1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Notification support
4  *
5  * Copyright (C) 2020-2021 ARM Ltd.
6  */
7 /**
8  * DOC: Theory of operation
9  *
10  * SCMI Protocol specification allows the platform to signal events to
11  * interested agents via notification messages: this is an implementation
12  * of the dispatch and delivery of such notifications to the interested users
13  * inside the Linux kernel.
14  *
15  * An SCMI Notification core instance is initialized for each active platform
16  * instance identified by the means of the usual &struct scmi_handle.
17  *
18  * Each SCMI Protocol implementation, during its initialization, registers with
19  * this core its set of supported events using scmi_register_protocol_events():
20  * all the needed descriptors are stored in the &struct registered_protocols and
21  * &struct registered_events arrays.
22  *
23  * Kernel users interested in some specific event can register their callbacks
24  * providing the usual notifier_block descriptor, since this core implements
25  * events' delivery using the standard Kernel notification chains machinery.
26  *
27  * Given the number of possible events defined by SCMI and the extensibility
28  * of the SCMI Protocol itself, the underlying notification chains are created
29  * and destroyed dynamically on demand depending on the number of users
30  * effectively registered for an event, so that no support structures or chains
31  * are allocated until at least one user has registered a notifier_block for
32  * such event. Similarly, events' generation itself is enabled at the platform
33  * level only after at least one user has registered, and it is shutdown after
34  * the last user for that event has gone.
35  *
36  * All users provided callbacks and allocated notification-chains are stored in
37  * the @registered_events_handlers hashtable. Callbacks' registration requests
38  * for still to be registered events are instead kept in the dedicated common
39  * hashtable @pending_events_handlers.
40  *
41  * An event is identified univocally by the tuple (proto_id, evt_id, src_id)
42  * and is served by its own dedicated notification chain; information contained
43  * in such tuples is used, in a few different ways, to generate the needed
44  * hash-keys.
45  *
46  * Here proto_id and evt_id are simply the protocol_id and message_id numbers
47  * as described in the SCMI Protocol specification, while src_id represents an
48  * optional, protocol dependent, source identifier (like domain_id, perf_id
49  * or sensor_id and so forth).
50  *
51  * Upon reception of a notification message from the platform the SCMI RX ISR
52  * passes the received message payload and some ancillary information (including
53  * an arrival timestamp in nanoseconds) to the core via @scmi_notify() which
54  * pushes the event-data itself on a protocol-dedicated kfifo queue for further
55  * deferred processing as specified in @scmi_events_dispatcher().
56  *
57  * Each protocol has it own dedicated work_struct and worker which, once kicked
58  * by the ISR, takes care to empty its own dedicated queue, deliverying the
59  * queued items into the proper notification-chain: notifications processing can
60  * proceed concurrently on distinct workers only between events belonging to
61  * different protocols while delivery of events within the same protocol is
62  * still strictly sequentially ordered by time of arrival.
63  *
64  * Events' information is then extracted from the SCMI Notification messages and
65  * conveyed, converted into a custom per-event report struct, as the void *data
66  * param to the user callback provided by the registered notifier_block, so that
67  * from the user perspective his callback will look invoked like:
68  *
69  * int user_cb(struct notifier_block *nb, unsigned long event_id, void *report)
70  *
71  */
72 
73 #define dev_fmt(fmt) "SCMI Notifications - " fmt
74 #define pr_fmt(fmt) "SCMI Notifications - " fmt
75 
76 #include <linux/bitfield.h>
77 #include <linux/bug.h>
78 #include <linux/compiler.h>
79 #include <linux/device.h>
80 #include <linux/err.h>
81 #include <linux/hashtable.h>
82 #include <linux/kernel.h>
83 #include <linux/ktime.h>
84 #include <linux/kfifo.h>
85 #include <linux/list.h>
86 #include <linux/mutex.h>
87 #include <linux/notifier.h>
88 #include <linux/refcount.h>
89 #include <linux/scmi_protocol.h>
90 #include <linux/slab.h>
91 #include <linux/types.h>
92 #include <linux/workqueue.h>
93 
94 #include "common.h"
95 #include "notify.h"
96 
97 #define SCMI_MAX_PROTO		256
98 
99 #define PROTO_ID_MASK		GENMASK(31, 24)
100 #define EVT_ID_MASK		GENMASK(23, 16)
101 #define SRC_ID_MASK		GENMASK(15, 0)
102 
103 /*
104  * Builds an unsigned 32bit key from the given input tuple to be used
105  * as a key in hashtables.
106  */
107 #define MAKE_HASH_KEY(p, e, s)			\
108 	(FIELD_PREP(PROTO_ID_MASK, (p)) |	\
109 	   FIELD_PREP(EVT_ID_MASK, (e)) |	\
110 	   FIELD_PREP(SRC_ID_MASK, (s)))
111 
112 #define MAKE_ALL_SRCS_KEY(p, e)		MAKE_HASH_KEY((p), (e), SRC_ID_MASK)
113 
114 /*
115  * Assumes that the stored obj includes its own hash-key in a field named 'key':
116  * with this simplification this macro can be equally used for all the objects'
117  * types hashed by this implementation.
118  *
119  * @__ht: The hashtable name
120  * @__obj: A pointer to the object type to be retrieved from the hashtable;
121  *	   it will be used as a cursor while scanning the hastable and it will
122  *	   be possibly left as NULL when @__k is not found
123  * @__k: The key to search for
124  */
125 #define KEY_FIND(__ht, __obj, __k)				\
126 ({								\
127 	typeof(__k) k_ = __k;					\
128 	typeof(__obj) obj_;					\
129 								\
130 	hash_for_each_possible((__ht), obj_, hash, k_)		\
131 		if (obj_->key == k_)				\
132 			break;					\
133 	__obj = obj_;						\
134 })
135 
136 #define KEY_XTRACT_PROTO_ID(key)	FIELD_GET(PROTO_ID_MASK, (key))
137 #define KEY_XTRACT_EVT_ID(key)		FIELD_GET(EVT_ID_MASK, (key))
138 #define KEY_XTRACT_SRC_ID(key)		FIELD_GET(SRC_ID_MASK, (key))
139 
140 /*
141  * A set of macros used to access safely @registered_protocols and
142  * @registered_events arrays; these are fixed in size and each entry is possibly
143  * populated at protocols' registration time and then only read but NEVER
144  * modified or removed.
145  */
146 #define SCMI_GET_PROTO(__ni, __pid)					\
147 ({									\
148 	typeof(__ni) ni_ = __ni;					\
149 	struct scmi_registered_events_desc *__pd = NULL;		\
150 									\
151 	if (ni_)							\
152 		__pd = READ_ONCE(ni_->registered_protocols[(__pid)]);	\
153 	__pd;								\
154 })
155 
156 #define SCMI_GET_REVT_FROM_PD(__pd, __eid)				\
157 ({									\
158 	typeof(__pd) pd_ = __pd;					\
159 	typeof(__eid) eid_ = __eid;					\
160 	struct scmi_registered_event *__revt = NULL;			\
161 									\
162 	if (pd_ && eid_ < pd_->num_events)				\
163 		__revt = READ_ONCE(pd_->registered_events[eid_]);	\
164 	__revt;								\
165 })
166 
167 #define SCMI_GET_REVT(__ni, __pid, __eid)				\
168 ({									\
169 	struct scmi_registered_event *__revt;				\
170 	struct scmi_registered_events_desc *__pd;			\
171 									\
172 	__pd = SCMI_GET_PROTO((__ni), (__pid));				\
173 	__revt = SCMI_GET_REVT_FROM_PD(__pd, (__eid));			\
174 	__revt;								\
175 })
176 
177 /* A couple of utility macros to limit cruft when calling protocols' helpers */
178 #define REVT_NOTIFY_SET_STATUS(revt, eid, sid, state)		\
179 ({								\
180 	typeof(revt) r = revt;					\
181 	r->proto->ops->set_notify_enabled(r->proto->ph,		\
182 					(eid), (sid), (state));	\
183 })
184 
185 #define REVT_NOTIFY_ENABLE(revt, eid, sid)			\
186 	REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), true)
187 
188 #define REVT_NOTIFY_DISABLE(revt, eid, sid)			\
189 	REVT_NOTIFY_SET_STATUS((revt), (eid), (sid), false)
190 
191 #define REVT_FILL_REPORT(revt, ...)				\
192 ({								\
193 	typeof(revt) r = revt;					\
194 	r->proto->ops->fill_custom_report(r->proto->ph,		\
195 					  __VA_ARGS__);		\
196 })
197 
198 #define SCMI_PENDING_HASH_SZ		4
199 #define SCMI_REGISTERED_HASH_SZ		6
200 
201 struct scmi_registered_events_desc;
202 
203 /**
204  * struct scmi_notify_instance  - Represents an instance of the notification
205  * core
206  * @gid: GroupID used for devres
207  * @handle: A reference to the platform instance
208  * @init_work: A work item to perform final initializations of pending handlers
209  * @notify_wq: A reference to the allocated Kernel cmwq
210  * @pending_mtx: A mutex to protect @pending_events_handlers
211  * @registered_protocols: A statically allocated array containing pointers to
212  *			  all the registered protocol-level specific information
213  *			  related to events' handling
214  * @pending_events_handlers: An hashtable containing all pending events'
215  *			     handlers descriptors
216  *
217  * Each platform instance, represented by a handle, has its own instance of
218  * the notification subsystem represented by this structure.
