include <linux/slab.h> 91 #include <linux/types.h> 92 #include <linux/workqueue.h> 93 94 #include "common.h" 95 #include "notify.h" 96 97 #define SCMI_MAX_PROTO 256 98 99 #define PROTO_ID_MASK GENMASK(31, 24) 100 #define EVT_ID_MASK GENMASK(23, 16) 101 #define SRC_ID_MASK GENMASK(15, 0) 102 103 /* 104 * Builds an unsigned 32bit key from the given input tuple to be used 105 * as a key in hashtables. 106 */ 107 #define MAKE_HASH_KEY(p, e, s) \ 108 (FIELD_PREP(PROTO_ID_MASK, (p)) | \ 109 FIELD_PREP(EVT_ID_MASK, (e)) | \ 110 FIELD_PREP(SRC_ID_MASK, (s))) 111 112 #define MAKE_ALL_SRCS_KEY(p, e) MAKE_HASH_KEY((p), (e), SRC_ID_MASK) 113 114 /* 115 * Assumes that the stored obj includes its own hash-key in a field named 'key': 116 * with this simplification this macro can be equally used for all the objects' 117 * types hashed by this implementation. 118 * 119 * @__ht: The hashtable name 120 * @__obj: A pointer to the object type to be retrieved from the hashtable; 121 * it will be used as a cursor while scanning the hastable and it will 122 * be possibly left as NULL when @__k is not found 123 * @__k: The key to search for 124 */ 125 #define KEY_FIND(__ht, __obj, __k) \ 126 ({ \ 127 typeof(__k) k_ = __k; \ 128 typeof(__obj) obj_; \ 129 \ 130 hash_for_each_possible((__ht), obj_, hash, k_) \ 131 if (obj_->key == k_) \ 132 break; \ 133 __obj = obj_; \ 134 }) 135 136 #define KEY_XTRACT_PROTO_ID(key) FIELD_GET(PROTO_ID_MASK, (key)) 137 #define KEY_XTRACT_EVT_ID(key) FIELD_GET(EVT_ID_MASK, (key)) 138 #define KEY_XTRACT_SRC_ID(key) FIELD_GET(SRC_ID_MASK, (key)) 139 140 /* 141 * A set of macros used to access safely @registered_protocols and 142 * @registered_events arrays; these are fixed in size and each entry is possibly 143 * populated at protocols' registration time and then only read but NEVER 144 * modified or removed. 145 */ 146 #define SCMI_GET_PROTO(__ni, __pid) \ 147 ({ \ 148 typeof(__ni) ni_ = __ni; \ 149 struct scmi_registered_events_desc *__pd = NULL; \ 150 \ 151 if (ni_) \ 152 __pd = READ_ONCE(ni_->registered_protocols[(__pid)]); \ 153 __pd; \ 154 }) 155 156 #define SCMI_GET_REVT_FROM_PD(__pd, __eid) \ 157 ({ \ 158 typeof(__pd) pd_ = __pd; \ 159 typeof(__eid) eid_ = __eid; \ 160 struct scmi_registered_event *__revt = NULL; \ 161 \ 162 if (pd_ && eid_ < pd_->num_events) \ 163 __revt = READ_ONCE(pd_->registered_events[eid_]); \ 164 __revt; \ 165 }) 166 167 #define SCMI_GET_REVT(__ni, __pid, __eid) \ 168 ({ \ 169 struct scmi_registered_event *__revt; \ 170 struct scmi_registered_events_desc *__pd; \ 171 \ 172 __pd = SCMI_GET_PROTO((__ni), (__pid)); \ 173 __revt = SCMI_GET_REVT_FROM_PD(__pd, (__eid)); \ 174 __revt; \ 175 }) 176 177 /* A couple of utility macros to limit cruft when calling protocols' helpers */ 178 #define REVT_NOTIFY_SET_STATUS(revt, eid, sid, state) \ 179 ({ \ 180 typeof(revt) r = revt; \ 181 r->proto->ops->set_notify_enabled(r->proto->ph, \ 182 (eid), (sid), (state)); \ 183 }) 184 185 #define REVT_NOTIFY_ENABLE(revt, eid, sid) \ 186 REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), true) 187 188 #define REVT_NOTIFY_DISABLE(revt, eid, sid) \ 189 REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), false) 190 191 #define REVT_FILL_REPORT(revt, ...) \ 192 ({ \ 193 typeof(revt) r = revt; \ 194 r->proto->ops->fill_custom_report(r->proto->ph, \ 195 __VA_ARGS__); \ 196 }) 197 198 #define SCMI_PENDING_HASH_SZ 4 199 #define SCMI_REGISTERED_HASH_SZ 6 200 201 struct scmi_registered_events_desc; 202 203 /** 204 * struct scmi_notify_instance - Represents an instance of the notification 205 * core 206 * @gid: GroupID used for devres 207 * @handle: A reference to the platform instance 208 * @init_work: A work item to perform final initializations of pending handlers 209 * @notify_wq: A reference to the allocated Kernel cmwq 210 * @pending_mtx: A mutex to protect @pending_events_handlers 211 * @registered_protocols: A statically allocated array containing pointers to 212 * all the registered protocol-level specific information 213 * related to events' handling 214 * @pending_events_handlers: An hashtable containing all pending events' 215 * handlers descriptors 216 * 217 * Each platform instance, represented by a handle, has its own instance of 218 * the notification subsystem represented by this structure. 219 */ 220 struct scmi_notify_instance { 221 void *gid; 222 struct scmi_handle *handle; 223 struct work_struct init_work; 224 struct workqueue_struct *notify_wq; 225 /* lock to protect pending_events_handlers */ 226 struct mutex pending_mtx; 227 struct scmi_registered_events_desc **registered_protocols; 228 DECLARE_HASHTABLE(pending_events_handlers, SCMI_PENDING_HASH_SZ); 229 }; 230 231 /** 232 * struct events_queue - Describes a queue and its associated worker 233 * @sz: Size in bytes of the related kfifo 234 * @kfifo: A dedicated Kernel kfifo descriptor 235 * @notify_work: A custom work item bound to this queue 236 * @wq: A reference to the associated workqueue 237 * 238 * Each protocol has its own dedicated events_queue descriptor. 239 */ 240 struct events_queue { 241 size_t sz; 242 struct kfifo kfifo; 243 struct work_struct notify_work; 244 struct workqueue_struct *wq; 245 }; 246 247 /** 248 * struct scmi_event_header - A utility header 249 * @timestamp: The timestamp, in nanoseconds (boottime), which was associated 250 * to this event as soon as it entered the SCMI RX ISR 251 * @payld_sz: Effective size of the embedded message payload which follows 252 * @evt_id: Event ID (corresponds to the Event MsgID for this Protocol) 253 * @payld: A reference to the embedded event payload 254 * 255 * This header is prepended to each received event message payload before 256 * queueing it on the related &struct events_queue. 257 */ 258 struct scmi_event_header { 259 ktime_t timestamp; 260 size_t payld_sz; 261 unsigned char evt_id; 262 unsigned char payld[]; 263 }; 264 265 struct scmi_registered_event; 266 267 /** 268 * struct scmi_registered_events_desc - Protocol Specific information 269 * @id: Protocol ID 270 * @ops: Protocol specific and event-related operations 271 * @equeue: The embedded per-protocol events_queue 272 * @ni: A reference to the initialized instance descriptor 273 * @eh: A reference to pre-allocated buffer to be used as a scratch area by the 274 * deferred worker when fetching data from the kfifo 275 * @eh_sz: Size of the pre-allocated buffer @eh 276 * @in_flight: A reference to an in flight &struct scmi_registered_event 277 * @num_events: Number of events in @registered_events 278 * @registered_events: A dynamically allocated array holding all the registered 279 * events' descriptors, whose fixed-size is determined at 280 * compile time. 281 * @registered_mtx: A mutex to protect @registered_events_handlers 282 * @ph: SCMI protocol handle reference 283 * @registered_events_handlers: An hashtable containing all events' handlers 284 * descriptors registered for this protocol 285 * 286 * All protocols that register at least one event have their protocol-specific 287 * information stored here, together with the embedded allocated events_queue. 