1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/device.h>
19 #include <linux/export.h>
20 #include <linux/idr.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/hashtable.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/processor.h>
30 #include <linux/refcount.h>
31 #include <linux/slab.h>
32 
33 #include "common.h"
34 #include "notify.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/scmi.h>
38 
39 enum scmi_error_codes {
40 	SCMI_SUCCESS = 0,	/* Success */
41 	SCMI_ERR_SUPPORT = -1,	/* Not supported */
42 	SCMI_ERR_PARAMS = -2,	/* Invalid Parameters */
43 	SCMI_ERR_ACCESS = -3,	/* Invalid access/permission denied */
44 	SCMI_ERR_ENTRY = -4,	/* Not found */
45 	SCMI_ERR_RANGE = -5,	/* Value out of range */
46 	SCMI_ERR_BUSY = -6,	/* Device busy */
47 	SCMI_ERR_COMMS = -7,	/* Communication Error */
48 	SCMI_ERR_GENERIC = -8,	/* Generic Error */
49 	SCMI_ERR_HARDWARE = -9,	/* Hardware Error */
50 	SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
51 };
52 
53 /* List of all SCMI devices active in system */
54 static LIST_HEAD(scmi_list);
55 /* Protection for the entire list */
56 static DEFINE_MUTEX(scmi_list_mutex);
57 /* Track the unique id for the transfers for debug & profiling purpose */
58 static atomic_t transfer_last_id;
59 
60 static DEFINE_IDR(scmi_requested_devices);
61 static DEFINE_MUTEX(scmi_requested_devices_mtx);
62 
63 struct scmi_requested_dev {
64 	const struct scmi_device_id *id_table;
65 	struct list_head node;
66 };
67 
68 /**
69  * struct scmi_xfers_info - Structure to manage transfer information
70  *
71  * @xfer_alloc_table: Bitmap table for allocated messages.
72  *	Index of this bitmap table is also used for message
73  *	sequence identifier.
74  * @xfer_lock: Protection for message allocation
75  * @max_msg: Maximum number of messages that can be pending
76  * @free_xfers: A free list for available to use xfers. It is initialized with
77  *		a number of xfers equal to the maximum allowed in-flight
78  *		messages.
79  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
80  *		   currently in-flight messages.
81  */
82 struct scmi_xfers_info {
83 	unsigned long *xfer_alloc_table;
84 	spinlock_t xfer_lock;
85 	int max_msg;
86 	struct hlist_head free_xfers;
87 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
88 };
89 
90 /**
91  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
92  * @handle: Reference to the SCMI handle associated to this protocol instance.
93  * @proto: A reference to the protocol descriptor.
94  * @gid: A reference for per-protocol devres management.
95  * @users: A refcount to track effective users of this protocol.
96  * @priv: Reference for optional protocol private data.
97  * @ph: An embedded protocol handle that will be passed down to protocol
98  *	initialization code to identify this instance.
99  *
100  * Each protocol is initialized independently once for each SCMI platform in
101  * which is defined by DT and implemented by the SCMI server fw.
102  */
103 struct scmi_protocol_instance {
104 	const struct scmi_handle	*handle;
105 	const struct scmi_protocol	*proto;
106 	void				*gid;
107 	refcount_t			users;
108 	void				*priv;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_info - Structure representing a SCMI instance
116  *
117  * @dev: Device pointer
118  * @desc: SoC description for this instance
119  * @version: SCMI revision information containing protocol version,
120  *	implementation version and (sub-)vendor identification.
121  * @handle: Instance of SCMI handle to send to clients
122  * @tx_minfo: Universal Transmit Message management info
123  * @rx_minfo: Universal Receive Message management info
124  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
125  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
126  * @protocols: IDR for protocols' instance descriptors initialized for
127  *	       this SCMI instance: populated on protocol's first attempted
128  *	       usage.
129  * @protocols_mtx: A mutex to protect protocols instances initialization.
130  * @protocols_imp: List of protocols implemented, currently maximum of
131  *	MAX_PROTOCOLS_IMP elements allocated by the base protocol
132  * @active_protocols: IDR storing device_nodes for protocols actually defined
133  *		      in the DT and confirmed as implemented by fw.
134  * @notify_priv: Pointer to private data structure specific to notifications.
135  * @node: List head
136  * @users: Number of users of this instance
137  */
138 struct scmi_info {
139 	struct device *dev;
140 	const struct scmi_desc *desc;
141 	struct scmi_revision_info version;
142 	struct scmi_handle handle;
143 	struct scmi_xfers_info tx_minfo;
144 	struct scmi_xfers_info rx_minfo;
145 	struct idr tx_idr;
146 	struct idr rx_idr;
147 	struct idr protocols;
148 	/* Ensure mutual exclusive access to protocols instance array */
149 	struct mutex protocols_mtx;
150 	u8 *protocols_imp;
151 	struct idr active_protocols;
152 	void *notify_priv;
153 	struct list_head node;
154 	int users;
155 };
156 
157 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
158 
159 static const int scmi_linux_errmap[] = {
160 	/* better than switch case as long as return value is continuous */
161 	0,			/* SCMI_SUCCESS */
162 	-EOPNOTSUPP,		/* SCMI_ERR_SUPPORT */
163 	-EINVAL,		/* SCMI_ERR_PARAM */
164 	-EACCES,		/* SCMI_ERR_ACCESS */
165 	-ENOENT,		/* SCMI_ERR_ENTRY */
166 	-ERANGE,		/* SCMI_ERR_RANGE */
167 	-EBUSY,			/* SCMI_ERR_BUSY */
168 	-ECOMM,			/* SCMI_ERR_COMMS */
169 	-EIO,			/* SCMI_ERR_GENERIC */
170 	-EREMOTEIO,		/* SCMI_ERR_HARDWARE */
171 	-EPROTO,		/* SCMI_ERR_PROTOCOL */
172 };
173 
174 static inline int scmi_to_linux_errno(int errno)
175 {
176 	int err_idx = -errno;
177 
178 	if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap))
179 		return scmi_linux_errmap[err_idx];
180 	return -EIO;
181 }
182 
183 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
184 					 void *priv)
185 {
186 	struct scmi_info *info = handle_to_scmi_info(handle);
187 
188 	info->notify_priv = priv;
189 	/* Ensure updated protocol private date are visible */
190 	smp_wmb();
191 }
192 
193 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
194 {
195 	struct scmi_info *info = handle_to_scmi_info(handle);
196 
197 	/* Ensure protocols_private_data has been updated */
198 	smp_rmb();
199 	return info->notify_priv;
200 }
201 
202 /**
203  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
204  *
205  * @minfo: Pointer to Tx/Rx Message management info based on channel type
206  * @xfer: The xfer to act upon
207  *
208  * Pick the next unused monotonically increasing token and set it into
209  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
210  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
211  * of incorrect association of a late and expired xfer with a live in-flight
212  * transaction, both happening to re-use the same token identifier.