219  */
220 struct scmi_notify_instance {
221 	void			*gid;
222 	struct scmi_handle	*handle;
223 	struct work_struct	init_work;
224 	struct workqueue_struct	*notify_wq;
225 	/* lock to protect pending_events_handlers */
226 	struct mutex		pending_mtx;
227 	struct scmi_registered_events_desc	**registered_protocols;
228 	DECLARE_HASHTABLE(pending_events_handlers, SCMI_PENDING_HASH_SZ);
229 };
230 
231 /**
232  * struct events_queue  - Describes a queue and its associated worker
233  * @sz: Size in bytes of the related kfifo
234  * @kfifo: A dedicated Kernel kfifo descriptor
235  * @notify_work: A custom work item bound to this queue
236  * @wq: A reference to the associated workqueue
237  *
238  * Each protocol has its own dedicated events_queue descriptor.
239  */
240 struct events_queue {
241 	size_t			sz;
242 	struct kfifo		kfifo;
243 	struct work_struct	notify_work;
244 	struct workqueue_struct	*wq;
245 };
246 
247 /**
248  * struct scmi_event_header  - A utility header
249  * @timestamp: The timestamp, in nanoseconds (boottime), which was associated
250  *	       to this event as soon as it entered the SCMI RX ISR
251  * @payld_sz: Effective size of the embedded message payload which follows
252  * @evt_id: Event ID (corresponds to the Event MsgID for this Protocol)
253  * @payld: A reference to the embedded event payload
254  *
255  * This header is prepended to each received event message payload before
256  * queueing it on the related &struct events_queue.
257  */
258 struct scmi_event_header {
259 	ktime_t timestamp;
260 	size_t payld_sz;
261 	unsigned char evt_id;
262 	unsigned char payld[];
263 };
264 
265 struct scmi_registered_event;
266 
267 /**
268  * struct scmi_registered_events_desc  - Protocol Specific information
269  * @id: Protocol ID
270  * @ops: Protocol specific and event-related operations
271  * @equeue: The embedded per-protocol events_queue
272  * @ni: A reference to the initialized instance descriptor
273  * @eh: A reference to pre-allocated buffer to be used as a scratch area by the
274  *	deferred worker when fetching data from the kfifo
275  * @eh_sz: Size of the pre-allocated buffer @eh
276  * @in_flight: A reference to an in flight &struct scmi_registered_event
277  * @num_events: Number of events in @registered_events
278  * @registered_events: A dynamically allocated array holding all the registered
279  *		       events' descriptors, whose fixed-size is determined at
280  *		       compile time.
281  * @registered_mtx: A mutex to protect @registered_events_handlers
282  * @ph: SCMI protocol handle reference
283  * @registered_events_handlers: An hashtable containing all events' handlers
284  *				descriptors registered for this protocol
285  *
286  * All protocols that register at least one event have their protocol-specific
287  * information stored here, together with the embedded allocated events_queue.
288  * These descriptors are stored in the @registered_protocols array at protocol
289  * registration time.
290  *
291  * Once these descriptors are successfully registered, they are NEVER again
292  * removed or modified since protocols do not unregister ever, so that, once
293  * we safely grab a NON-NULL reference from the array we can keep it and use it.
294  */
295 struct scmi_registered_events_desc {
296 	u8				id;
297 	const struct scmi_event_ops	*ops;
298 	struct events_queue		equeue;
299 	struct scmi_notify_instance	*ni;
300 	struct scmi_event_header	*eh;
301 	size_t				eh_sz;
302 	void				*in_flight;
303 	int				num_events;
304 	struct scmi_registered_event	**registered_events;
305 	/* mutex to protect registered_events_handlers */
306 	struct mutex			registered_mtx;
307 	const struct scmi_protocol_handle	*ph;
308 	DECLARE_HASHTABLE(registered_events_handlers, SCMI_REGISTERED_HASH_SZ);
309 };
310 
311 /**
312  * struct scmi_registered_event  - Event Specific Information
313  * @proto: A reference to the associated protocol descriptor
314  * @evt: A reference to the associated event descriptor (as provided at
315  *       registration time)
316  * @report: A pre-allocated buffer used by the deferred worker to fill a
317  *	    customized event report
318  * @num_sources: The number of possible sources for this event as stated at
319  *		 events' registration time
320  * @sources: A reference to a dynamically allocated array used to refcount the
321  *	     events' enable requests for all the existing sources
322  * @sources_mtx: A mutex to serialize the access to @sources
323  *
324  * All registered events are represented by one of these structures that are
325  * stored in the @registered_events array at protocol registration time.
326  *
327  * Once these descriptors are successfully registered, they are NEVER again
328  * removed or modified since protocols do not unregister ever, so that once we
329  * safely grab a NON-NULL reference from the table we can keep it and use it.
330  */
331 struct scmi_registered_event {
332 	struct scmi_registered_events_desc *proto;
333 	const struct scmi_event	*evt;
334 	void		*report;
335 	u32		num_sources;
336 	refcount_t	*sources;
337 	/* locking to serialize the access to sources */
338 	struct mutex	sources_mtx;
339 };
340 
341 /**
342  * struct scmi_event_handler  - Event handler information
343  * @key: The used hashkey
344  * @users: A reference count for number of active users for this handler
345  * @r_evt: A reference to the associated registered event; when this is NULL
346  *	   this handler is pending, which means that identifies a set of
347  *	   callbacks intended to be attached to an event which is still not
348  *	   known nor registered by any protocol at that point in time
349  * @chain: The notification chain dedicated to this specific event tuple
350  * @hash: The hlist_node used for collision handling
351  * @enabled: A boolean which records if event's generation has been already
352  *	     enabled for this handler as a whole
353  *
354  * This structure collects all the information needed to process a received
355  * event identified by the tuple (proto_id, evt_id, src_id).
356  * These descriptors are stored in a per-protocol @registered_events_handlers
357  * table using as a key a value derived from that tuple.
358  */
359 struct scmi_event_handler {
360 	u32				key;
361 	refcount_t			users;
362 	struct scmi_registered_event	*r_evt;
363 	struct blocking_notifier_head	chain;
364 	struct hlist_node		hash;
365 	bool				enabled;
366 };
367 
368 #define IS_HNDL_PENDING(hndl)	(!(hndl)->r_evt)
369 
370 static struct scmi_event_handler *
371 scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key);
372 static void scmi_put_active_handler(struct scmi_notify_instance *ni,
373 				    struct scmi_event_handler *hndl);
374 static bool scmi_put_handler_unlocked(struct scmi_notify_instance *ni,
375 				      struct scmi_event_handler *hndl);
376 
377 /**
378  * scmi_lookup_and_call_event_chain()  - Lookup the proper chain and call it
379  * @ni: A reference to the notification instance to use
380  * @evt_key: The key to use to lookup the related notification chain
381  * @report: The customized event-specific report to pass down to the callbacks
382  *	    as their *data parameter.
383  */
384 static inline void
385 scmi_lookup_and_call_event_chain(struct scmi_notify_instance *ni,
386 				 u32 evt_key, void *report)
387 {
388 	int ret;
389 	struct scmi_event_handler *hndl;
390 
391 	/*
392 	 * Here ensure the event handler cannot vanish while using it.
393 	 * It is legitimate, though, for an handler not to be found at all here,
394 	 * e.g. when it has been unregistered by the user after some events had
395 	 * already been queued.