288 * These descriptors are stored in the @registered_protocols array at protocol 289 * registration time. 290 * 291 * Once these descriptors are successfully registered, they are NEVER again 292 * removed or modified since protocols do not unregister ever, so that, once 293 * we safely grab a NON-NULL reference from the array we can keep it and use it. 294 */ 295 struct scmi_registered_events_desc { 296 u8 id; 297 const struct scmi_event_ops *ops; 298 struct events_queue equeue; 299 struct scmi_notify_instance *ni; 300 struct scmi_event_header *eh; 301 size_t eh_sz; 302 void *in_flight; 303 int num_events; 304 struct scmi_registered_event **registered_events; 305 /* mutex to protect registered_events_handlers */ 306 struct mutex registered_mtx; 307 const struct scmi_protocol_handle *ph; 308 DECLARE_HASHTABLE(registered_events_handlers, SCMI_REGISTERED_HASH_SZ); 309 }; 310 311 /** 312 * struct scmi_registered_event - Event Specific Information 313 * @proto: A reference to the associated protocol descriptor 314 * @evt: A reference to the associated event descriptor (as provided at 315 * registration time) 316 * @report: A pre-allocated buffer used by the deferred worker to fill a 317 * customized event report 318 * @num_sources: The number of possible sources for this event as stated at 319 * events' registration time 320 * @sources: A reference to a dynamically allocated array used to refcount the 321 * events' enable requests for all the existing sources 322 * @sources_mtx: A mutex to serialize the access to @sources 323 * 324 * All registered events are represented by one of these structures that are 325 * stored in the @registered_events array at protocol registration time. 326 * 327 * Once these descriptors are successfully registered, they are NEVER again 328 * removed or modified since protocols do not unregister ever, so that once we 329 * safely grab a NON-NULL reference from the table we can keep it and use it. 330 */ 331 struct scmi_registered_event { 332 struct scmi_registered_events_desc *proto; 333 const struct scmi_event *evt; 334 void *report; 335 u32 num_sources; 336 refcount_t *sources; 337 /* locking to serialize the access to sources */ 338 struct mutex sources_mtx; 339 }; 340 341 /** 342 * struct scmi_event_handler - Event handler information 343 * @key: The used hashkey 344 * @users: A reference count for number of active users for this handler 345 * @r_evt: A reference to the associated registered event; when this is NULL 346 * this handler is pending, which means that identifies a set of 347 * callbacks intended to be attached to an event which is still not 348 * known nor registered by any protocol at that point in time 349 * @chain: The notification chain dedicated to this specific event tuple 350 * @hash: The hlist_node used for collision handling 351 * @enabled: A boolean which records if event's generation has been already 352 * enabled for this handler as a whole 353 * 354 * This structure collects all the information needed to process a received 355 * event identified by the tuple (proto_id, evt_id, src_id). 356 * These descriptors are stored in a per-protocol @registered_events_handlers 357 * table using as a key a value derived from that tuple. 358 */ 359 struct scmi_event_handler { 360 u32 key; 361 refcount_t users; 362 struct scmi_registered_event *r_evt; 363 struct blocking_notifier_head chain; 364 struct hlist_node hash; 365 bool enabled; 366 }; 367 368 #define IS_HNDL_PENDING(hndl) (!(hndl)->r_evt) 369 370 static struct scmi_event_handler * 371 scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key); 372 static void scmi_put_active_handler(struct scmi_notify_instance *ni, 373 struct scmi_event_handler *hndl); 374 static bool scmi_put_handler_unlocked(struct scmi_notify_instance *ni, 375 struct scmi_event_handler *hndl); 376 377 /** 378 * scmi_lookup_and_call_event_chain() - Lookup the proper chain and call it 379 * @ni: A reference to the notification instance to use 380 * @evt_key: The key to use to lookup the related notification chain 381 * @report: The customized event-specific report to pass down to the callbacks 382 * as their *data parameter. 383 */ 384 static inline void 385 scmi_lookup_and_call_event_chain(struct scmi_notify_instance *ni, 386 u32 evt_key, void *report) 387 { 388 int ret; 389 struct scmi_event_handler *hndl; 390 391 /* 392 * Here ensure the event handler cannot vanish while using it. 393 * It is legitimate, though, for an handler not to be found at all here, 394 * e.g. when it has been unregistered by the user after some events had 395 * already been queued. 396 */ 397 hndl = scmi_get_active_handler(ni, evt_key); 398 if (!hndl) 399 return; 400 401 ret = blocking_notifier_call_chain(&hndl->chain, 402 KEY_XTRACT_EVT_ID(evt_key), 403 report); 404 /* Notifiers are NOT supposed to cut the chain ... */ 405 WARN_ON_ONCE(ret & NOTIFY_STOP_MASK); 406 407 scmi_put_active_handler(ni, hndl); 408 } 409 410 /** 411 * scmi_process_event_header() - Dequeue and process an event header 412 * @eq: The queue to use 413 * @pd: The protocol descriptor to use 414 * 415 * Read an event header from the protocol queue into the dedicated scratch 416 * buffer and looks for a matching registered event; in case an anomalously 417 * sized read is detected just flush the queue. 418 * 419 * Return: 420 * * a reference to the matching registered event when found 421 * * ERR_PTR(-EINVAL) when NO registered event could be found 422 * * NULL when the queue is empty 423 */ 424 static inline struct scmi_registered_event * 425 scmi_process_event_header(struct events_queue *eq, 426 struct scmi_registered_events_desc *pd) 427 { 428 unsigned int outs; 429 struct scmi_registered_event *r_evt; 430 431 outs = kfifo_out(&eq->kfifo, pd->eh, 432 sizeof(struct scmi_event_header)); 433 if (!outs) 434 return NULL; 435 if (outs != sizeof(struct scmi_event_header)) { 436 dev_err(pd->ni->handle->dev, "corrupted EVT header. Flush.\n"); 437 kfifo_reset_out(&eq->kfifo); 438 return NULL; 439 } 440 441 r_evt = SCMI_GET_REVT_FROM_PD(pd, pd->eh->evt_id); 442 if (!r_evt) 443 r_evt = ERR_PTR(-EINVAL); 444 445 return r_evt; 446 } 447 448 /** 449 * scmi_process_event_payload() - Dequeue and process an event payload 450 * @eq: The queue to use 451 * @pd: The protocol descriptor to use 452 * @r_evt: The registered event descriptor to use 453 * 454 * Read an event payload from the protocol queue into the dedicated scratch 455 * buffer, fills a custom report and then look for matching event handlers and 456 * call them; skip any unknown event (as marked by scmi_process_event_header()) 457 * and in case an anomalously sized read is detected just flush the queue. 