213  *
214  * Since platform is NOT required to answer our request in-order we should
215  * account for a few rare but possible scenarios:
216  *
217  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
218  *    using find_next_zero_bit() starting from candidate next_token bit
219  *
220  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
221  *    are plenty of free tokens at start, so try a second pass using
222  *    find_next_zero_bit() and starting from 0.
223  *
224  *  X = used in-flight
225  *
226  * Normal
227  * ------
228  *
229  *		|- xfer_id picked
230  *   -----------+----------------------------------------------------------
231  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
232  *   ----------------------------------------------------------------------
233  *		^
234  *		|- next_token
235  *
236  * Out-of-order pending at start
237  * -----------------------------
238  *
239  *	  |- xfer_id picked, last_token fixed
240  *   -----+----------------------------------------------------------------
241  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
242  *   ----------------------------------------------------------------------
243  *    ^
244  *    |- next_token
245  *
246  *
247  * Out-of-order pending at end
248  * ---------------------------
249  *
250  *	  |- xfer_id picked, last_token fixed
251  *   -----+----------------------------------------------------------------
252  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
253  *   ----------------------------------------------------------------------
254  *								^
255  *								|- next_token
256  *
257  * Context: Assumes to be called with @xfer_lock already acquired.
258  *
259  * Return: 0 on Success or error
260  */
261 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
262 			       struct scmi_xfer *xfer)
263 {
264 	unsigned long xfer_id, next_token;
265 
266 	/*
267 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
268 	 * using the pre-allocated transfer_id as a base.
269 	 * Note that the global transfer_id is shared across all message types
270 	 * so there could be holes in the allocated set of monotonic sequence
271 	 * numbers, but that is going to limit the effectiveness of the
272 	 * mitigation only in very rare limit conditions.
273 	 */
274 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
275 
276 	/* Pick the next available xfer_id >= next_token */
277 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
278 				     MSG_TOKEN_MAX, next_token);
279 	if (xfer_id == MSG_TOKEN_MAX) {
280 		/*
281 		 * After heavily out-of-order responses, there are no free
282 		 * tokens ahead, but only at start of xfer_alloc_table so
283 		 * try again from the beginning.
284 		 */
285 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
286 					     MSG_TOKEN_MAX, 0);
287 		/*
288 		 * Something is wrong if we got here since there can be a
289 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
290 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
291 		 */
292 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
293 			return -ENOMEM;
294 	}
295 
296 	/* Update +/- last_token accordingly if we skipped some hole */
297 	if (xfer_id != next_token)
298 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
299 
300 	/* Set in-flight */
301 	set_bit(xfer_id, minfo->xfer_alloc_table);
302 	xfer->hdr.seq = (u16)xfer_id;
303 
304 	return 0;
305 }
306 
307 /**
308  * scmi_xfer_token_clear  - Release the token
309  *
310  * @minfo: Pointer to Tx/Rx Message management info based on channel type
311  * @xfer: The xfer to act upon
312  */
313 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
314 					 struct scmi_xfer *xfer)
315 {
316 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
317 }
318 
319 /**
320  * scmi_xfer_get() - Allocate one message
321  *
322  * @handle: Pointer to SCMI entity handle
323  * @minfo: Pointer to Tx/Rx Message management info based on channel type
324  * @set_pending: If true a monotonic token is picked and the xfer is added to
325  *		 the pending hash table.
326  *
327  * Helper function which is used by various message functions that are
328  * exposed to clients of this driver for allocating a message traffic event.
329  *
330  * Picks an xfer from the free list @free_xfers (if any available) and, if
331  * required, sets a monotonically increasing token and stores the inflight xfer
332  * into the @pending_xfers hashtable for later retrieval.
333  *
334  * The successfully initialized xfer is refcounted.
335  *
336  * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and
337  *	    @free_xfers.
338  *
339  * Return: 0 if all went fine, else corresponding error.
340  */
341 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
342 				       struct scmi_xfers_info *minfo,
343 				       bool set_pending)
344 {
345 	int ret;
346 	unsigned long flags;
347 	struct scmi_xfer *xfer;
348 
349 	spin_lock_irqsave(&minfo->xfer_lock, flags);
350 	if (hlist_empty(&minfo->free_xfers)) {
351 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
352 		return ERR_PTR(-ENOMEM);
353 	}
354 
355 	/* grab an xfer from the free_list */
356 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
357 	hlist_del_init(&xfer->node);
358 
359 	/*
360 	 * Allocate transfer_id early so that can be used also as base for
361 	 * monotonic sequence number generation if needed.