396 	 */
397 	hndl = scmi_get_active_handler(ni, evt_key);
398 	if (!hndl)
399 		return;
400 
401 	ret = blocking_notifier_call_chain(&hndl->chain,
402 					   KEY_XTRACT_EVT_ID(evt_key),
403 					   report);
404 	/* Notifiers are NOT supposed to cut the chain ... */
405 	WARN_ON_ONCE(ret & NOTIFY_STOP_MASK);
406 
407 	scmi_put_active_handler(ni, hndl);
408 }
409 
410 /**
411  * scmi_process_event_header()  - Dequeue and process an event header
412  * @eq: The queue to use
413  * @pd: The protocol descriptor to use
414  *
415  * Read an event header from the protocol queue into the dedicated scratch
416  * buffer and looks for a matching registered event; in case an anomalously
417  * sized read is detected just flush the queue.
418  *
419  * Return:
420  * * a reference to the matching registered event when found
421  * * ERR_PTR(-EINVAL) when NO registered event could be found
422  * * NULL when the queue is empty
423  */
424 static inline struct scmi_registered_event *
425 scmi_process_event_header(struct events_queue *eq,
426 			  struct scmi_registered_events_desc *pd)
427 {
428 	unsigned int outs;
429 	struct scmi_registered_event *r_evt;
430 
431 	outs = kfifo_out(&eq->kfifo, pd->eh,
432 			 sizeof(struct scmi_event_header));
433 	if (!outs)
434 		return NULL;
435 	if (outs != sizeof(struct scmi_event_header)) {
436 		dev_err(pd->ni->handle->dev, "corrupted EVT header. Flush.\n");
437 		kfifo_reset_out(&eq->kfifo);
438 		return NULL;
439 	}
440 
441 	r_evt = SCMI_GET_REVT_FROM_PD(pd, pd->eh->evt_id);
442 	if (!r_evt)
443 		r_evt = ERR_PTR(-EINVAL);
444 
445 	return r_evt;
446 }
447 
448 /**
449  * scmi_process_event_payload()  - Dequeue and process an event payload
450  * @eq: The queue to use
451  * @pd: The protocol descriptor to use
452  * @r_evt: The registered event descriptor to use
453  *
454  * Read an event payload from the protocol queue into the dedicated scratch
455  * buffer, fills a custom report and then look for matching event handlers and
456  * call them; skip any unknown event (as marked by scmi_process_event_header())
457  * and in case an anomalously sized read is detected just flush the queue.
458  *
459  * Return: False when the queue is empty
460  */
461 static inline bool
462 scmi_process_event_payload(struct events_queue *eq,
463 			   struct scmi_registered_events_desc *pd,
464 			   struct scmi_registered_event *r_evt)
465 {
466 	u32 src_id, key;
467 	unsigned int outs;
468 	void *report = NULL;
469 
470 	outs = kfifo_out(&eq->kfifo, pd->eh->payld, pd->eh->payld_sz);
471 	if (!outs)
472 		return false;
473 
474 	/* Any in-flight event has now been officially processed */
475 	pd->in_flight = NULL;
476 
477 	if (outs != pd->eh->payld_sz) {
478 		dev_err(pd->ni->handle->dev, "corrupted EVT Payload. Flush.\n");
479 		kfifo_reset_out(&eq->kfifo);
480 		return false;
481 	}
482 
483 	if (IS_ERR(r_evt)) {
484 		dev_warn(pd->ni->handle->dev,
485 			 "SKIP UNKNOWN EVT - proto:%X  evt:%d\n",
486 			 pd->id, pd->eh->evt_id);
487 		return true;
488 	}
489 
490 	report = REVT_FILL_REPORT(r_evt, pd->eh->evt_id, pd->eh->timestamp,
491 				  pd->eh->payld, pd->eh->payld_sz,
492 				  r_evt->report, &src_id);
493 	if (!report) {
494 		dev_err(pd->ni->handle->dev,
495 			"report not available - proto:%X  evt:%d\n",
496 			pd->id, pd->eh->evt_id);
497 		return true;
498 	}
499 
500 	/* At first search for a generic ALL src_ids handler... */
501 	key = MAKE_ALL_SRCS_KEY(pd->id, pd->eh->evt_id);
502 	scmi_lookup_and_call_event_chain(pd->ni, key, report);
503 
504 	/* ...then search for any specific src_id */
505 	key = MAKE_HASH_KEY(pd->id, pd->eh->evt_id, src_id);
506 	scmi_lookup_and_call_event_chain(pd->ni, key, report);
507 
508 	return true;
509 }
510 
511 /**
512  * scmi_events_dispatcher()  - Common worker logic for all work items.
513  * @work: The work item to use, which is associated to a dedicated events_queue
514  *
515  * Logic:
516  *  1. dequeue one pending RX notification (queued in SCMI RX ISR context)
517  *  2. generate a custom event report from the received event message
518  *  3. lookup for any registered ALL_SRC_IDs handler:
519  *    - > call the related notification chain passing in the report
520  *  4. lookup for any registered specific SRC_ID handler:
521  *    - > call the related notification chain passing in the report
522  *
523  * Note that:
524  * * a dedicated per-protocol kfifo queue is used: in this way an anomalous
525  *   flood of events cannot saturate other protocols' queues.
526  * * each per-protocol queue is associated to a distinct work_item, which
527  *   means, in turn, that:
528  *   + all protocols can process their dedicated queues concurrently
529  *     (since notify_wq:max_active != 1)
530  *   + anyway at most one worker instance is allowed to run on the same queue
531  *     concurrently: this ensures that we can have only one concurrent
532  *     reader/writer on the associated kfifo, so that we can use it lock-less
533  *
534  * Context: Process context.
535  */
536 static void scmi_events_dispatcher(struct work_struct *work)
537 {
538 	struct events_queue *eq;
539 	struct scmi_registered_events_desc *pd;
540 	struct scmi_registered_event *r_evt;
541 
542 	eq = container_of(work, struct events_queue, notify_work);
543 	pd = container_of(eq, struct scmi_registered_events_desc, equeue);
544 	/*
545 	 * In order to keep the queue lock-less and the number of memcopies
546 	 * to the bare minimum needed, the dispatcher accounts for the
547 	 * possibility of per-protocol in-flight events: i.e. an event whose
548 	 * reception could end up being split across two subsequent runs of this
549 	 * worker, first the header, then the payload.
550 	 */
551 	do {
552 		if (!pd->in_flight) {
553 			r_evt = scmi_process_event_header(eq, pd);
554 			if (!r_evt)
555 				break;
556 			pd->in_flight = r_evt;
557 		} else {
558 			r_evt = pd->in_flight;
559 		}
560 	} while (scmi_process_event_payload(eq, pd, r_evt));
561 }
562 
563 /**
564  * scmi_notify()  - Queues a notification for further deferred processing
565  * @handle: The handle identifying the platform instance from which the
566  *	    dispatched event is generated
567  * @proto_id: Protocol ID
568  * @evt_id: Event ID (msgID)
569  * @buf: Event Message Payload (without the header)
570  * @len: Event Message Payload size
571  * @ts: RX Timestamp in nanoseconds (boottime)
572  *
573  * Context: Called in interrupt context to queue a received event for
574  * deferred processing.
575  *
576  * Return: 0 on Success
577  */
578 int scmi_notify(const struct scmi_handle *handle, u8 proto_id, u8 evt_id,
579 		const void *buf, size_t len, ktime_t ts)
580 {
581 	struct scmi_registered_event *r_evt;
582 	struct scmi_event_header eh;
583 	struct scmi_notify_instance *ni;
584 
585 	ni = scmi_notification_instance_data_get(handle);
586 	if (!ni)
587 		return 0;
588 
589 	r_evt = SCMI_GET_REVT(ni, proto_id, evt_id);
590 	if (!r_evt)
591 		return -EINVAL;
592 
593 	if (len > r_evt->evt->max_payld_sz) {
594 		dev_err(handle->dev, "discard badly sized message\n");
595 		return -EINVAL;
596 	}
597 	if (kfifo_avail(&r_evt->proto->equeue.kfifo) < sizeof(eh) + len) {
598 		dev_warn(handle->dev,
599 			 "queue full, dropping proto_id:%d  evt_id:%d  ts:%lld\n",
600 			 proto_id, evt_id, ktime_to_ns(ts));
601 		return -ENOMEM;
602 	}
603 
604 	eh.timestamp = ts;
605 	eh.evt_id = evt_id;
606 	eh.payld_sz = len;
607 	/*
608 	 * Header and payload are enqueued with two distinct kfifo_in() (so non
609 	 * atomic), but this situation is handled properly on the consumer side
610 	 * with in-flight events tracking.