458 * 459 * Return: False when the queue is empty 460 */ 461 static inline bool 462 scmi_process_event_payload(struct events_queue *eq, 463 struct scmi_registered_events_desc *pd, 464 struct scmi_registered_event *r_evt) 465 { 466 u32 src_id, key; 467 unsigned int outs; 468 void *report = NULL; 469 470 outs = kfifo_out(&eq->kfifo, pd->eh->payld, pd->eh->payld_sz); 471 if (!outs) 472 return false; 473 474 /* Any in-flight event has now been officially processed */ 475 pd->in_flight = NULL; 476 477 if (outs != pd->eh->payld_sz) { 478 dev_err(pd->ni->handle->dev, "corrupted EVT Payload. Flush.\n"); 479 kfifo_reset_out(&eq->kfifo); 480 return false; 481 } 482 483 if (IS_ERR(r_evt)) { 484 dev_warn(pd->ni->handle->dev, 485 "SKIP UNKNOWN EVT - proto:%X evt:%d\n", 486 pd->id, pd->eh->evt_id); 487 return true; 488 } 489 490 report = REVT_FILL_REPORT(r_evt, pd->eh->evt_id, pd->eh->timestamp, 491 pd->eh->payld, pd->eh->payld_sz, 492 r_evt->report, &src_id); 493 if (!report) { 494 dev_err(pd->ni->handle->dev, 495 "report not available - proto:%X evt:%d\n", 496 pd->id, pd->eh->evt_id); 497 return true; 498 } 499 500 /* At first search for a generic ALL src_ids handler... */ 501 key = MAKE_ALL_SRCS_KEY(pd->id, pd->eh->evt_id); 502 scmi_lookup_and_call_event_chain(pd->ni, key, report); 503 504 /* ...then search for any specific src_id */ 505 key = MAKE_HASH_KEY(pd->id, pd->eh->evt_id, src_id); 506 scmi_lookup_and_call_event_chain(pd->ni, key, report); 507 508 return true; 509 } 510 511 /** 512 * scmi_events_dispatcher() - Common worker logic for all work items. 513 * @work: The work item to use, which is associated to a dedicated events_queue 514 * 515 * Logic: 516 * 1. dequeue one pending RX notification (queued in SCMI RX ISR context) 517 * 2. generate a custom event report from the received event message 518 * 3. lookup for any registered ALL_SRC_IDs handler: 519 * - > call the related notification chain passing in the report 520 * 4. lookup for any registered specific SRC_ID handler: 521 * - > call the related notification chain passing in the report 522 * 523 * Note that: 524 * * a dedicated per-protocol kfifo queue is used: in this way an anomalous 525 * flood of events cannot saturate other protocols' queues. 526 * * each per-protocol queue is associated to a distinct work_item, which 527 * means, in turn, that: 528 * + all protocols can process their dedicated queues concurrently 529 * (since notify_wq:max_active != 1) 530 * + anyway at most one worker instance is allowed to run on the same queue 531 * concurrently: this ensures that we can have only one concurrent 532 * reader/writer on the associated kfifo, so that we can use it lock-less 533 * 534 * Context: Process context. 535 */ 536 static void scmi_events_dispatcher(struct work_struct *work) 537 { 538 struct events_queue *eq; 539 struct scmi_registered_events_desc *pd; 540 struct scmi_registered_event *r_evt; 541 542 eq = container_of(work, struct events_queue, notify_work); 543 pd = container_of(eq, struct scmi_registered_events_desc, equeue); 544 /* 545 * In order to keep the queue lock-less and the number of memcopies 546 * to the bare minimum needed, the dispatcher accounts for the 547 * possibility of per-protocol in-flight events: i.e. an event whose 548 * reception could end up being split across two subsequent runs of this 549 * worker, first the header, then the payload. 550 */ 551 do { 552 if (!pd->in_flight) { 553 r_evt = scmi_process_event_header(eq, pd); 554 if (!r_evt) 555 break; 556 pd->in_flight = r_evt; 557 } else { 558 r_evt = pd->in_flight; 559 } 560 } while (scmi_process_event_payload(eq, pd, r_evt)); 561 } 562 563 /** 564 * scmi_notify() - Queues a notification for further deferred processing 565 * @handle: The handle identifying the platform instance from which the 566 * dispatched event is generated 567 * @proto_id: Protocol ID 568 * @evt_id: Event ID (msgID) 569 * @buf: Event Message Payload (without the header) 570 * @len: Event Message Payload size 571 * @ts: RX Timestamp in nanoseconds (boottime) 572 * 573 * Context: Called in interrupt context to queue a received event for 574 * deferred processing. 575 * 576 * Return: 0 on Success 577 */ 578 int scmi_notify(const struct scmi_handle *handle, u8 proto_id, u8 evt_id, 579 const void *buf, size_t len, ktime_t ts) 580 { 581 struct scmi_registered_event *r_evt; 582 struct scmi_event_header eh; 583 struct scmi_notify_instance *ni; 584 585 ni = scmi_notification_instance_data_get(handle); 586 if (!ni) 587 return 0; 588 589 r_evt = SCMI_GET_REVT(ni, proto_id, evt_id); 590 if (!r_evt) 591 return -EINVAL; 592 593 if (len > r_evt->evt->max_payld_sz) { 594 dev_err(handle->dev, "discard badly sized message\n"); 595 return -EINVAL; 596 } 597 if (kfifo_avail(&r_evt->proto->equeue.kfifo) < sizeof(eh) + len) { 598 dev_warn(handle->dev, 599 "queue full, dropping proto_id:%d evt_id:%d ts:%lld\n", 600 proto_id, evt_id, ktime_to_ns(ts)); 601 return -ENOMEM; 602 } 603 604 eh.timestamp = ts; 605 eh.evt_id = evt_id; 606 eh.payld_sz = len; 607 /* 608 * Header and payload are enqueued with two distinct kfifo_in() (so non 609 * atomic), but this situation is handled properly on the consumer side 610 * with in-flight events tracking. 611 */ 612 kfifo_in(&r_evt->proto->equeue.kfifo, &eh, sizeof(eh)); 613 kfifo_in(&r_evt->proto->equeue.kfifo, buf, len); 614 /* 615 * Don't care about return value here since we just want to ensure that 616 * a work is queued all the times whenever some items have been pushed 617 * on the kfifo: 618 * - if work was already queued it will simply fail to queue a new one 619 * since it is not needed 620 * - if work was not queued already it will be now, even in case work 621 * was in fact already running: this behavior avoids any possible race 622 * when this function pushes new items onto the kfifos after the 623 * related executing worker had already determined the kfifo to be 624 * empty and it was terminating. 