362 	 */
363 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
364 
365 	if (set_pending) {
366 		/* Pick and set monotonic token */
367 		ret = scmi_xfer_token_set(minfo, xfer);
368 		if (!ret) {
369 			hash_add(minfo->pending_xfers, &xfer->node,
370 				 xfer->hdr.seq);
371 			xfer->pending = true;
372 		} else {
373 			dev_err(handle->dev,
374 				"Failed to get monotonic token %d\n", ret);
375 			hlist_add_head(&xfer->node, &minfo->free_xfers);
376 			xfer = ERR_PTR(ret);
377 		}
378 	}
379 
380 	if (!IS_ERR(xfer)) {
381 		refcount_set(&xfer->users, 1);
382 		atomic_set(&xfer->busy, SCMI_XFER_FREE);
383 	}
384 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
385 
386 	return xfer;
387 }
388 
389 /**
390  * __scmi_xfer_put() - Release a message
391  *
392  * @minfo: Pointer to Tx/Rx Message management info based on channel type
393  * @xfer: message that was reserved by scmi_xfer_get
394  *
395  * After refcount check, possibly release an xfer, clearing the token slot,
396  * removing xfer from @pending_xfers and putting it back into free_xfers.
397  *
398  * This holds a spinlock to maintain integrity of internal data structures.
399  */
400 static void
401 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&minfo->xfer_lock, flags);
406 	if (refcount_dec_and_test(&xfer->users)) {
407 		if (xfer->pending) {
408 			scmi_xfer_token_clear(minfo, xfer);
409 			hash_del(&xfer->node);
410 			xfer->pending = false;
411 		}
412 		hlist_add_head(&xfer->node, &minfo->free_xfers);
413 	}
414 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
415 }
416 
417 /**
418  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
419  *
420  * @minfo: Pointer to Tx/Rx Message management info based on channel type
421  * @xfer_id: Token ID to lookup in @pending_xfers
422  *
423  * Refcounting is untouched.
424  *
425  * Context: Assumes to be called with @xfer_lock already acquired.
426  *
427  * Return: A valid xfer on Success or error otherwise
428  */
429 static struct scmi_xfer *
430 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
431 {
432 	struct scmi_xfer *xfer = NULL;
433 
434 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
435 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
436 
437 	return xfer ?: ERR_PTR(-EINVAL);
438 }
439 
440 /**
441  * scmi_msg_response_validate  - Validate message type against state of related
442  * xfer
443  *
444  * @cinfo: A reference to the channel descriptor.
445  * @msg_type: Message type to check
446  * @xfer: A reference to the xfer to validate against @msg_type
447  *
448  * This function checks if @msg_type is congruent with the current state of
449  * a pending @xfer; if an asynchronous delayed response is received before the
450  * related synchronous response (Out-of-Order Delayed Response) the missing
451  * synchronous response is assumed to be OK and completed, carrying on with the
452  * Delayed Response: this is done to address the case in which the underlying
453  * SCMI transport can deliver such out-of-order responses.
454  *
455  * Context: Assumes to be called with xfer->lock already acquired.
456  *
457  * Return: 0 on Success, error otherwise
458  */
459 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
460 					     u8 msg_type,
461 					     struct scmi_xfer *xfer)
462 {
463 	/*
464 	 * Even if a response was indeed expected on this slot at this point,
465 	 * a buggy platform could wrongly reply feeding us an unexpected
466 	 * delayed response we're not prepared to handle: bail-out safely
467 	 * blaming firmware.
468 	 */
469 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
470 		dev_err(cinfo->dev,
471 			"Delayed Response for %d not expected! Buggy F/W ?\n",
472 			xfer->hdr.seq);
473 		return -EINVAL;
474 	}
475 
476 	switch (xfer->state) {
477 	case SCMI_XFER_SENT_OK:
478 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
479 			/*
480 			 * Delayed Response expected but delivered earlier.
481 			 * Assume message RESPONSE was OK and skip state.
482 			 */
483 			xfer->hdr.status = SCMI_SUCCESS;
484 			xfer->state = SCMI_XFER_RESP_OK;
485 			complete(&xfer->done);
486 			dev_warn(cinfo->dev,
487 				 "Received valid OoO Delayed Response for %d\n",
488 				 xfer->hdr.seq);
489 		}
490 		break;
491 	case SCMI_XFER_RESP_OK:
492 		if (msg_type != MSG_TYPE_DELAYED_RESP)
493 			return -EINVAL;
494 		break;
495 	case SCMI_XFER_DRESP_OK:
496 		/* No further message expected once in SCMI_XFER_DRESP_OK */
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 /**
504  * scmi_xfer_state_update  - Update xfer state
505  *
506  * @xfer: A reference to the xfer to update
507  * @msg_type: Type of message being processed.
508  *
509  * Note that this message is assumed to have been already successfully validated
510  * by @scmi_msg_response_validate(), so here we just update the state.
511  *
512  * Context: Assumes to be called on an xfer exclusively acquired using the
513  *	    busy flag.
514  */
515 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
516 {
517 	xfer->hdr.type = msg_type;
518 
519 	/* Unknown command types were already discarded earlier */
520 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
521 		xfer->state = SCMI_XFER_RESP_OK;
522 	else
523 		xfer->state = SCMI_XFER_DRESP_OK;
524 }
525 
526 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
527 {
528 	int ret;
529 
530 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
531 
532 	return ret == SCMI_XFER_FREE;
533 }
534 
535 /**
536  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
537  *
538  * @cinfo: A reference to the channel descriptor.
539  * @msg_hdr: A message header to use as lookup key
540  *
541  * When a valid xfer is found for the sequence number embedded in the provided
542  * msg_hdr, reference counting is properly updated and exclusive access to this
543  * xfer is granted till released with @scmi_xfer_command_release.
544  *
545  * Return: A valid @xfer on Success or error otherwise.