611 	 */
612 	kfifo_in(&r_evt->proto->equeue.kfifo, &eh, sizeof(eh));
613 	kfifo_in(&r_evt->proto->equeue.kfifo, buf, len);
614 	/*
615 	 * Don't care about return value here since we just want to ensure that
616 	 * a work is queued all the times whenever some items have been pushed
617 	 * on the kfifo:
618 	 * - if work was already queued it will simply fail to queue a new one
619 	 *   since it is not needed
620 	 * - if work was not queued already it will be now, even in case work
621 	 *   was in fact already running: this behavior avoids any possible race
622 	 *   when this function pushes new items onto the kfifos after the
623 	 *   related executing worker had already determined the kfifo to be
624 	 *   empty and it was terminating.
625 	 */
626 	queue_work(r_evt->proto->equeue.wq,
627 		   &r_evt->proto->equeue.notify_work);
628 
629 	return 0;
630 }
631 
632 /**
633  * scmi_kfifo_free()  - Devres action helper to free the kfifo
634  * @kfifo: The kfifo to free
635  */
636 static void scmi_kfifo_free(void *kfifo)
637 {
638 	kfifo_free((struct kfifo *)kfifo);
639 }
640 
641 /**
642  * scmi_initialize_events_queue()  - Allocate/Initialize a kfifo buffer
643  * @ni: A reference to the notification instance to use
644  * @equeue: The events_queue to initialize
645  * @sz: Size of the kfifo buffer to allocate
646  *
647  * Allocate a buffer for the kfifo and initialize it.
648  *
649  * Return: 0 on Success
650  */
651 static int scmi_initialize_events_queue(struct scmi_notify_instance *ni,
652 					struct events_queue *equeue, size_t sz)
653 {
654 	int ret;
655 
656 	if (kfifo_alloc(&equeue->kfifo, sz, GFP_KERNEL))
657 		return -ENOMEM;
658 	/* Size could have been roundup to power-of-two */
659 	equeue->sz = kfifo_size(&equeue->kfifo);
660 
661 	ret = devm_add_action_or_reset(ni->handle->dev, scmi_kfifo_free,
662 				       &equeue->kfifo);
663 	if (ret)
664 		return ret;
665 
666 	INIT_WORK(&equeue->notify_work, scmi_events_dispatcher);
667 	equeue->wq = ni->notify_wq;
668 
669 	return ret;
670 }
671 
672 /**
673  * scmi_allocate_registered_events_desc()  - Allocate a registered events'
674  * descriptor
675  * @ni: A reference to the &struct scmi_notify_instance notification instance
676  *	to use
677  * @proto_id: Protocol ID
678  * @queue_sz: Size of the associated queue to allocate
679  * @eh_sz: Size of the event header scratch area to pre-allocate
680  * @num_events: Number of events to support (size of @registered_events)
681  * @ops: Pointer to a struct holding references to protocol specific helpers
682  *	 needed during events handling
683  *
684  * It is supposed to be called only once for each protocol at protocol
685  * initialization time, so it warns if the requested protocol is found already
686  * registered.
687  *
688  * Return: The allocated and registered descriptor on Success
689  */
690 static struct scmi_registered_events_desc *
691 scmi_allocate_registered_events_desc(struct scmi_notify_instance *ni,
692 				     u8 proto_id, size_t queue_sz, size_t eh_sz,
693 				     int num_events,
694 				     const struct scmi_event_ops *ops)
695 {
696 	int ret;
697 	struct scmi_registered_events_desc *pd;
698 
699 	/* Ensure protocols are up to date */
700 	smp_rmb();
701 	if (WARN_ON(ni->registered_protocols[proto_id]))
702 		return ERR_PTR(-EINVAL);
703 
704 	pd = devm_kzalloc(ni->handle->dev, sizeof(*pd), GFP_KERNEL);
705 	if (!pd)
706 		return ERR_PTR(-ENOMEM);
707 	pd->id = proto_id;
708 	pd->ops = ops;
709 	pd->ni = ni;
710 
711 	ret = scmi_initialize_events_queue(ni, &pd->equeue, queue_sz);
712 	if (ret)
713 		return ERR_PTR(ret);
714 
715 	pd->eh = devm_kzalloc(ni->handle->dev, eh_sz, GFP_KERNEL);
716 	if (!pd->eh)
717 		return ERR_PTR(-ENOMEM);
718 	pd->eh_sz = eh_sz;
719 
720 	pd->registered_events = devm_kcalloc(ni->handle->dev, num_events,
721 					     sizeof(char *), GFP_KERNEL);
722 	if (!pd->registered_events)
723 		return ERR_PTR(-ENOMEM);
724 	pd->num_events = num_events;
725 
726 	/* Initialize per protocol handlers table */
727 	mutex_init(&pd->registered_mtx);
728 	hash_init(pd->registered_events_handlers);
729 
730 	return pd;
731 }
732 
733 /**
734  * scmi_register_protocol_events()  - Register Protocol Events with the core
735  * @handle: The handle identifying the platform instance against which the
736  *	    protocol's events are registered
737  * @proto_id: Protocol ID
738  * @ph: SCMI protocol handle.
739  * @ee: A structure describing the events supported by this protocol.
740  *
741  * Used by SCMI Protocols initialization code to register with the notification
742  * core the list of supported events and their descriptors: takes care to
743  * pre-allocate and store all needed descriptors, scratch buffers and event
744  * queues.
745  *
746  * Return: 0 on Success
747  */
748 int scmi_register_protocol_events(const struct scmi_handle *handle, u8 proto_id,
749 				  const struct scmi_protocol_handle *ph,
750 				  const struct scmi_protocol_events *ee)
751 {
752 	int i;
753 	unsigned int num_sources;
754 	size_t payld_sz = 0;
755 	struct scmi_registered_events_desc *pd;
756 	struct scmi_notify_instance *ni;
757 	const struct scmi_event *evt;
758 
759 	if (!ee || !ee->ops || !ee->evts || !ph ||
760 	    (!ee->num_sources && !ee->ops->get_num_sources))
761 		return -EINVAL;
762 
763 	ni = scmi_notification_instance_data_get(handle);
764 	if (!ni)
765 		return -ENOMEM;
766 
767 	/* num_sources cannot be <= 0 */
768 	if (ee->num_sources) {
769 		num_sources = ee->num_sources;
770 	} else {
771 		int nsrc = ee->ops->get_num_sources(ph);
772 
773 		if (nsrc <= 0)
774 			return -EINVAL;
775 		num_sources = nsrc;
776 	}
777 
778 	evt = ee->evts;
779 	for (i = 0; i < ee->num_events; i++)
780 		payld_sz = max_t(size_t, payld_sz, evt[i].max_payld_sz);
781 	payld_sz += sizeof(struct scmi_event_header);
782 
783 	pd = scmi_allocate_registered_events_desc(ni, proto_id, ee->queue_sz,
784 						  payld_sz, ee->num_events,
785 						  ee->ops);
786 	if (IS_ERR(pd))
787 		return PTR_ERR(pd);
788 
789 	pd->ph = ph;
790 	for (i = 0; i < ee->num_events; i++, evt++) {
791 		struct scmi_registered_event *r_evt;
792 
793 		r_evt = devm_kzalloc(ni->handle->dev, sizeof(*r_evt),
794 				     GFP_KERNEL);
795 		if (!r_evt)
796 			return -ENOMEM;
797 		r_evt->proto = pd;
798 		r_evt->evt = evt;
799 
800 		r_evt->sources = devm_kcalloc(ni->handle->dev, num_sources,
801 					      sizeof(refcount_t), GFP_KERNEL);
802 		if (!r_evt->sources)
803 			return -ENOMEM;
804 		r_evt->num_sources = num_sources;
805 		mutex_init(&r_evt->sources_mtx);
806 
807 		r_evt->report = devm_kzalloc(ni->handle->dev,
808 					     evt->max_report_sz, GFP_KERNEL);
809 		if (!r_evt->report)
810 			return -ENOMEM;
811 
812 		pd->registered_events[i] = r_evt;
813 		/* Ensure events are updated */
814 		smp_wmb();
815 		dev_dbg(handle->dev, "registered event - %lX\n",
816 			MAKE_ALL_SRCS_KEY(r_evt->proto->id, r_evt->evt->id));
817 	}
818 
819 	/* Register protocol and events...it will never be removed */
820 	ni->registered_protocols[proto_id] = pd;
821 	/* Ensure protocols are updated */
822 	smp_wmb();
823 
824 	/*
825 	 * Finalize any pending events' handler which could have been waiting
826 	 * for this protocol's events registration.