625 */ 626 queue_work(r_evt->proto->equeue.wq, 627 &r_evt->proto->equeue.notify_work); 628 629 return 0; 630 } 631 632 /** 633 * scmi_kfifo_free() - Devres action helper to free the kfifo 634 * @kfifo: The kfifo to free 635 */ 636 static void scmi_kfifo_free(void *kfifo) 637 { 638 kfifo_free((struct kfifo *)kfifo); 639 } 640 641 /** 642 * scmi_initialize_events_queue() - Allocate/Initialize a kfifo buffer 643 * @ni: A reference to the notification instance to use 644 * @equeue: The events_queue to initialize 645 * @sz: Size of the kfifo buffer to allocate 646 * 647 * Allocate a buffer for the kfifo and initialize it. 648 * 649 * Return: 0 on Success 650 */ 651 static int scmi_initialize_events_queue(struct scmi_notify_instance *ni, 652 struct events_queue *equeue, size_t sz) 653 { 654 int ret; 655 656 if (kfifo_alloc(&equeue->kfifo, sz, GFP_KERNEL)) 657 return -ENOMEM; 658 /* Size could have been roundup to power-of-two */ 659 equeue->sz = kfifo_size(&equeue->kfifo); 660 661 ret = devm_add_action_or_reset(ni->handle->dev, scmi_kfifo_free, 662 &equeue->kfifo); 663 if (ret) 664 return ret; 665 666 INIT_WORK(&equeue->notify_work, scmi_events_dispatcher); 667 equeue->wq = ni->notify_wq; 668 669 return ret; 670 } 671 672 /** 673 * scmi_allocate_registered_events_desc() - Allocate a registered events' 674 * descriptor 675 * @ni: A reference to the &struct scmi_notify_instance notification instance 676 * to use 677 * @proto_id: Protocol ID 678 * @queue_sz: Size of the associated queue to allocate 679 * @eh_sz: Size of the event header scratch area to pre-allocate 680 * @num_events: Number of events to support (size of @registered_events) 681 * @ops: Pointer to a struct holding references to protocol specific helpers 682 * needed during events handling 683 * 684 * It is supposed to be called only once for each protocol at protocol 685 * initialization time, so it warns if the requested protocol is found already 686 * registered. 687 * 688 * Return: The allocated and registered descriptor on Success 689 */ 690 static struct scmi_registered_events_desc * 691 scmi_allocate_registered_events_desc(struct scmi_notify_instance *ni, 692 u8 proto_id, size_t queue_sz, size_t eh_sz, 693 int num_events, 694 const struct scmi_event_ops *ops) 695 { 696 int ret; 697 struct scmi_registered_events_desc *pd; 698 699 /* Ensure protocols are up to date */ 700 smp_rmb(); 701 if (WARN_ON(ni->registered_protocols[proto_id])) 702 return ERR_PTR(-EINVAL); 703 704 pd = devm_kzalloc(ni->handle->dev, sizeof(*pd), GFP_KERNEL); 705 if (!pd) 706 return ERR_PTR(-ENOMEM); 707 pd->id = proto_id; 708 pd->ops = ops; 709 pd->ni = ni; 710 711 ret = scmi_initialize_events_queue(ni, &pd->equeue, queue_sz); 712 if (ret) 713 return ERR_PTR(ret); 714 715 pd->eh = devm_kzalloc(ni->handle->dev, eh_sz, GFP_KERNEL); 716 if (!pd->eh) 717 return ERR_PTR(-ENOMEM); 718 pd->eh_sz = eh_sz; 719 720 pd->registered_events = devm_kcalloc(ni->handle->dev, num_events, 721 sizeof(char *), GFP_KERNEL); 722 if (!pd->registered_events) 723 return ERR_PTR(-ENOMEM); 724 pd->num_events = num_events; 725 726 /* Initialize per protocol handlers table */ 727 mutex_init(&pd->registered_mtx); 728 hash_init(pd->registered_events_handlers); 729 730 return pd; 731 } 732 733 /** 734 * scmi_register_protocol_events() - Register Protocol Events with the core 735 * @handle: The handle identifying the platform instance against which the 736 * protocol's events are registered 737 * @proto_id: Protocol ID 738 * @ph: SCMI protocol handle. 739 * @ee: A structure describing the events supported by this protocol. 740 * 741 * Used by SCMI Protocols initialization code to register with the notification 742 * core the list of supported events and their descriptors: takes care to 743 * pre-allocate and store all needed descriptors, scratch buffers and event 744 * queues. 745 * 746 * Return: 0 on Success 747 */ 748 int scmi_register_protocol_events(const struct scmi_handle *handle, u8 proto_id, 749 const struct scmi_protocol_handle *ph, 750 const struct scmi_protocol_events *ee) 751 { 752 int i; 753 unsigned int num_sources; 754 size_t payld_sz = 0; 755 struct scmi_registered_events_desc *pd; 756 struct scmi_notify_instance *ni; 757 const struct scmi_event *evt; 758 759 if (!ee || !ee->ops || !ee->evts || !ph || 760 (!ee->num_sources && !ee->ops->get_num_sources)) 761 return -EINVAL; 762 763 ni = scmi_notification_instance_data_get(handle); 764 if (!ni) 765 return -ENOMEM; 766 767 /* num_sources cannot be <= 0 */ 768 if (ee->num_sources) { 769 num_sources = ee->num_sources; 770 } else { 771 int nsrc = ee->ops->get_num_sources(ph); 772 773 if (nsrc <= 0) 774 return -EINVAL; 775 num_sources = nsrc; 776 } 777 778 evt = ee->evts; 779 for (i = 0; i < ee->num_events; i++) 780 payld_sz = max_t(size_t, payld_sz, evt[i].max_payld_sz); 781 payld_sz += sizeof(struct scmi_event_header); 782 783 pd = scmi_allocate_registered_events_desc(ni, proto_id, ee->queue_sz, 784 payld_sz, ee->num_events, 785 ee->ops); 786 if (IS_ERR(pd)) 787 return PTR_ERR(pd); 788 789 pd->ph = ph; 790 for (i = 0; i < ee->num_events; i++, evt++) { 791 struct scmi_registered_event *r_evt; 792 793 r_evt = devm_kzalloc(ni->handle->dev, sizeof(*r_evt), 794 GFP_KERNEL); 795 if (!r_evt) 796 return -ENOMEM; 797 r_evt->proto = pd; 798 r_evt->evt = evt; 799 800 r_evt->sources = devm_kcalloc(ni->handle->dev, num_sources, 801 sizeof(refcount_t), GFP_KERNEL); 802 if (!r_evt->sources) 803 return -ENOMEM; 804 r_evt->num_sources = num_sources; 805 mutex_init(&r_evt->sources_mtx); 806 807 r_evt->report = devm_kzalloc(ni->handle->dev, 808 evt->max_report_sz, GFP_KERNEL); 809 if (!r_evt->report) 810 return -ENOMEM; 811 812 pd->registered_events[i] = r_evt; 813 /* Ensure events are updated */ 814 smp_wmb(); 815 dev_dbg(handle->dev, "registered event - %lX\n", 816 MAKE_ALL_SRCS_KEY(r_evt->proto->id, r_evt->evt->id)); 817 } 818 819 /* Register protocol and events...it will never be removed */ 820 ni->registered_protocols[proto_id] = pd; 821 /* Ensure protocols are updated */ 822 smp_wmb(); 823 824 /* 825 * Finalize any pending events' handler which could have been waiting 826 * for this protocol's events registration. 827 */ 828 schedule_work(&ni->init_work); 829 830 return 0; 831 } 832 833 /** 834 * scmi_deregister_protocol_events - Deregister protocol events with the core 835 * @handle: The handle identifying the platform instance against which the 836 * protocol's events are registered 837 * @proto_id: Protocol ID 838 */ 839 void scmi_deregister_protocol_events(const struct scmi_handle *handle, 840 u8 proto_id) 841 { 842 struct scmi_notify_instance *ni; 843 struct scmi_registered_events_desc *pd; 844 845 ni = scmi_notification_instance_data_get(handle); 846 if (!ni) 847 return; 848 849 pd = ni->registered_protocols[proto_id]; 850 if (!pd) 851 return; 852 853 ni->registered_protocols[proto_id] = NULL; 854 /* Ensure protocols are updated */ 855 smp_wmb(); 856 857 cancel_work_sync(&pd->equeue.notify_work); 858 } 859 860 /** 861 * scmi_allocate_event_handler() - Allocate Event handler 862 * @ni: A reference to the notification instance to use 863 * @evt_key: 32bit key uniquely bind to the event identified by the tuple 864 * (proto_id, evt_id, src_id) 865 * 866 * Allocate an event handler and related notification chain associated with 867 * the provided event handler key. 868 * Note that, at this point, a related registered_event is still to be 869 * associated to this handler descriptor (hndl->r_evt == NULL), so the handler 870 * is initialized as pending. 