546  */
547 static inline struct scmi_xfer *
548 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
549 {
550 	int ret;
551 	unsigned long flags;
552 	struct scmi_xfer *xfer;
553 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
554 	struct scmi_xfers_info *minfo = &info->tx_minfo;
555 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
556 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
557 
558 	/* Are we even expecting this? */
559 	spin_lock_irqsave(&minfo->xfer_lock, flags);
560 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
561 	if (IS_ERR(xfer)) {
562 		dev_err(cinfo->dev,
563 			"Message for %d type %d is not expected!\n",
564 			xfer_id, msg_type);
565 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
566 		return xfer;
567 	}
568 	refcount_inc(&xfer->users);
569 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
570 
571 	spin_lock_irqsave(&xfer->lock, flags);
572 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
573 	/*
574 	 * If a pending xfer was found which was also in a congruent state with
575 	 * the received message, acquire exclusive access to it setting the busy
576 	 * flag.
577 	 * Spins only on the rare limit condition of concurrent reception of
578 	 * RESP and DRESP for the same xfer.
579 	 */
580 	if (!ret) {
581 		spin_until_cond(scmi_xfer_acquired(xfer));
582 		scmi_xfer_state_update(xfer, msg_type);
583 	}
584 	spin_unlock_irqrestore(&xfer->lock, flags);
585 
586 	if (ret) {
587 		dev_err(cinfo->dev,
588 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
589 			msg_type, xfer_id, msg_hdr, xfer->state);
590 		/* On error the refcount incremented above has to be dropped */
591 		__scmi_xfer_put(minfo, xfer);
592 		xfer = ERR_PTR(-EINVAL);
593 	}
594 
595 	return xfer;
596 }
597 
598 static inline void scmi_xfer_command_release(struct scmi_info *info,
599 					     struct scmi_xfer *xfer)
600 {
601 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
602 	__scmi_xfer_put(&info->tx_minfo, xfer);
603 }
604 
605 static inline void scmi_clear_channel(struct scmi_info *info,
606 				      struct scmi_chan_info *cinfo)
607 {
608 	if (info->desc->ops->clear_channel)
609 		info->desc->ops->clear_channel(cinfo);
610 }
611 
612 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
613 				     u32 msg_hdr, void *priv)
614 {
615 	struct scmi_xfer *xfer;
616 	struct device *dev = cinfo->dev;
617 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
618 	struct scmi_xfers_info *minfo = &info->rx_minfo;
619 	ktime_t ts;
620 
621 	ts = ktime_get_boottime();
622 	xfer = scmi_xfer_get(cinfo->handle, minfo, false);
623 	if (IS_ERR(xfer)) {
624 		dev_err(dev, "failed to get free message slot (%ld)\n",
625 			PTR_ERR(xfer));
626 		scmi_clear_channel(info, cinfo);
627 		return;
628 	}
629 
630 	unpack_scmi_header(msg_hdr, &xfer->hdr);
631 	if (priv)
632 		xfer->priv = priv;
633 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
634 					    xfer);
635 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
636 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
637 
638 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
639 			   xfer->hdr.protocol_id, xfer->hdr.seq,
640 			   MSG_TYPE_NOTIFICATION);
641 
642 	__scmi_xfer_put(minfo, xfer);
643 
644 	scmi_clear_channel(info, cinfo);
645 }
646 
647 static void scmi_handle_response(struct scmi_chan_info *cinfo,
648 				 u32 msg_hdr, void *priv)
649 {
650 	struct scmi_xfer *xfer;
651 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
652 
653 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
654 	if (IS_ERR(xfer)) {
655 		scmi_clear_channel(info, cinfo);
656 		return;
657 	}
658 
659 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
660 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
661 		xfer->rx.len = info->desc->max_msg_size;
662 
663 	if (priv)
664 		xfer->priv = priv;
665 	info->desc->ops->fetch_response(cinfo, xfer);
666 
667 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
668 			   xfer->hdr.protocol_id, xfer->hdr.seq,
669 			   xfer->hdr.type);
670 
671 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
672 		scmi_clear_channel(info, cinfo);
673 		complete(xfer->async_done);
674 	} else {
675 		complete(&xfer->done);
676 	}
677 
678 	scmi_xfer_command_release(info, xfer);
679 }
680 
681 /**
682  * scmi_rx_callback() - callback for receiving messages
683  *
684  * @cinfo: SCMI channel info
685  * @msg_hdr: Message header
686  * @priv: Transport specific private data.
687  *
688  * Processes one received message to appropriate transfer information and
689  * signals completion of the transfer.
690  *
691  * NOTE: This function will be invoked in IRQ context, hence should be
692  * as optimal as possible.
693  */
694 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
695 {
696 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
697 
698 	switch (msg_type) {
699 	case MSG_TYPE_NOTIFICATION:
700 		scmi_handle_notification(cinfo, msg_hdr, priv);
701 		break;
702 	case MSG_TYPE_COMMAND:
703 	case MSG_TYPE_DELAYED_RESP:
704 		scmi_handle_response(cinfo, msg_hdr, priv);
705 		break;
706 	default:
707 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
708 		break;
709 	}
710 }
711 
712 /**
713  * xfer_put() - Release a transmit message
714  *
715  * @ph: Pointer to SCMI protocol handle
716  * @xfer: message that was reserved by xfer_get_init
717  */
718 static void xfer_put(const struct scmi_protocol_handle *ph,
719 		     struct scmi_xfer *xfer)
720 {
721 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
722 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
723 
724 	__scmi_xfer_put(&info->tx_minfo, xfer);
725 }
726 
727 #define SCMI_MAX_POLL_TO_NS	(100 * NSEC_PER_USEC)
728 
729 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
730 				      struct scmi_xfer *xfer, ktime_t stop)
731 {
732 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
733 
734 	/*
735 	 * Poll also on xfer->done so that polling can be forcibly terminated
736 	 * in case of out-of-order receptions of delayed responses
737 	 */
738 	return info->desc->ops->poll_done(cinfo, xfer) ||
739 	       try_wait_for_completion(&xfer->done) ||
740 	       ktime_after(ktime_get(), stop);
741 }
742 
743 /**
744  * do_xfer() - Do one transfer
745  *
746  * @ph: Pointer to SCMI protocol handle
747  * @xfer: Transfer to initiate and wait for response
748  *
749  * Return: -ETIMEDOUT in case of no response, if transmit error,
750  *	return corresponding error, else if all goes well,
751  *	return 0.