827 	 */
828 	schedule_work(&ni->init_work);
829 
830 	return 0;
831 }
832 
833 /**
834  * scmi_deregister_protocol_events  - Deregister protocol events with the core
835  * @handle: The handle identifying the platform instance against which the
836  *	    protocol's events are registered
837  * @proto_id: Protocol ID
838  */
839 void scmi_deregister_protocol_events(const struct scmi_handle *handle,
840 				     u8 proto_id)
841 {
842 	struct scmi_notify_instance *ni;
843 	struct scmi_registered_events_desc *pd;
844 
845 	ni = scmi_notification_instance_data_get(handle);
846 	if (!ni)
847 		return;
848 
849 	pd = ni->registered_protocols[proto_id];
850 	if (!pd)
851 		return;
852 
853 	ni->registered_protocols[proto_id] = NULL;
854 	/* Ensure protocols are updated */
855 	smp_wmb();
856 
857 	cancel_work_sync(&pd->equeue.notify_work);
858 }
859 
860 /**
861  * scmi_allocate_event_handler()  - Allocate Event handler
862  * @ni: A reference to the notification instance to use
863  * @evt_key: 32bit key uniquely bind to the event identified by the tuple
864  *	     (proto_id, evt_id, src_id)
865  *
866  * Allocate an event handler and related notification chain associated with
867  * the provided event handler key.
868  * Note that, at this point, a related registered_event is still to be
869  * associated to this handler descriptor (hndl->r_evt == NULL), so the handler
870  * is initialized as pending.
871  *
872  * Context: Assumes to be called with @pending_mtx already acquired.
873  * Return: the freshly allocated structure on Success
874  */
875 static struct scmi_event_handler *
876 scmi_allocate_event_handler(struct scmi_notify_instance *ni, u32 evt_key)
877 {
878 	struct scmi_event_handler *hndl;
879 
880 	hndl = kzalloc(sizeof(*hndl), GFP_KERNEL);
881 	if (!hndl)
882 		return NULL;
883 	hndl->key = evt_key;
884 	BLOCKING_INIT_NOTIFIER_HEAD(&hndl->chain);
885 	refcount_set(&hndl->users, 1);
886 	/* New handlers are created pending */
887 	hash_add(ni->pending_events_handlers, &hndl->hash, hndl->key);
888 
889 	return hndl;
890 }
891 
892 /**
893  * scmi_free_event_handler()  - Free the provided Event handler
894  * @hndl: The event handler structure to free
895  *
896  * Context: Assumes to be called with proper locking acquired depending
897  *	    on the situation.
898  */
899 static void scmi_free_event_handler(struct scmi_event_handler *hndl)
900 {
901 	hash_del(&hndl->hash);
902 	kfree(hndl);
903 }
904 
905 /**
906  * scmi_bind_event_handler()  - Helper to attempt binding an handler to an event
907  * @ni: A reference to the notification instance to use
908  * @hndl: The event handler to bind
909  *
910  * If an associated registered event is found, move the handler from the pending
911  * into the registered table.
912  *
913  * Context: Assumes to be called with @pending_mtx already acquired.
914  *
915  * Return: 0 on Success
916  */
917 static inline int scmi_bind_event_handler(struct scmi_notify_instance *ni,
918 					  struct scmi_event_handler *hndl)
919 {
920 	struct scmi_registered_event *r_evt;
921 
922 	r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(hndl->key),
923 			      KEY_XTRACT_EVT_ID(hndl->key));
924 	if (!r_evt)
925 		return -EINVAL;
926 
927 	/*
928 	 * Remove from pending and insert into registered while getting hold
929 	 * of protocol instance.
930 	 */
931 	hash_del(&hndl->hash);
932 	/*
933 	 * Acquire protocols only for NON pending handlers, so as NOT to trigger
934 	 * protocol initialization when a notifier is registered against a still
935 	 * not registered protocol, since it would make little sense to force init
936 	 * protocols for which still no SCMI driver user exists: they wouldn't
937 	 * emit any event anyway till some SCMI driver starts using it.
938 	 */
939 	scmi_protocol_acquire(ni->handle, KEY_XTRACT_PROTO_ID(hndl->key));
940 	hndl->r_evt = r_evt;
941 
942 	mutex_lock(&r_evt->proto->registered_mtx);
943 	hash_add(r_evt->proto->registered_events_handlers,
944 		 &hndl->hash, hndl->key);
945 	mutex_unlock(&r_evt->proto->registered_mtx);
946 
947 	return 0;
948 }
949 
950 /**
951  * scmi_valid_pending_handler()  - Helper to check pending status of handlers
952  * @ni: A reference to the notification instance to use
953  * @hndl: The event handler to check
954  *
955  * An handler is considered pending when its r_evt == NULL, because the related
956  * event was still unknown at handler's registration time; anyway, since all
957  * protocols register their supported events once for all at protocols'
958  * initialization time, a pending handler cannot be considered valid anymore if
959  * the underlying event (which it is waiting for), belongs to an already
960  * initialized and registered protocol.
961  *
962  * Return: 0 on Success
963  */
964 static inline int scmi_valid_pending_handler(struct scmi_notify_instance *ni,
965 					     struct scmi_event_handler *hndl)
966 {
967 	struct scmi_registered_events_desc *pd;
968 
969 	if (!IS_HNDL_PENDING(hndl))
970 		return -EINVAL;
971 
972 	pd = SCMI_GET_PROTO(ni, KEY_XTRACT_PROTO_ID(hndl->key));
973 	if (pd)
974 		return -EINVAL;
975 
976 	return 0;
977 }
978 
979 /**
980  * scmi_register_event_handler()  - Register whenever possible an Event handler
981  * @ni: A reference to the notification instance to use
982  * @hndl: The event handler to register
983  *
984  * At first try to bind an event handler to its associated event, then check if
985  * it was at least a valid pending handler: if it was not bound nor valid return
986  * false.
987  *
988  * Valid pending incomplete bindings will be periodically retried by a dedicated
989  * worker which is kicked each time a new protocol completes its own
990  * registration phase.
991  *
992  * Context: Assumes to be called with @pending_mtx acquired.
993  *
994  * Return: 0 on Success
995  */
996 static int scmi_register_event_handler(struct scmi_notify_instance *ni,
997 				       struct scmi_event_handler *hndl)
998 {
999 	int ret;
1000 
1001 	ret = scmi_bind_event_handler(ni, hndl);
1002 	if (!ret) {
1003 		dev_dbg(ni->handle->dev, "registered NEW handler - key:%X\n",
1004 			hndl->key);
1005 	} else {
1006 		ret = scmi_valid_pending_handler(ni, hndl);
1007 		if (!ret)
1008 			dev_dbg(ni->handle->dev,
1009 				"registered PENDING handler - key:%X\n",
1010 				hndl->key);
1011 	}
1012 
1013 	return ret;
1014 }
1015 
1016 /**
1017  * __scmi_event_handler_get_ops()  - Utility to get or create an event handler
1018  * @ni: A reference to the notification instance to use
1019  * @evt_key: The event key to use
1020  * @create: A boolean flag to specify if a handler must be created when
1021  *	    not already existent
1022  *
1023  * Search for the desired handler matching the key in both the per-protocol
1024  * registered table and the common pending table:
1025  * * if found adjust users refcount
1026  * * if not found and @create is true, create and register the new handler:
1027  *   handler could end up being registered as pending if no matching event
1028  *   could be found.
1029  *
1030  * An handler is guaranteed to reside in one and only one of the tables at
1031  * any one time; to ensure this the whole search and create is performed
1032  * holding the @pending_mtx lock, with @registered_mtx additionally acquired
1033  * if needed.
1034  *
1035  * Note that when a nested acquisition of these mutexes is needed the locking
1036  * order is always (same as in @init_work):
1037  * 1. pending_mtx
1038  * 2. registered_mtx
1039  *
1040  * Events generation is NOT enabled right after creation within this routine
1041  * since at creation time we usually want to have all setup and ready before
1042  * events really start flowing.