871 * 872 * Context: Assumes to be called with @pending_mtx already acquired. 873 * Return: the freshly allocated structure on Success 874 */ 875 static struct scmi_event_handler * 876 scmi_allocate_event_handler(struct scmi_notify_instance *ni, u32 evt_key) 877 { 878 struct scmi_event_handler *hndl; 879 880 hndl = kzalloc(sizeof(*hndl), GFP_KERNEL); 881 if (!hndl) 882 return NULL; 883 hndl->key = evt_key; 884 BLOCKING_INIT_NOTIFIER_HEAD(&hndl->chain); 885 refcount_set(&hndl->users, 1); 886 /* New handlers are created pending */ 887 hash_add(ni->pending_events_handlers, &hndl->hash, hndl->key); 888 889 return hndl; 890 } 891 892 /** 893 * scmi_free_event_handler() - Free the provided Event handler 894 * @hndl: The event handler structure to free 895 * 896 * Context: Assumes to be called with proper locking acquired depending 897 * on the situation. 898 */ 899 static void scmi_free_event_handler(struct scmi_event_handler *hndl) 900 { 901 hash_del(&hndl->hash); 902 kfree(hndl); 903 } 904 905 /** 906 * scmi_bind_event_handler() - Helper to attempt binding an handler to an event 907 * @ni: A reference to the notification instance to use 908 * @hndl: The event handler to bind 909 * 910 * If an associated registered event is found, move the handler from the pending 911 * into the registered table. 912 * 913 * Context: Assumes to be called with @pending_mtx already acquired. 914 * 915 * Return: 0 on Success 916 */ 917 static inline int scmi_bind_event_handler(struct scmi_notify_instance *ni, 918 struct scmi_event_handler *hndl) 919 { 920 struct scmi_registered_event *r_evt; 921 922 r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(hndl->key), 923 KEY_XTRACT_EVT_ID(hndl->key)); 924 if (!r_evt) 925 return -EINVAL; 926 927 /* 928 * Remove from pending and insert into registered while getting hold 929 * of protocol instance. 930 */ 931 hash_del(&hndl->hash); 932 /* 933 * Acquire protocols only for NON pending handlers, so as NOT to trigger 934 * protocol initialization when a notifier is registered against a still 935 * not registered protocol, since it would make little sense to force init 936 * protocols for which still no SCMI driver user exists: they wouldn't 937 * emit any event anyway till some SCMI driver starts using it. 938 */ 939 scmi_protocol_acquire(ni->handle, KEY_XTRACT_PROTO_ID(hndl->key)); 940 hndl->r_evt = r_evt; 941 942 mutex_lock(&r_evt->proto->registered_mtx); 943 hash_add(r_evt->proto->registered_events_handlers, 944 &hndl->hash, hndl->key); 945 mutex_unlock(&r_evt->proto->registered_mtx); 946 947 return 0; 948 } 949 950 /** 951 * scmi_valid_pending_handler() - Helper to check pending status of handlers 952 * @ni: A reference to the notification instance to use 953 * @hndl: The event handler to check 954 * 955 * An handler is considered pending when its r_evt == NULL, because the related 956 * event was still unknown at handler's registration time; anyway, since all 957 * protocols register their supported events once for all at protocols' 958 * initialization time, a pending handler cannot be considered valid anymore if 959 * the underlying event (which it is waiting for), belongs to an already 960 * initialized and registered protocol. 961 * 962 * Return: 0 on Success 963 */ 964 static inline int scmi_valid_pending_handler(struct scmi_notify_instance *ni, 965 struct scmi_event_handler *hndl) 966 { 967 struct scmi_registered_events_desc *pd; 968 969 if (!IS_HNDL_PENDING(hndl)) 970 return -EINVAL; 971 972 pd = SCMI_GET_PROTO(ni, KEY_XTRACT_PROTO_ID(hndl->key)); 973 if (pd) 974 return -EINVAL; 975 976 return 0; 977 } 978 979 /** 980 * scmi_register_event_handler() - Register whenever possible an Event handler 981 * @ni: A reference to the notification instance to use 982 * @hndl: The event handler to register 983 * 984 * At first try to bind an event handler to its associated event, then check if 985 * it was at least a valid pending handler: if it was not bound nor valid return 986 * false. 987 * 988 * Valid pending incomplete bindings will be periodically retried by a dedicated 989 * worker which is kicked each time a new protocol completes its own 990 * registration phase. 991 * 992 * Context: Assumes to be called with @pending_mtx acquired. 993 * 994 * Return: 0 on Success 995 */ 996 static int scmi_register_event_handler(struct scmi_notify_instance *ni, 997 struct scmi_event_handler *hndl) 998 { 999 int ret; 1000 1001 ret = scmi_bind_event_handler(ni, hndl); 1002 if (!ret) { 1003 dev_dbg(ni->handle->dev, "registered NEW handler - key:%X\n", 1004 hndl->key); 1005 } else { 1006 ret = scmi_valid_pending_handler(ni, hndl); 1007 if (!ret) 1008 dev_dbg(ni->handle->dev, 1009 "registered PENDING handler - key:%X\n", 1010 hndl->key); 1011 } 1012 1013 return ret; 1014 } 1015 1016 /** 1017 * __scmi_event_handler_get_ops() - Utility to get or create an event handler 1018 * @ni: A reference to the notification instance to use 1019 * @evt_key: The event key to use 1020 * @create: A boolean flag to specify if a handler must be created when 1021 * not already existent 1022 * 1023 * Search for the desired handler matching the key in both the per-protocol 1024 * registered table and the common pending table: 1025 * * if found adjust users refcount 1026 * * if not found and @create is true, create and register the new handler: 1027 * handler could end up being registered as pending if no matching event 1028 * could be found. 1029 * 1030 * An handler is guaranteed to reside in one and only one of the tables at 1031 * any one time; to ensure this the whole search and create is performed 1032 * holding the @pending_mtx lock, with @registered_mtx additionally acquired 1033 * if needed. 1034 * 1035 * Note that when a nested acquisition of these mutexes is needed the locking 1036 * order is always (same as in @init_work): 1037 * 1. pending_mtx 1038 * 2. registered_mtx 1039 * 1040 * Events generation is NOT enabled right after creation within this routine 1041 * since at creation time we usually want to have all setup and ready before 1042 * events really start flowing. 