752  */
753 static int do_xfer(const struct scmi_protocol_handle *ph,
754 		   struct scmi_xfer *xfer)
755 {
756 	int ret;
757 	int timeout;
758 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
759 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
760 	struct device *dev = info->dev;
761 	struct scmi_chan_info *cinfo;
762 
763 	if (xfer->hdr.poll_completion && !info->desc->ops->poll_done) {
764 		dev_warn_once(dev,
765 			      "Polling mode is not supported by transport.\n");
766 		return -EINVAL;
767 	}
768 
769 	/*
770 	 * Initialise protocol id now from protocol handle to avoid it being
771 	 * overridden by mistake (or malice) by the protocol code mangling with
772 	 * the scmi_xfer structure prior to this.
773 	 */
774 	xfer->hdr.protocol_id = pi->proto->id;
775 	reinit_completion(&xfer->done);
776 
777 	cinfo = idr_find(&info->tx_idr, xfer->hdr.protocol_id);
778 	if (unlikely(!cinfo))
779 		return -EINVAL;
780 
781 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
782 			      xfer->hdr.protocol_id, xfer->hdr.seq,
783 			      xfer->hdr.poll_completion);
784 
785 	xfer->state = SCMI_XFER_SENT_OK;
786 	/*
787 	 * Even though spinlocking is not needed here since no race is possible
788 	 * on xfer->state due to the monotonically increasing tokens allocation,
789 	 * we must anyway ensure xfer->state initialization is not re-ordered
790 	 * after the .send_message() to be sure that on the RX path an early
791 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
792 	 */
793 	smp_mb();
794 
795 	ret = info->desc->ops->send_message(cinfo, xfer);
796 	if (ret < 0) {
797 		dev_dbg(dev, "Failed to send message %d\n", ret);
798 		return ret;
799 	}
800 
801 	if (xfer->hdr.poll_completion) {
802 		ktime_t stop = ktime_add_ns(ktime_get(), SCMI_MAX_POLL_TO_NS);
803 
804 		spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, stop));
805 		if (ktime_before(ktime_get(), stop)) {
806 			unsigned long flags;
807 
808 			/*
809 			 * Do not fetch_response if an out-of-order delayed
810 			 * response is being processed.
811 			 */
812 			spin_lock_irqsave(&xfer->lock, flags);
813 			if (xfer->state == SCMI_XFER_SENT_OK) {
814 				info->desc->ops->fetch_response(cinfo, xfer);
815 				xfer->state = SCMI_XFER_RESP_OK;
816 			}
817 			spin_unlock_irqrestore(&xfer->lock, flags);
818 		} else {
819 			ret = -ETIMEDOUT;
820 		}
821 	} else {
822 		/* And we wait for the response. */
823 		timeout = msecs_to_jiffies(info->desc->max_rx_timeout_ms);
824 		if (!wait_for_completion_timeout(&xfer->done, timeout)) {
825 			dev_err(dev, "timed out in resp(caller: %pS)\n",
826 				(void *)_RET_IP_);
827 			ret = -ETIMEDOUT;
828 		}
829 	}
830 
831 	if (!ret && xfer->hdr.status)
832 		ret = scmi_to_linux_errno(xfer->hdr.status);
833 
834 	if (info->desc->ops->mark_txdone)
835 		info->desc->ops->mark_txdone(cinfo, ret);
836 
837 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
838 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
839 
840 	return ret;
841 }
842 
843 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
844 			      struct scmi_xfer *xfer)
845 {
846 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
847 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
848 
849 	xfer->rx.len = info->desc->max_msg_size;
850 }
851 
852 #define SCMI_MAX_RESPONSE_TIMEOUT	(2 * MSEC_PER_SEC)
853 
854 /**
855  * do_xfer_with_response() - Do one transfer and wait until the delayed
856  *	response is received
857  *
858  * @ph: Pointer to SCMI protocol handle
859  * @xfer: Transfer to initiate and wait for response
860  *
861  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
862  *	return corresponding error, else if all goes well, return 0.
863  */
864 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
865 				 struct scmi_xfer *xfer)
866 {
867 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
868 	DECLARE_COMPLETION_ONSTACK(async_response);
869 
870 	xfer->async_done = &async_response;
871 
872 	ret = do_xfer(ph, xfer);
873 	if (!ret) {
874 		if (!wait_for_completion_timeout(xfer->async_done, timeout))
875 			ret = -ETIMEDOUT;
876 		else if (xfer->hdr.status)
877 			ret = scmi_to_linux_errno(xfer->hdr.status);
878 	}
879 
880 	xfer->async_done = NULL;
881 	return ret;
882 }
883 
884 /**
885  * xfer_get_init() - Allocate and initialise one message for transmit
886  *
887  * @ph: Pointer to SCMI protocol handle
888  * @msg_id: Message identifier
889  * @tx_size: transmit message size
890  * @rx_size: receive message size
891  * @p: pointer to the allocated and initialised message
892  *
893  * This function allocates the message using @scmi_xfer_get and
894  * initialise the header.
895  *
896  * Return: 0 if all went fine with @p pointing to message, else
897  *	corresponding error.