1043  *
1044  * Return: A properly refcounted handler on Success, NULL on Failure
1045  */
1046 static inline struct scmi_event_handler *
1047 __scmi_event_handler_get_ops(struct scmi_notify_instance *ni,
1048 			     u32 evt_key, bool create)
1049 {
1050 	struct scmi_registered_event *r_evt;
1051 	struct scmi_event_handler *hndl = NULL;
1052 
1053 	r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key),
1054 			      KEY_XTRACT_EVT_ID(evt_key));
1055 
1056 	mutex_lock(&ni->pending_mtx);
1057 	/* Search registered events at first ... if possible at all */
1058 	if (r_evt) {
1059 		mutex_lock(&r_evt->proto->registered_mtx);
1060 		hndl = KEY_FIND(r_evt->proto->registered_events_handlers,
1061 				hndl, evt_key);
1062 		if (hndl)
1063 			refcount_inc(&hndl->users);
1064 		mutex_unlock(&r_evt->proto->registered_mtx);
1065 	}
1066 
1067 	/* ...then amongst pending. */
1068 	if (!hndl) {
1069 		hndl = KEY_FIND(ni->pending_events_handlers, hndl, evt_key);
1070 		if (hndl)
1071 			refcount_inc(&hndl->users);
1072 	}
1073 
1074 	/* Create if still not found and required */
1075 	if (!hndl && create) {
1076 		hndl = scmi_allocate_event_handler(ni, evt_key);
1077 		if (hndl && scmi_register_event_handler(ni, hndl)) {
1078 			dev_dbg(ni->handle->dev,
1079 				"purging UNKNOWN handler - key:%X\n",
1080 				hndl->key);
1081 			/* this hndl can be only a pending one */
1082 			scmi_put_handler_unlocked(ni, hndl);
1083 			hndl = NULL;
1084 		}
1085 	}
1086 	mutex_unlock(&ni->pending_mtx);
1087 
1088 	return hndl;
1089 }
1090 
1091 static struct scmi_event_handler *
1092 scmi_get_handler(struct scmi_notify_instance *ni, u32 evt_key)
1093 {
1094 	return __scmi_event_handler_get_ops(ni, evt_key, false);
1095 }
1096 
1097 static struct scmi_event_handler *
1098 scmi_get_or_create_handler(struct scmi_notify_instance *ni, u32 evt_key)
1099 {
1100 	return __scmi_event_handler_get_ops(ni, evt_key, true);
1101 }
1102 
1103 /**
1104  * scmi_get_active_handler()  - Helper to get active handlers only
1105  * @ni: A reference to the notification instance to use
1106  * @evt_key: The event key to use
1107  *
1108  * Search for the desired handler matching the key only in the per-protocol
1109  * table of registered handlers: this is called only from the dispatching path
1110  * so want to be as quick as possible and do not care about pending.
1111  *
1112  * Return: A properly refcounted active handler
1113  */
1114 static struct scmi_event_handler *
1115 scmi_get_active_handler(struct scmi_notify_instance *ni, u32 evt_key)
1116 {
1117 	struct scmi_registered_event *r_evt;
1118 	struct scmi_event_handler *hndl = NULL;
1119 
1120 	r_evt = SCMI_GET_REVT(ni, KEY_XTRACT_PROTO_ID(evt_key),
1121 			      KEY_XTRACT_EVT_ID(evt_key));
1122 	if (r_evt) {
1123 		mutex_lock(&r_evt->proto->registered_mtx);
1124 		hndl = KEY_FIND(r_evt->proto->registered_events_handlers,
1125 				hndl, evt_key);
1126 		if (hndl)
1127 			refcount_inc(&hndl->users);
1128 		mutex_unlock(&r_evt->proto->registered_mtx);
1129 	}
1130 
1131 	return hndl;
1132 }
1133 
1134 /**
1135  * __scmi_enable_evt()  - Enable/disable events generation
1136  * @r_evt: The registered event to act upon
1137  * @src_id: The src_id to act upon
1138  * @enable: The action to perform: true->Enable, false->Disable
1139  *
1140  * Takes care of proper refcounting while performing enable/disable: handles
1141  * the special case of ALL sources requests by itself.
1142  * Returns successfully if at least one of the required src_id has been
1143  * successfully enabled/disabled.
1144  *
1145  * Return: 0 on Success
1146  */
1147 static inline int __scmi_enable_evt(struct scmi_registered_event *r_evt,
1148 				    u32 src_id, bool enable)
1149 {
1150 	int retvals = 0;
1151 	u32 num_sources;
1152 	refcount_t *sid;
1153 
1154 	if (src_id == SRC_ID_MASK) {
1155 		src_id = 0;
1156 		num_sources = r_evt->num_sources;
1157 	} else if (src_id < r_evt->num_sources) {
1158 		num_sources = 1;
1159 	} else {
1160 		return -EINVAL;
1161 	}
1162 
1163 	mutex_lock(&r_evt->sources_mtx);
1164 	if (enable) {
1165 		for (; num_sources; src_id++, num_sources--) {
1166 			int ret = 0;
1167 
1168 			sid = &r_evt->sources[src_id];
1169 			if (refcount_read(sid) == 0) {
1170 				ret = REVT_NOTIFY_ENABLE(r_evt, r_evt->evt->id,
1171 							 src_id);
1172 				if (!ret)
1173 					refcount_set(sid, 1);
1174 			} else {
1175 				refcount_inc(sid);
1176 			}
1177 			retvals += !ret;
1178 		}
1179 	} else {
1180 		for (; num_sources; src_id++, num_sources--) {
1181 			sid = &r_evt->sources[src_id];
1182 			if (refcount_dec_and_test(sid))
1183 				REVT_NOTIFY_DISABLE(r_evt,
1184 						    r_evt->evt->id, src_id);
1185 		}
1186 		retvals = 1;
1187 	}
1188 	mutex_unlock(&r_evt->sources_mtx);
1189 
1190 	return retvals ? 0 : -EINVAL;
1191 }
1192 
1193 static int scmi_enable_events(struct scmi_event_handler *hndl)
1194 {
1195 	int ret = 0;
1196 
1197 	if (!hndl->enabled) {
1198 		ret = __scmi_enable_evt(hndl->r_evt,
1199 					KEY_XTRACT_SRC_ID(hndl->key), true);
1200 		if (!ret)
1201 			hndl->enabled = true;
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 static int scmi_disable_events(struct scmi_event_handler *hndl)
1208 {
1209 	int ret = 0;
1210 
1211 	if (hndl->enabled) {
1212 		ret = __scmi_enable_evt(hndl->r_evt,
1213 					KEY_XTRACT_SRC_ID(hndl->key), false);
1214 		if (!ret)
1215 			hndl->enabled = false;
1216 	}
1217 
1218 	return ret;
1219 }
1220 
1221 /**
1222  * scmi_put_handler_unlocked()  - Put an event handler
1223  * @ni: A reference to the notification instance to use
1224  * @hndl: The event handler to act upon
1225  *
1226  * After having got exclusive access to the registered handlers hashtable,
1227  * update the refcount and if @hndl is no more in use by anyone:
1228  * * ask for events' generation disabling
1229  * * unregister and free the handler itself
1230  *
1231  * Context: Assumes all the proper locking has been managed by the caller.