1043 * 1044 * Return: A properly refcounted handler on Success, NULL on Failure 1045 */ 1046 static inline struct scmi_event_handler * 1047 __scmi_event_handler_get_ops(struct scmi_notify_instance *ni, 1048 u32 evt_key, bool create) 1049 { 1050 struct scmi_registered_event *r_evt; 1051 struct scmi_event_handler *hndl = NULL; 1052 1053 r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key), 1054 KEY_XTRACT_EVT_ID(evt_key)); 1055 1056 mutex_lock(&ni->pending_mtx); 1057 /* Search registered events at first ... if possible at all */ 1058 if (r_evt) { 1059 mutex_lock(&r_evt->proto->registered_mtx); 1060 hndl = KEY_FIND(r_evt->proto->registered_events_handlers, 1061 hndl, evt_key); 1062 if (hndl) 1063 refcount_inc(&hndl->users); 1064 mutex_unlock(&r_evt->proto->registered_mtx); 1065 } 1066 1067 /* ...then amongst pending. */ 1068 if (!hndl) { 1069 hndl = KEY_FIND(ni->pending_events_handlers, hndl, evt_key); 1070 if (hndl) 1071 refcount_inc(&hndl->users); 1072 } 1073 1074 /* Create if still not found and required */ 1075 if (!hndl && create) { 1076 hndl = scmi_allocate_event_handler(ni, evt_key); 1077 if (hndl && scmi_register_event_handler(ni, hndl)) { 1078 dev_dbg(ni->handle->dev, 1079 "purging UNKNOWN handler - key:%X\n", 1080 hndl->key); 1081 /* this hndl can be only a pending one */ 1082 scmi_put_handler_unlocked(ni, hndl); 1083 hndl = NULL; 1084 } 1085 } 1086 mutex_unlock(&ni->pending_mtx); 1087 1088 return hndl; 1089 } 1090 1091 static struct scmi_event_handler * 1092 scmi_get_handler(struct scmi_notify_instance *ni, u32 evt_key) 1093 { 1094 return __scmi_event_handler_get_ops(ni, evt_key, false); 1095 } 1096 1097 static struct scmi_event_handler * 1098 scmi_get_or_create_handler(struct scmi_notify_instance *ni, u32 evt_key) 1099 { 1100 return __scmi_event_handler_get_ops(ni, evt_key, true); 1101 } 1102 1103 /** 1104 * scmi_get_active_handler() - Helper to get active handlers only 1105 * @ni: A reference to the notification instance to use 1106 * @evt_key: The event key to use 1107 * 1108 * Search for the desired handler matching the key only in the per-protocol 1109 * table of registered handlers: this is called only from the dispatching path 1110 * so want to be as quick as possible and do not care about pending. 1111 * 1112 * Return: A properly refcounted active handler 1113 */ 1114 static struct scmi_event_handler * 1115 scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key) 1116 { 1117 struct scmi_registered_event *r_evt; 1118 struct scmi_event_handler *hndl = NULL; 1119 1120 r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key), 1121 KEY_XTRACT_EVT_ID(evt_key)); 1122 if (r_evt) { 1123 mutex_lock(&r_evt->proto->registered_mtx); 1124 hndl = KEY_FIND(r_evt->proto->registered_events_handlers, 1125 hndl, evt_key); 1126 if (hndl) 1127 refcount_inc(&hndl->users); 1128 mutex_unlock(&r_evt->proto->registered_mtx); 1129 } 1130 1131 return hndl; 1132 } 1133 1134 /** 1135 * __scmi_enable_evt() - Enable/disable events generation 1136 * @r_evt: The registered event to act upon 1137 * @src_id: The src_id to act upon 1138 * @enable: The action to perform: true->Enable, false->Disable 1139 * 1140 * Takes care of proper refcounting while performing enable/disable: handles 1141 * the special case of ALL sources requests by itself. 1142 * Returns successfully if at least one of the required src_id has been 1143 * successfully enabled/disabled. 1144 * 1145 * Return: 0 on Success 1146 */ 1147 static inline int __scmi_enable_evt(struct scmi_registered_event *r_evt, 1148 u32 src_id, bool enable) 1149 { 1150 int retvals = 0; 1151 u32 num_sources; 1152 refcount_t *sid; 1153 1154 if (src_id == SRC_ID_MASK) { 1155 src_id = 0; 1156 num_sources = r_evt->num_sources; 1157 } else if (src_id < r_evt->num_sources) { 1158 num_sources = 1; 1159 } else { 1160 return -EINVAL; 1161 } 1162 1163 mutex_lock(&r_evt->sources_mtx); 1164 if (enable) { 1165 for (; num_sources; src_id++, num_sources--) { 1166 int ret = 0; 1167 1168 sid = &r_evt->sources[src_id]; 1169 if (refcount_read(sid) == 0) { 1170 ret = REVT_NOTIFY_ENABLE(r_evt, r_evt->evt->id, 1171 src_id); 1172 if (!ret) 1173 refcount_set(sid, 1); 1174 } else { 1175 refcount_inc(sid); 1176 } 1177 retvals += !ret; 1178 } 1179 } else { 1180 for (; num_sources; src_id++, num_sources--) { 1181 sid = &r_evt->sources[src_id]; 1182 if (refcount_dec_and_test(sid)) 1183 REVT_NOTIFY_DISABLE(r_evt, 1184 r_evt->evt->id, src_id); 1185 } 1186 retvals = 1; 1187 } 1188 mutex_unlock(&r_evt->sources_mtx); 1189 1190 return retvals ? 0 : -EINVAL; 1191 } 1192 1193 static int scmi_enable_events(struct scmi_event_handler *hndl) 1194 { 1195 int ret = 0; 1196 1197 if (!hndl->enabled) { 1198 ret = __scmi_enable_evt(hndl->r_evt, 1199 KEY_XTRACT_SRC_ID(hndl->key), true); 1200 if (!ret) 1201 hndl->enabled = true; 1202 } 1203 1204 return ret; 1205 } 1206 1207 static int scmi_disable_events(struct scmi_event_handler *hndl) 1208 { 1209 int ret = 0; 1210 1211 if (hndl->enabled) { 1212 ret = __scmi_enable_evt(hndl->r_evt, 1213 KEY_XTRACT_SRC_ID(hndl->key), false); 1214 if (!ret) 1215 hndl->enabled = false; 1216 } 1217 1218 return ret; 1219 } 1220 1221 /** 1222 * scmi_put_handler_unlocked() - Put an event handler 1223 * @ni: A reference to the notification instance to use 1224 * @hndl: The event handler to act upon 1225 * 1226 * After having got exclusive access to the registered handlers hashtable, 1227 * update the refcount and if @hndl is no more in use by anyone: 1228 * * ask for events' generation disabling 1229 * * unregister and free the handler itself 1230 * 1231 * Context: Assumes all the proper locking has been managed by the caller. 1232 * 1233 * Return: True if handler was freed (users dropped to zero) 1234 */ 1235 static bool scmi_put_handler_unlocked(struct scmi_notify_instance *ni, 1236 struct scmi_event_handler *hndl) 1237 { 1238 bool freed = false; 1239 1240 if (refcount_dec_and_test(&hndl->users)) { 1241 if (!IS_HNDL_PENDING(hndl)) 1242 scmi_disable_events(hndl); 1243 scmi_free_event_handler(hndl); 1244 freed = true; 1245 } 1246 1247 return freed; 1248 } 1249 1250 static void scmi_put_handler(struct scmi_notify_instance *ni, 1251 struct scmi_event_handler *hndl) 1252 { 1253 bool freed; 1254 u8 protocol_id; 1255 struct scmi_registered_event *r_evt = hndl->r_evt; 1256 1257 mutex_lock(&ni->pending_mtx); 1258 if (r_evt) { 1259 protocol_id = r_evt->proto->id; 1260 mutex_lock(&r_evt->proto->registered_mtx); 1261 } 1262 1263 freed = scmi_put_handler_unlocked(ni, hndl); 1264 1265 if (r_evt) { 1266 mutex_unlock(&r_evt->proto->registered_mtx); 1267 /* 1268 * Only registered handler acquired protocol; must be here 1269 * released only AFTER unlocking registered_mtx, since 1270 * releasing a protocol can trigger its de-initialization 1271 * (ie. including r_evt and registered_mtx) 1272 */ 1273 if (freed) 1274 scmi_protocol_release(ni->handle, protocol_id); 1275 } 1276 mutex_unlock(&ni->pending_mtx); 1277 } 1278 1279 static void scmi_put_active_handler(struct scmi_notify_instance *ni, 1280 struct scmi_event_handler *hndl) 1281 { 1282 bool freed; 1283 struct scmi_registered_event *r_evt = hndl->r_evt; 1284 u8 protocol_id = r_evt->proto->id; 1285 1286 mutex_lock(&r_evt->proto->registered_mtx); 1287 freed = scmi_put_handler_unlocked(ni, hndl); 1288 mutex_unlock(&r_evt->proto->registered_mtx); 1289 if (freed) 1290 scmi_protocol_release(ni->handle, protocol_id); 1291 } 1292 1293 /** 1294 * scmi_event_handler_enable_events() - Enable events associated to an handler 1295 * @hndl: The Event handler to act upon 1296 * 1297 * Return: 0 on Success 1298 */ 1299 static int scmi_event_handler_enable_events(struct scmi_event_handler *hndl) 1300 { 1301 if (scmi_enable_events(hndl)) { 1302 pr_err("Failed to ENABLE events for key:%X !