898  */
899 static int xfer_get_init(const struct scmi_protocol_handle *ph,
900 			 u8 msg_id, size_t tx_size, size_t rx_size,
901 			 struct scmi_xfer **p)
902 {
903 	int ret;
904 	struct scmi_xfer *xfer;
905 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
906 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
907 	struct scmi_xfers_info *minfo = &info->tx_minfo;
908 	struct device *dev = info->dev;
909 
910 	/* Ensure we have sane transfer sizes */
911 	if (rx_size > info->desc->max_msg_size ||
912 	    tx_size > info->desc->max_msg_size)
913 		return -ERANGE;
914 
915 	xfer = scmi_xfer_get(pi->handle, minfo, true);
916 	if (IS_ERR(xfer)) {
917 		ret = PTR_ERR(xfer);
918 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
919 		return ret;
920 	}
921 
922 	xfer->tx.len = tx_size;
923 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
924 	xfer->hdr.type = MSG_TYPE_COMMAND;
925 	xfer->hdr.id = msg_id;
926 	xfer->hdr.poll_completion = false;
927 
928 	*p = xfer;
929 
930 	return 0;
931 }
932 
933 /**
934  * version_get() - command to get the revision of the SCMI entity
935  *
936  * @ph: Pointer to SCMI protocol handle
937  * @version: Holds returned version of protocol.
938  *
939  * Updates the SCMI information in the internal data structure.
940  *
941  * Return: 0 if all went fine, else return appropriate error.
942  */
943 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
944 {
945 	int ret;
946 	__le32 *rev_info;
947 	struct scmi_xfer *t;
948 
949 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
950 	if (ret)
951 		return ret;
952 
953 	ret = do_xfer(ph, t);
954 	if (!ret) {
955 		rev_info = t->rx.buf;
956 		*version = le32_to_cpu(*rev_info);
957 	}
958 
959 	xfer_put(ph, t);
960 	return ret;
961 }
962 
963 /**
964  * scmi_set_protocol_priv  - Set protocol specific data at init time
965  *
966  * @ph: A reference to the protocol handle.
967  * @priv: The private data to set.
968  *
969  * Return: 0 on Success
970  */
971 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
972 				  void *priv)
973 {
974 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
975 
976 	pi->priv = priv;
977 
978 	return 0;
979 }
980 
981 /**
982  * scmi_get_protocol_priv  - Set protocol specific data at init time
983  *
984  * @ph: A reference to the protocol handle.
985  *
986  * Return: Protocol private data if any was set.
987  */
988 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
989 {
990 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
991 
992 	return pi->priv;
993 }
994 
995 static const struct scmi_xfer_ops xfer_ops = {
996 	.version_get = version_get,
997 	.xfer_get_init = xfer_get_init,
998 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
999 	.do_xfer = do_xfer,
1000 	.do_xfer_with_response = do_xfer_with_response,
1001 	.xfer_put = xfer_put,
1002 };
1003 
1004 /**
1005  * scmi_revision_area_get  - Retrieve version memory area.
1006  *
1007  * @ph: A reference to the protocol handle.
1008  *
1009  * A helper to grab the version memory area reference during SCMI Base protocol
1010  * initialization.
1011  *
1012  * Return: A reference to the version memory area associated to the SCMI
1013  *	   instance underlying this protocol handle.
1014  */
1015 struct scmi_revision_info *
1016 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1017 {
1018 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1019 
1020 	return pi->handle->version;
1021 }
1022 
1023 /**
1024  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1025  * instance descriptor.
1026  * @info: The reference to the related SCMI instance.
1027  * @proto: The protocol descriptor.
1028  *
1029  * Allocate a new protocol instance descriptor, using the provided @proto
1030  * description, against the specified SCMI instance @info, and initialize it;
1031  * all resources management is handled via a dedicated per-protocol devres
1032  * group.
1033  *
1034  * Context: Assumes to be called with @protocols_mtx already acquired.
1035  * Return: A reference to a freshly allocated and initialized protocol instance
1036  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1037  *	   put using @scmi_protocol_put() before releasing all the devres group.
1038  */
1039 static struct scmi_protocol_instance *
1040 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1041 				  const struct scmi_protocol *proto)
1042 {
1043 	int ret = -ENOMEM;
1044 	void *gid;
1045 	struct scmi_protocol_instance *pi;
1046 	const struct scmi_handle *handle = &info->handle;
1047 
1048 	/* Protocol specific devres group */
1049 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1050 	if (!gid) {
1051 		scmi_protocol_put(proto->id);
1052 		goto out;
1053 	}
1054 
1055 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1056 	if (!pi)
1057 		goto clean;
1058 
1059 	pi->gid = gid;
1060 	pi->proto = proto;
1061 	pi->handle = handle;
1062 	pi->ph.dev = handle->dev;
1063 	pi->ph.xops = &xfer_ops;
1064 	pi->ph.set_priv = scmi_set_protocol_priv;
1065 	pi->ph.get_priv = scmi_get_protocol_priv;
1066 	refcount_set(&pi->users, 1);
1067 	/* proto->init is assured NON NULL by scmi_protocol_register */
1068 	ret = pi->proto->instance_init(&pi->ph);
1069 	if (ret)
1070 		goto clean;
1071 
1072 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1073 			GFP_KERNEL);
1074 	if (ret != proto->id)
1075 		goto clean;
1076 
1077 	/*
1078 	 * Warn but ignore events registration errors since we do not want
1079 	 * to skip whole protocols if their notifications are messed up.
1080 	 */
1081 	if (pi->proto->events) {
1082 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1083 						    &pi->ph,
1084 						    pi->proto->events);
1085 		if (ret)
1086 			dev_warn(handle->dev,
1087 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1088 				 pi->proto->id, ret);
1089 	}
1090 
1091 	devres_close_group(handle->dev, pi->gid);
1092 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1093 
1094 	return pi;
1095 
1096 clean:
1097 	/* Take care to put the protocol module's owner before releasing all */
1098 	scmi_protocol_put(proto->id);
1099 	devres_release_group(handle->dev, gid);
1100 out:
1101 	return ERR_PTR(ret);
1102 }
1103 
1104 /**
1105  * scmi_get_protocol_instance  - Protocol initialization helper.
1106  * @handle: A reference to the SCMI platform instance.
1107  * @protocol_id: The protocol being requested.
1108  *
1109  * In case the required protocol has never been requested before for this
1110  * instance, allocate and initialize all the needed structures while handling
1111  * resource allocation with a dedicated per-protocol devres subgroup.