1232  *
1233  * Return: True if handler was freed (users dropped to zero)
1234  */
1235 static bool scmi_put_handler_unlocked(struct scmi_notify_instance *ni,
1236 				      struct scmi_event_handler *hndl)
1237 {
1238 	bool freed = false;
1239 
1240 	if (refcount_dec_and_test(&hndl->users)) {
1241 		if (!IS_HNDL_PENDING(hndl))
1242 			scmi_disable_events(hndl);
1243 		scmi_free_event_handler(hndl);
1244 		freed = true;
1245 	}
1246 
1247 	return freed;
1248 }
1249 
1250 static void scmi_put_handler(struct scmi_notify_instance *ni,
1251 			     struct scmi_event_handler *hndl)
1252 {
1253 	bool freed;
1254 	u8 protocol_id;
1255 	struct scmi_registered_event *r_evt = hndl->r_evt;
1256 
1257 	mutex_lock(&ni->pending_mtx);
1258 	if (r_evt) {
1259 		protocol_id = r_evt->proto->id;
1260 		mutex_lock(&r_evt->proto->registered_mtx);
1261 	}
1262 
1263 	freed = scmi_put_handler_unlocked(ni, hndl);
1264 
1265 	if (r_evt) {
1266 		mutex_unlock(&r_evt->proto->registered_mtx);
1267 		/*
1268 		 * Only registered handler acquired protocol; must be here
1269 		 * released only AFTER unlocking registered_mtx, since
1270 		 * releasing a protocol can trigger its de-initialization
1271 		 * (ie. including r_evt and registered_mtx)
1272 		 */
1273 		if (freed)
1274 			scmi_protocol_release(ni->handle, protocol_id);
1275 	}
1276 	mutex_unlock(&ni->pending_mtx);
1277 }
1278 
1279 static void scmi_put_active_handler(struct scmi_notify_instance *ni,
1280 				    struct scmi_event_handler *hndl)
1281 {
1282 	bool freed;
1283 	struct scmi_registered_event *r_evt = hndl->r_evt;
1284 	u8 protocol_id = r_evt->proto->id;
1285 
1286 	mutex_lock(&r_evt->proto->registered_mtx);
1287 	freed = scmi_put_handler_unlocked(ni, hndl);
1288 	mutex_unlock(&r_evt->proto->registered_mtx);
1289 	if (freed)
1290 		scmi_protocol_release(ni->handle, protocol_id);
1291 }
1292 
1293 /**
1294  * scmi_event_handler_enable_events()  - Enable events associated to an handler
1295  * @hndl: The Event handler to act upon
1296  *
1297  * Return: 0 on Success
1298  */
1299 static int scmi_event_handler_enable_events(struct scmi_event_handler *hndl)
1300 {
1301 	if (scmi_enable_events(hndl)) {
1302 		pr_err("Failed to ENABLE events for key:%X !\n", hndl->key);
1303 		return -EINVAL;
1304 	}
1305 
1306 	return 0;
1307 }
1308 
1309 /**
1310  * scmi_notifier_register()  - Register a notifier_block for an event
1311  * @handle: The handle identifying the platform instance against which the
1312  *	    callback is registered
1313  * @proto_id: Protocol ID
1314  * @evt_id: Event ID
1315  * @src_id: Source ID, when NULL register for events coming form ALL possible
1316  *	    sources
1317  * @nb: A standard notifier block to register for the specified event
1318  *
1319  * Generic helper to register a notifier_block against a protocol event.
1320  *
1321  * A notifier_block @nb will be registered for each distinct event identified
1322  * by the tuple (proto_id, evt_id, src_id) on a dedicated notification chain
1323  * so that:
1324  *
1325  *	(proto_X, evt_Y, src_Z) --> chain_X_Y_Z
1326  *
1327  * @src_id meaning is protocol specific and identifies the origin of the event
1328  * (like domain_id, sensor_id and so forth).
1329  *
1330  * @src_id can be NULL to signify that the caller is interested in receiving
1331  * notifications from ALL the available sources for that protocol OR simply that
1332  * the protocol does not support distinct sources.
1333  *
1334  * As soon as one user for the specified tuple appears, an handler is created,
1335  * and that specific event's generation is enabled at the platform level, unless
1336  * an associated registered event is found missing, meaning that the needed
1337  * protocol is still to be initialized and the handler has just been registered
1338  * as still pending.
1339  *
1340  * Return: 0 on Success
1341  */
1342 static int scmi_notifier_register(const struct scmi_handle *handle,
1343 				  u8 proto_id, u8 evt_id, const u32 *src_id,
1344 				  struct notifier_block *nb)
1345 {
1346 	int ret = 0;
1347 	u32 evt_key;
1348 	struct scmi_event_handler *hndl;
1349 	struct scmi_notify_instance *ni;
1350 
1351 	ni = scmi_notification_instance_data_get(handle);
1352 	if (!ni)
1353 		return -ENODEV;
1354 
1355 	evt_key = MAKE_HASH_KEY(proto_id, evt_id,
1356 				src_id ? *src_id : SRC_ID_MASK);
1357 	hndl = scmi_get_or_create_handler(ni, evt_key);
1358 	if (!hndl)
1359 		return -EINVAL;
1360 
1361 	blocking_notifier_chain_register(&hndl->chain, nb);
1362 
1363 	/* Enable events for not pending handlers */
1364 	if (!IS_HNDL_PENDING(hndl)) {
1365 		ret = scmi_event_handler_enable_events(hndl);
1366 		if (ret)
1367 			scmi_put_handler(ni, hndl);
1368 	}
1369 
1370 	return ret;
1371 }
1372 
1373 /**
1374  * scmi_notifier_unregister()  - Unregister a notifier_block for an event
1375  * @handle: The handle identifying the platform instance against which the
1376  *	    callback is unregistered
1377  * @proto_id: Protocol ID
1378  * @evt_id: Event ID
1379  * @src_id: Source ID
1380  * @nb: The notifier_block to unregister
1381  *
1382  * Takes care to unregister the provided @nb from the notification chain
1383  * associated to the specified event and, if there are no more users for the
1384  * event handler, frees also the associated event handler structures.
1385  * (this could possibly cause disabling of event's generation at platform level)
1386  *
1387  * Return: 0 on Success
1388  */
1389 static int scmi_notifier_unregister(const struct scmi_handle *handle,
1390 				    u8 proto_id, u8 evt_id, const u32 *src_id,
1391 				    struct notifier_block *nb)
1392 {
1393 	u32 evt_key;
1394 	struct scmi_event_handler *hndl;
1395 	struct scmi_notify_instance *ni;
1396 
1397 	ni = scmi_notification_instance_data_get(handle);
1398 	if (!ni)
1399 		return -ENODEV;
1400 
1401 	evt_key = MAKE_HASH_KEY(proto_id, evt_id,
1402 				src_id ? *src_id : SRC_ID_MASK);
1403 	hndl = scmi_get_handler(ni, evt_key);
1404 	if (!hndl)
1405 		return -EINVAL;
1406 
1407 	/*
1408 	 * Note that this chain unregistration call is safe on its own
1409 	 * being internally protected by an rwsem.
1410 	 */
1411 	blocking_notifier_chain_unregister(&hndl->chain, nb);
1412 	scmi_put_handler(ni, hndl);
1413 
1414 	/*
1415 	 * This balances the initial get issued in @scmi_notifier_register.
1416 	 * If this notifier_block happened to be the last known user callback
1417 	 * for this event, the handler is here freed and the event's generation
1418 	 * stopped.
1419 	 *
1420 	 * Note that, an ongoing concurrent lookup on the delivery workqueue
1421 	 * path could still hold the refcount to 1 even after this routine
1422 	 * completes: in such a case it will be the final put on the delivery
1423 	 * path which will finally free this unused handler.
1424 	 */
1425 	scmi_put_handler(ni, hndl);
1426 
1427 	return 0;
1428 }
1429 
1430 struct scmi_notifier_devres {
1431 	const struct scmi_handle *handle;
1432 	u8 proto_id;
1433 	u8 evt_id;
1434 	u32 __src_id;
1435 	u32 *src_id;
1436 	struct notifier_block *nb;
1437 };
1438 
1439 static void scmi_devm_release_notifier(struct device *dev, void *res)
1440 {
1441 	struct scmi_notifier_devres *dres = res;
1442 
1443 	scmi_notifier_unregister(dres->handle, dres->proto_id, dres->evt_id,
1444 				 dres->src_id, dres->nb);
1445 }
1446 
1447 /**
1448  * scmi_devm_notifier_register()  - Managed registration of a notifier_block
1449  * for an event
1450  * @sdev: A reference to an scmi_device whose embedded struct device is to
1451  *	  be used for devres accounting.
1452  * @proto_id: Protocol ID
1453  * @evt_id: Event ID
1454  * @src_id: Source ID, when NULL register for events coming form ALL possible
1455  *	    sources
1456  * @nb: A standard notifier block to register for the specified event
1457  *
1458  * Generic devres managed helper to register a notifier_block against a
1459  * protocol event.
1460  */
1461 static int scmi_devm_notifier_register(struct scmi_device *sdev,
1462 				       u8 proto_id, u8 evt_id,
1463 				       const u32 *src_id,
1464 				       struct notifier_block *nb)
1465 {
1466 	int ret;
1467 	struct scmi_notifier_devres *dres;
1468 
1469 	dres = devres_alloc(scmi_devm_release_notifier,
1470 			    sizeof(*dres), GFP_KERNEL);
1471 	if (!dres)
1472 		return -ENOMEM;
1473 
1474 	ret = scmi_notifier_register(sdev->handle, proto_id,
1475 				     evt_id, src_id, nb);
1476 	if (ret) {
1477 		devres_free(dres);
1478 		return ret;
1479 	}
1480 
1481 	dres->handle = sdev->handle;
1482 	dres->proto_id = proto_id;
1483 	dres->evt_id = evt_id;
1484 	dres->nb = nb;
1485 	if (src_id) {
1486 		dres->__src_id = *src_id;
1487 		dres->src_id = &dres->__src_id;
1488 	} else {
1489 		dres->src_id = NULL;
1490 	}
1491 	devres_add(&sdev->dev, dres);
1492 
1493 	return ret;
1494 }
1495 
1496 static int scmi_devm_notifier_match(struct device *dev, void *res, void *data)
1497 {
1498 	struct scmi_notifier_devres *dres = res;
1499 	struct scmi_notifier_devres *xres = data;
1500 
1501 	if (WARN_ON(!dres || !xres))
1502 		return 0;
1503 
1504 	return dres->proto_id == xres->proto_id &&
1505 		dres->evt_id == xres->evt_id &&
1506 		dres->nb == xres->nb &&
1507 		((!dres->src_id && !xres->src_id) ||
1508 		  (dres->src_id && xres->src_id &&
1509 		   dres->__src_id == xres->__src_id));
1510 }
1511 
1512 /**
1513  * scmi_devm_notifier_unregister()  - Managed un-registration of a
1514  * notifier_block for an event
1515  * @sdev: A reference to an scmi_device whose embedded struct device is to
1516  *	  be used for devres accounting.