\n", hndl->key); 1303 return -EINVAL; 1304 } 1305 1306 return 0; 1307 } 1308 1309 /** 1310 * scmi_notifier_register() - Register a notifier_block for an event 1311 * @handle: The handle identifying the platform instance against which the 1312 * callback is registered 1313 * @proto_id: Protocol ID 1314 * @evt_id: Event ID 1315 * @src_id: Source ID, when NULL register for events coming form ALL possible 1316 * sources 1317 * @nb: A standard notifier block to register for the specified event 1318 * 1319 * Generic helper to register a notifier_block against a protocol event. 1320 * 1321 * A notifier_block @nb will be registered for each distinct event identified 1322 * by the tuple (proto_id, evt_id, src_id) on a dedicated notification chain 1323 * so that: 1324 * 1325 * (proto_X, evt_Y, src_Z) --> chain_X_Y_Z 1326 * 1327 * @src_id meaning is protocol specific and identifies the origin of the event 1328 * (like domain_id, sensor_id and so forth). 1329 * 1330 * @src_id can be NULL to signify that the caller is interested in receiving 1331 * notifications from ALL the available sources for that protocol OR simply that 1332 * the protocol does not support distinct sources. 1333 * 1334 * As soon as one user for the specified tuple appears, an handler is created, 1335 * and that specific event's generation is enabled at the platform level, unless 1336 * an associated registered event is found missing, meaning that the needed 1337 * protocol is still to be initialized and the handler has just been registered 1338 * as still pending. 1339 * 1340 * Return: 0 on Success 1341 */ 1342 static int scmi_notifier_register(const struct scmi_handle *handle, 1343 u8 proto_id, u8 evt_id, const u32 *src_id, 1344 struct notifier_block *nb) 1345 { 1346 int ret = 0; 1347 u32 evt_key; 1348 struct scmi_event_handler *hndl; 1349 struct scmi_notify_instance *ni; 1350 1351 ni = scmi_notification_instance_data_get(handle); 1352 if (!ni) 1353 return -ENODEV; 1354 1355 evt_key = MAKE_HASH_KEY(proto_id, evt_id, 1356 src_id ? *src_id : SRC_ID_MASK); 1357 hndl = scmi_get_or_create_handler(ni, evt_key); 1358 if (!hndl) 1359 return -EINVAL; 1360 1361 blocking_notifier_chain_register(&hndl->chain, nb); 1362 1363 /* Enable events for not pending handlers */ 1364 if (!IS_HNDL_PENDING(hndl)) { 1365 ret = scmi_event_handler_enable_events(hndl); 1366 if (ret) 1367 scmi_put_handler(ni, hndl); 1368 } 1369 1370 return ret; 1371 } 1372 1373 /** 1374 * scmi_notifier_unregister() - Unregister a notifier_block for an event 1375 * @handle: The handle identifying the platform instance against which the 1376 * callback is unregistered 1377 * @proto_id: Protocol ID 1378 * @evt_id: Event ID 1379 * @src_id: Source ID 1380 * @nb: The notifier_block to unregister 1381 * 1382 * Takes care to unregister the provided @nb from the notification chain 1383 * associated to the specified event and, if there are no more users for the 1384 * event handler, frees also the associated event handler structures. 1385 * (this could possibly cause disabling of event's generation at platform level) 1386 * 1387 * Return: 0 on Success 1388 */ 1389 static int scmi_notifier_unregister(const struct scmi_handle *handle, 1390 u8 proto_id, u8 evt_id, const u32 *src_id, 1391 struct notifier_block *nb) 1392 { 1393 u32 evt_key; 1394 struct scmi_event_handler *hndl; 1395 struct scmi_notify_instance *ni; 1396 1397 ni = scmi_notification_instance_data_get(handle); 1398 if (!ni) 1399 return -ENODEV; 1400 1401 evt_key = MAKE_HASH_KEY(proto_id, evt_id, 1402 src_id ? *src_id : SRC_ID_MASK); 1403 hndl = scmi_get_handler(ni, evt_key); 1404 if (!hndl) 1405 return -EINVAL; 1406 1407 /* 1408 * Note that this chain unregistration call is safe on its own 1409 * being internally protected by an rwsem. 1410 */ 1411 blocking_notifier_chain_unregister(&hndl->chain, nb); 1412 scmi_put_handler(ni, hndl); 1413 1414 /* 1415 * This balances the initial get issued in @scmi_notifier_register. 1416 * If this notifier_block happened to be the last known user callback 1417 * for this event, the handler is here freed and the event's generation 1418 * stopped. 1419 * 1420 * Note that, an ongoing concurrent lookup on the delivery workqueue 1421 * path could still hold the refcount to 1 even after this routine 1422 * completes: in such a case it will be the final put on the delivery 1423 * path which will finally free this unused handler. 1424 */ 1425 scmi_put_handler(ni, hndl); 1426 1427 return 0; 1428 } 1429 1430 struct scmi_notifier_devres { 1431 const struct scmi_handle *handle; 1432 u8 proto_id; 1433 u8 evt_id; 1434 u32 __src_id; 1435 u32 *src_id; 1436 struct notifier_block *nb; 1437 }; 1438 1439 static void scmi_devm_release_notifier(struct device *dev, void *res) 1440 { 1441 struct scmi_notifier_devres *dres = res; 1442 1443 scmi_notifier_unregister(dres->handle, dres->proto_id, dres->evt_id, 1444 dres->src_id, dres->nb); 1445 } 1446 1447 /** 1448 * scmi_devm_notifier_register() - Managed registration of a notifier_block 1449 * for an event 1450 * @sdev: A reference to an scmi_device whose embedded struct device is to 1451 * be used for devres accounting. 1452 * @proto_id: Protocol ID 1453 * @evt_id: Event ID 1454 * @src_id: Source ID, when NULL register for events coming form ALL possible 1455 * sources 1456 * @nb: A standard notifier block to register for the specified event 1457 * 1458 * Generic devres managed helper to register a notifier_block against a 1459 * protocol event. 1460 * 1461 * Return: 0 on Success 1462 */ 1463 static int scmi_devm_notifier_register(struct scmi_device *sdev, 1464 u8 proto_id, u8 evt_id, 1465 const u32 *src_id, 1466 struct notifier_block *nb) 1467 { 1468 int ret; 1469 struct scmi_notifier_devres *dres; 1470 1471 dres = devres_alloc(scmi_devm_release_notifier, 1472 sizeof(*dres), GFP_KERNEL); 1473 if (!dres) 1474 return -ENOMEM; 1475 1476 ret = scmi_notifier_register(sdev->handle, proto_id, 1477 evt_id, src_id, nb); 1478 if (ret) { 1479 devres_free(dres); 1480 return ret; 1481 } 1482 1483 dres->handle = sdev->handle; 1484 dres->proto_id = proto_id; 1485 dres->evt_id = evt_id; 1486 dres->nb = nb; 1487 if (src_id) { 1488 dres->__src_id = *src_id; 1489 dres->src_id = &dres->__src_id; 1490 } else { 1491 dres->src_id = NULL; 1492 } 1493 devres_add(&sdev->dev, dres); 1494 1495 return ret; 1496 } 1497 1498 static int scmi_devm_notifier_match(struct device *dev, void *res, void *data) 1499 { 1500 struct scmi_notifier_devres *dres = res; 1501 struct scmi_notifier_devres *xres = data; 1502 1503 if (WARN_ON(!dres || !xres)) 1504 return 0; 1505 1506 return dres->proto_id == xres->proto_id && 1507 dres->evt_id == xres->evt_id && 1508 dres->nb == xres->nb && 1509 ((!dres->src_id && !xres->src_id) || 1510 (dres->src_id && xres->src_id && 1511 dres->__src_id == xres->__src_id)); 1512 } 1513 1514 /** 1515 * scmi_devm_notifier_unregister() - Managed un-registration of a 1516 * notifier_block for an event 1517 * @sdev: A reference to an scmi_device whose embedded struct device is to 1518 * be used for devres accounting. 