1112  *
1113  * Return: A reference to an initialized protocol instance or error on failure:
1114  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1115  *	   NOT be found.
1116  */
1117 static struct scmi_protocol_instance * __must_check
1118 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1119 {
1120 	struct scmi_protocol_instance *pi;
1121 	struct scmi_info *info = handle_to_scmi_info(handle);
1122 
1123 	mutex_lock(&info->protocols_mtx);
1124 	pi = idr_find(&info->protocols, protocol_id);
1125 
1126 	if (pi) {
1127 		refcount_inc(&pi->users);
1128 	} else {
1129 		const struct scmi_protocol *proto;
1130 
1131 		/* Fails if protocol not registered on bus */
1132 		proto = scmi_protocol_get(protocol_id);
1133 		if (proto)
1134 			pi = scmi_alloc_init_protocol_instance(info, proto);
1135 		else
1136 			pi = ERR_PTR(-EPROBE_DEFER);
1137 	}
1138 	mutex_unlock(&info->protocols_mtx);
1139 
1140 	return pi;
1141 }
1142 
1143 /**
1144  * scmi_protocol_acquire  - Protocol acquire
1145  * @handle: A reference to the SCMI platform instance.
1146  * @protocol_id: The protocol being requested.
1147  *
1148  * Register a new user for the requested protocol on the specified SCMI
1149  * platform instance, possibly triggering its initialization on first user.
1150  *
1151  * Return: 0 if protocol was acquired successfully.
1152  */
1153 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1154 {
1155 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1156 }
1157 
1158 /**
1159  * scmi_protocol_release  - Protocol de-initialization helper.
1160  * @handle: A reference to the SCMI platform instance.
1161  * @protocol_id: The protocol being requested.
1162  *
1163  * Remove one user for the specified protocol and triggers de-initialization
1164  * and resources de-allocation once the last user has gone.
1165  */
1166 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1167 {
1168 	struct scmi_info *info = handle_to_scmi_info(handle);
1169 	struct scmi_protocol_instance *pi;
1170 
1171 	mutex_lock(&info->protocols_mtx);
1172 	pi = idr_find(&info->protocols, protocol_id);
1173 	if (WARN_ON(!pi))
1174 		goto out;
1175 
1176 	if (refcount_dec_and_test(&pi->users)) {
1177 		void *gid = pi->gid;
1178 
1179 		if (pi->proto->events)
1180 			scmi_deregister_protocol_events(handle, protocol_id);
1181 
1182 		if (pi->proto->instance_deinit)
1183 			pi->proto->instance_deinit(&pi->ph);
1184 
1185 		idr_remove(&info->protocols, protocol_id);
1186 
1187 		scmi_protocol_put(protocol_id);
1188 
1189 		devres_release_group(handle->dev, gid);
1190 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1191 			protocol_id);
1192 	}
1193 
1194 out:
1195 	mutex_unlock(&info->protocols_mtx);
1196 }
1197 
1198 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1199 				     u8 *prot_imp)
1200 {
1201 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1202 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1203 
1204 	info->protocols_imp = prot_imp;
1205 }
1206 
1207 static bool
1208 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1209 {
1210 	int i;
1211 	struct scmi_info *info = handle_to_scmi_info(handle);
1212 
1213 	if (!info->protocols_imp)
1214 		return false;
1215 
1216 	for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
1217 		if (info->protocols_imp[i] == prot_id)
1218 			return true;
1219 	return false;
1220 }
1221 
1222 struct scmi_protocol_devres {
1223 	const struct scmi_handle *handle;
1224 	u8 protocol_id;
1225 };
1226 
1227 static void scmi_devm_release_protocol(struct device *dev, void *res)
1228 {
1229 	struct scmi_protocol_devres *dres = res;
1230 
1231 	scmi_protocol_release(dres->handle, dres->protocol_id);
1232 }
1233 
1234 /**
1235  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
1236  * @sdev: A reference to an scmi_device whose embedded struct device is to
1237  *	  be used for devres accounting.
1238  * @protocol_id: The protocol being requested.
1239  * @ph: A pointer reference used to pass back the associated protocol handle.
1240  *
1241  * Get hold of a protocol accounting for its usage, eventually triggering its
1242  * initialization, and returning the protocol specific operations and related
1243  * protocol handle which will be used as first argument in most of the
1244  * protocols operations methods.
1245  * Being a devres based managed method, protocol hold will be automatically
1246  * released, and possibly de-initialized on last user, once the SCMI driver
1247  * owning the scmi_device is unbound from it.
1248  *
1249  * Return: A reference to the requested protocol operations or error.
1250  *	   Must be checked for errors by caller.
1251  */
1252 static const void __must_check *
1253 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
1254 		       struct scmi_protocol_handle **ph)
1255 {
1256 	struct scmi_protocol_instance *pi;
1257 	struct scmi_protocol_devres *dres;
1258 	struct scmi_handle *handle = sdev->handle;
1259 
1260 	if (!ph)
1261 		return ERR_PTR(-EINVAL);
1262 
1263 	dres = devres_alloc(scmi_devm_release_protocol,
1264 			    sizeof(*dres), GFP_KERNEL);
1265 	if (!dres)
1266 		return ERR_PTR(-ENOMEM);
1267 
1268 	pi = scmi_get_protocol_instance(handle, protocol_id);
1269 	if (IS_ERR(pi)) {
1270 		devres_free(dres);
1271 		return pi;
1272 	}
1273 
1274 	dres->handle = handle;
1275 	dres->protocol_id = protocol_id;
1276 	devres_add(&sdev->dev, dres);
1277 
1278 	*ph = &pi->ph;
1279 
1280 	return pi->proto->ops;
1281 }
1282 
1283 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
1284 {
1285 	struct scmi_protocol_devres *dres = res;
1286 
1287 	if (WARN_ON(!dres || !data))
1288 		return 0;
1289 
1290 	return dres->protocol_id == *((u8 *)data);
1291 }
1292 
1293 /**
1294  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
1295  * @sdev: A reference to an scmi_device whose embedded struct device is to
1296  *	  be used for devres accounting.