1517  * @proto_id: Protocol ID
1518  * @evt_id: Event ID
1519  * @src_id: Source ID, when NULL register for events coming form ALL possible
1520  *	    sources
1521  * @nb: A standard notifier block to register for the specified event
1522  *
1523  * Generic devres managed helper to explicitly un-register a notifier_block
1524  * against a protocol event, which was previously registered using the above
1525  * @scmi_devm_notifier_register.
1526  */
1527 static int scmi_devm_notifier_unregister(struct scmi_device *sdev,
1528 					 u8 proto_id, u8 evt_id,
1529 					 const u32 *src_id,
1530 					 struct notifier_block *nb)
1531 {
1532 	int ret;
1533 	struct scmi_notifier_devres dres;
1534 
1535 	dres.handle = sdev->handle;
1536 	dres.proto_id = proto_id;
1537 	dres.evt_id = evt_id;
1538 	if (src_id) {
1539 		dres.__src_id = *src_id;
1540 		dres.src_id = &dres.__src_id;
1541 	} else {
1542 		dres.src_id = NULL;
1543 	}
1544 
1545 	ret = devres_release(&sdev->dev, scmi_devm_release_notifier,
1546 			     scmi_devm_notifier_match, &dres);
1547 
1548 	WARN_ON(ret);
1549 
1550 	return ret;
1551 }
1552 
1553 /**
1554  * scmi_protocols_late_init()  - Worker for late initialization
1555  * @work: The work item to use associated to the proper SCMI instance
1556  *
1557  * This kicks in whenever a new protocol has completed its own registration via
1558  * scmi_register_protocol_events(): it is in charge of scanning the table of
1559  * pending handlers (registered by users while the related protocol was still
1560  * not initialized) and finalizing their initialization whenever possible;
1561  * invalid pending handlers are purged at this point in time.
1562  */
1563 static void scmi_protocols_late_init(struct work_struct *work)
1564 {
1565 	int bkt;
1566 	struct scmi_event_handler *hndl;
1567 	struct scmi_notify_instance *ni;
1568 	struct hlist_node *tmp;
1569 
1570 	ni = container_of(work, struct scmi_notify_instance, init_work);
1571 
1572 	/* Ensure protocols and events are up to date */
1573 	smp_rmb();
1574 
1575 	mutex_lock(&ni->pending_mtx);
1576 	hash_for_each_safe(ni->pending_events_handlers, bkt, tmp, hndl, hash) {
1577 		int ret;
1578 
1579 		ret = scmi_bind_event_handler(ni, hndl);
1580 		if (!ret) {
1581 			dev_dbg(ni->handle->dev,
1582 				"finalized PENDING handler - key:%X\n",
1583 				hndl->key);
1584 			ret = scmi_event_handler_enable_events(hndl);
1585 			if (ret) {
1586 				dev_dbg(ni->handle->dev,
1587 					"purging INVALID handler - key:%X\n",
1588 					hndl->key);
1589 				scmi_put_active_handler(ni, hndl);
1590 			}
1591 		} else {
1592 			ret = scmi_valid_pending_handler(ni, hndl);
1593 			if (ret) {
1594 				dev_dbg(ni->handle->dev,
1595 					"purging PENDING handler - key:%X\n",
1596 					hndl->key);
1597 				/* this hndl can be only a pending one */
1598 				scmi_put_handler_unlocked(ni, hndl);
1599 			}
1600 		}
1601 	}
1602 	mutex_unlock(&ni->pending_mtx);
1603 }
1604 
1605 /*
1606  * notify_ops are attached to the handle so that can be accessed
1607  * directly from an scmi_driver to register its own notifiers.
1608  */
1609 static const struct scmi_notify_ops notify_ops = {
1610 	.devm_event_notifier_register = scmi_devm_notifier_register,
1611 	.devm_event_notifier_unregister = scmi_devm_notifier_unregister,
1612 	.event_notifier_register = scmi_notifier_register,
1613 	.event_notifier_unregister = scmi_notifier_unregister,
1614 };
1615 
1616 /**
1617  * scmi_notification_init()  - Initializes Notification Core Support
1618  * @handle: The handle identifying the platform instance to initialize
1619  *
1620  * This function lays out all the basic resources needed by the notification
1621  * core instance identified by the provided handle: once done, all of the
1622  * SCMI Protocols can register their events with the core during their own
1623  * initializations.
1624  *
1625  * Note that failing to initialize the core notifications support does not
1626  * cause the whole SCMI Protocols stack to fail its initialization.
1627  *
1628  * SCMI Notification Initialization happens in 2 steps:
1629  * * initialization: basic common allocations (this function)
1630  * * registration: protocols asynchronously come into life and registers their
1631  *		   own supported list of events with the core; this causes
1632  *		   further per-protocol allocations
1633  *
1634  * Any user's callback registration attempt, referring a still not registered
1635  * event, will be registered as pending and finalized later (if possible)
1636  * by scmi_protocols_late_init() work.
1637  * This allows for lazy initialization of SCMI Protocols due to late (or
1638  * missing) SCMI drivers' modules loading.
1639  *
1640  * Return: 0 on Success
1641  */
1642 int scmi_notification_init(struct scmi_handle *handle)
1643 {
1644 	void *gid;
1645 	struct scmi_notify_instance *ni;
1646 
1647 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1648 	if (!gid)
1649 		return -ENOMEM;
1650 
1651 	ni = devm_kzalloc(handle->dev, sizeof(*ni), GFP_KERNEL);
1652 	if (!ni)
1653 		goto err;
1654 
1655 	ni->gid = gid;
1656 	ni->handle = handle;
1657 
1658 	ni->registered_protocols = devm_kcalloc(handle->dev, SCMI_MAX_PROTO,
1659 						sizeof(char *), GFP_KERNEL);
1660 	if (!ni->registered_protocols)
1661 		goto err;
1662 
1663 	ni->notify_wq = alloc_workqueue(dev_name(handle->dev),
1664 					WQ_UNBOUND | WQ_FREEZABLE | WQ_SYSFS,
1665 					0);
1666 	if (!ni->notify_wq)
1667 		goto err;
1668 
1669 	mutex_init(&ni->pending_mtx);
1670 	hash_init(ni->pending_events_handlers);
1671 
1672 	INIT_WORK(&ni->init_work, scmi_protocols_late_init);
1673 
1674 	scmi_notification_instance_data_set(handle, ni);
1675 	handle->notify_ops = &notify_ops;
1676 	/* Ensure handle is up to date */
1677 	smp_wmb();
1678 
1679 	dev_info(handle->dev, "Core Enabled.\n");
1680 
1681 	devres_close_group(handle->dev, ni->gid);
1682 
1683 	return 0;
1684 
1685 err:
1686 	dev_warn(handle->dev, "Initialization Failed.\n");
1687 	devres_release_group(handle->dev, gid);
1688 	return -ENOMEM;
1689 }
1690 
1691 /**
1692  * scmi_notification_exit()  - Shutdown and clean Notification core
1693  * @handle: The handle identifying the platform instance to shutdown
1694  */
1695 void scmi_notification_exit(struct scmi_handle *handle)
1696 {
1697 	struct scmi_notify_instance *ni;
1698 
1699 	ni = scmi_notification_instance_data_get(handle);
1700 	if (!ni)
1701 		return;
1702 	scmi_notification_instance_data_set(handle, NULL);
1703 
1704 	/* Destroy while letting pending work complete */
1705 	destroy_workqueue(ni->notify_wq);
1706 
1707 	devres_release_group(ni->handle->dev, ni->gid);
1708 }
1709