1519 * @proto_id: Protocol ID 1520 * @evt_id: Event ID 1521 * @src_id: Source ID, when NULL register for events coming form ALL possible 1522 * sources 1523 * @nb: A standard notifier block to register for the specified event 1524 * 1525 * Generic devres managed helper to explicitly un-register a notifier_block 1526 * against a protocol event, which was previously registered using the above 1527 * @scmi_devm_notifier_register. 1528 * 1529 * Return: 0 on Success 1530 */ 1531 static int scmi_devm_notifier_unregister(struct scmi_device *sdev, 1532 u8 proto_id, u8 evt_id, 1533 const u32 *src_id, 1534 struct notifier_block *nb) 1535 { 1536 int ret; 1537 struct scmi_notifier_devres dres; 1538 1539 dres.handle = sdev->handle; 1540 dres.proto_id = proto_id; 1541 dres.evt_id = evt_id; 1542 if (src_id) { 1543 dres.__src_id = *src_id; 1544 dres.src_id = &dres.__src_id; 1545 } else { 1546 dres.src_id = NULL; 1547 } 1548 1549 ret = devres_release(&sdev->dev, scmi_devm_release_notifier, 1550 scmi_devm_notifier_match, &dres); 1551 1552 WARN_ON(ret); 1553 1554 return ret; 1555 } 1556 1557 /** 1558 * scmi_protocols_late_init() - Worker for late initialization 1559 * @work: The work item to use associated to the proper SCMI instance 1560 * 1561 * This kicks in whenever a new protocol has completed its own registration via 1562 * scmi_register_protocol_events(): it is in charge of scanning the table of 1563 * pending handlers (registered by users while the related protocol was still 1564 * not initialized) and finalizing their initialization whenever possible; 1565 * invalid pending handlers are purged at this point in time. 1566 */ 1567 static void scmi_protocols_late_init(struct work_struct *work) 1568 { 1569 int bkt; 1570 struct scmi_event_handler *hndl; 1571 struct scmi_notify_instance *ni; 1572 struct hlist_node *tmp; 1573 1574 ni = container_of(work, struct scmi_notify_instance, init_work); 1575 1576 /* Ensure protocols and events are up to date */ 1577 smp_rmb(); 1578 1579 mutex_lock(&ni->pending_mtx); 1580 hash_for_each_safe(ni->pending_events_handlers, bkt, tmp, hndl, hash) { 1581 int ret; 1582 1583 ret = scmi_bind_event_handler(ni, hndl); 1584 if (!ret) { 1585 dev_dbg(ni->handle->dev, 1586 "finalized PENDING handler - key:%X\n", 1587 hndl->key); 1588 ret = scmi_event_handler_enable_events(hndl); 1589 if (ret) { 1590 dev_dbg(ni->handle->dev, 1591 "purging INVALID handler - key:%X\n", 1592 hndl->key); 1593 scmi_put_active_handler(ni, hndl); 1594 } 1595 } else { 1596 ret = scmi_valid_pending_handler(ni, hndl); 1597 if (ret) { 1598 dev_dbg(ni->handle->dev, 1599 "purging PENDING handler - key:%X\n", 1600 hndl->key); 1601 /* this hndl can be only a pending one */ 1602 scmi_put_handler_unlocked(ni, hndl); 1603 } 1604 } 1605 } 1606 mutex_unlock(&ni->pending_mtx); 1607 } 1608 1609 /* 1610 * notify_ops are attached to the handle so that can be accessed 1611 * directly from an scmi_driver to register its own notifiers. 1612 */ 1613 static const struct scmi_notify_ops notify_ops = { 1614 .devm_event_notifier_register = scmi_devm_notifier_register, 1615 .devm_event_notifier_unregister = scmi_devm_notifier_unregister, 1616 .event_notifier_register = scmi_notifier_register, 1617 .event_notifier_unregister = scmi_notifier_unregister, 1618 }; 1619 1620 /** 1621 * scmi_notification_init() - Initializes Notification Core Support 1622 * @handle: The handle identifying the platform instance to initialize 1623 * 1624 * This function lays out all the basic resources needed by the notification 1625 * core instance identified by the provided handle: once done, all of the 1626 * SCMI Protocols can register their events with the core during their own 1627 * initializations. 1628 * 1629 * Note that failing to initialize the core notifications support does not 1630 * cause the whole SCMI Protocols stack to fail its initialization. 1631 * 1632 * SCMI Notification Initialization happens in 2 steps: 1633 * * initialization: basic common allocations (this function) 1634 * * registration: protocols asynchronously come into life and registers their 1635 * own supported list of events with the core; this causes 1636 * further per-protocol allocations 1637 * 1638 * Any user's callback registration attempt, referring a still not registered 1639 * event, will be registered as pending and finalized later (if possible) 1640 * by scmi_protocols_late_init() work. 1641 * This allows for lazy initialization of SCMI Protocols due to late (or 1642 * missing) SCMI drivers' modules loading. 1643 * 1644 * Return: 0 on Success 1645 */ 1646 int scmi_notification_init(struct scmi_handle *handle) 1647 { 1648 void *gid; 1649 struct scmi_notify_instance *ni; 1650 1651 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1652 if (!gid) 1653 return -ENOMEM; 1654 1655 ni = devm_kzalloc(handle->dev, sizeof(*ni), GFP_KERNEL); 1656 if (!ni) 1657 goto err; 1658 1659 ni->gid = gid; 1660 ni->handle = handle; 1661 1662 ni->registered_protocols = devm_kcalloc(handle->dev, SCMI_MAX_PROTO, 1663 sizeof(char *), GFP_KERNEL); 1664 if (!ni->registered_protocols) 1665 goto err; 1666 1667 ni->notify_wq = alloc_workqueue(dev_name(handle->dev), 1668 WQ_UNBOUND | WQ_FREEZABLE | WQ_SYSFS, 1669 0); 1670 if (!ni->notify_wq) 1671 goto err; 1672 1673 mutex_init(&ni->pending_mtx); 1674 hash_init(ni->pending_events_handlers); 1675 1676 INIT_WORK(&ni->init_work, scmi_protocols_late_init); 1677 1678 scmi_notification_instance_data_set(handle, ni); 1679 handle->notify_ops = ¬ify_ops; 1680 /* Ensure handle is up to date */ 1681 smp_wmb(); 1682 1683 dev_info(handle->dev, "Core Enabled.\n"); 1684 1685 devres_close_group(handle->dev, ni->gid); 1686 1687 return 0; 1688 1689 err: 1690 dev_warn(handle->dev, "Initialization Failed.\n"); 1691 devres_release_group(handle->dev, gid); 1692 return -ENOMEM; 1693 } 1694 1695 /** 1696 * scmi_notification_exit() - Shutdown and clean Notification core 1697 * @handle: The handle identifying the platform instance to shutdown 1698 */ 1699 void scmi_notification_exit(struct scmi_handle *handle) 1700 { 1701 struct scmi_notify_instance *ni; 1702 1703 ni = scmi_notification_instance_data_get(handle); 1704 if (!ni) 1705 return; 1706 scmi_notification_instance_data_set(handle, NULL); 1707 1708 /* Destroy while letting pending work complete */ 1709 destroy_workqueue(ni->notify_wq); 1710 1711 devres_release_group(ni->handle->dev, ni->gid); 1712 } 1713