1297  * @protocol_id: The protocol being requested.
1298  *
1299  * Explicitly release a protocol hold previously obtained calling the above
1300  * @scmi_devm_protocol_get.
1301  */
1302 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
1303 {
1304 	int ret;
1305 
1306 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
1307 			     scmi_devm_protocol_match, &protocol_id);
1308 	WARN_ON(ret);
1309 }
1310 
1311 static inline
1312 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info)
1313 {
1314 	info->users++;
1315 	return &info->handle;
1316 }
1317 
1318 /**
1319  * scmi_handle_get() - Get the SCMI handle for a device
1320  *
1321  * @dev: pointer to device for which we want SCMI handle
1322  *
1323  * NOTE: The function does not track individual clients of the framework
1324  * and is expected to be maintained by caller of SCMI protocol library.
1325  * scmi_handle_put must be balanced with successful scmi_handle_get
1326  *
1327  * Return: pointer to handle if successful, NULL on error
1328  */
1329 struct scmi_handle *scmi_handle_get(struct device *dev)
1330 {
1331 	struct list_head *p;
1332 	struct scmi_info *info;
1333 	struct scmi_handle *handle = NULL;
1334 
1335 	mutex_lock(&scmi_list_mutex);
1336 	list_for_each(p, &scmi_list) {
1337 		info = list_entry(p, struct scmi_info, node);
1338 		if (dev->parent == info->dev) {
1339 			handle = scmi_handle_get_from_info_unlocked(info);
1340 			break;
1341 		}
1342 	}
1343 	mutex_unlock(&scmi_list_mutex);
1344 
1345 	return handle;
1346 }
1347 
1348 /**
1349  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
1350  *
1351  * @handle: handle acquired by scmi_handle_get
1352  *
1353  * NOTE: The function does not track individual clients of the framework
1354  * and is expected to be maintained by caller of SCMI protocol library.
1355  * scmi_handle_put must be balanced with successful scmi_handle_get
1356  *
1357  * Return: 0 is successfully released
1358  *	if null was passed, it returns -EINVAL;
1359  */
1360 int scmi_handle_put(const struct scmi_handle *handle)
1361 {
1362 	struct scmi_info *info;
1363 
1364 	if (!handle)
1365 		return -EINVAL;
1366 
1367 	info = handle_to_scmi_info(handle);
1368 	mutex_lock(&scmi_list_mutex);
1369 	if (!WARN_ON(!info->users))
1370 		info->users--;
1371 	mutex_unlock(&scmi_list_mutex);
1372 
1373 	return 0;
1374 }
1375 
1376 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
1377 				 struct scmi_xfers_info *info)
1378 {
1379 	int i;
1380 	struct scmi_xfer *xfer;
1381 	struct device *dev = sinfo->dev;
1382 	const struct scmi_desc *desc = sinfo->desc;
1383 
1384 	/* Pre-allocated messages, no more than what hdr.seq can support */
1385 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
1386 		dev_err(dev,
1387 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
1388 			info->max_msg, MSG_TOKEN_MAX);
1389 		return -EINVAL;
1390 	}
1391 
1392 	hash_init(info->pending_xfers);
1393 
1394 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
1395 	info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
1396 					      sizeof(long), GFP_KERNEL);
1397 	if (!info->xfer_alloc_table)
1398 		return -ENOMEM;
1399 
1400 	/*
1401 	 * Preallocate a number of xfers equal to max inflight messages,
1402 	 * pre-initialize the buffer pointer to pre-allocated buffers and
1403 	 * attach all of them to the free list
1404 	 */
1405 	INIT_HLIST_HEAD(&info->free_xfers);
1406 	for (i = 0; i < info->max_msg; i++) {
1407 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
1408 		if (!xfer)
1409 			return -ENOMEM;
1410 
1411 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
1412 					    GFP_KERNEL);
1413 		if (!xfer->rx.buf)
1414 			return -ENOMEM;
1415 
1416 		xfer->tx.buf = xfer->rx.buf;
1417 		init_completion(&xfer->done);
1418 		spin_lock_init(&xfer->lock);
1419 
1420 		/* Add initialized xfer to the free list */
1421 		hlist_add_head(&xfer->node, &info->free_xfers);
1422 	}
1423 
1424 	spin_lock_init(&info->xfer_lock);
1425 
1426 	return 0;
1427 }
1428 
1429 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
1430 {
1431 	const struct scmi_desc *desc = sinfo->desc;
1432 
1433 	if (!desc->ops->get_max_msg) {
1434 		sinfo->tx_minfo.max_msg = desc->max_msg;
1435 		sinfo->rx_minfo.max_msg = desc->max_msg;
1436 	} else {
1437 		struct scmi_chan_info *base_cinfo;
1438 
1439 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
1440 		if (!base_cinfo)
1441 			return -EINVAL;
1442 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
1443 
1444 		/* RX channel is optional so can be skipped */
1445 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
1446 		if (base_cinfo)
1447 			sinfo->rx_minfo.max_msg =
1448 				desc->ops->get_max_msg(base_cinfo);
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int scmi_xfer_info_init(struct scmi_info *sinfo)
1455 {
1456 	int ret;
1457 
1458 	ret = scmi_channels_max_msg_configure(sinfo);
1459 	if (ret)
1460 		return ret;
1461 
1462 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
1463 	if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE))
1464 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
1465 
1466 	return ret;
1467 }
1468 
1469 static int scmi_chan_setup(struct scmi_info *info, struct device *dev,
1470 			   int prot_id, bool tx)
1471 {
1472 	int ret, idx;
1473 	struct scmi_chan_info *cinfo;
1474 	struct idr *idr;
1475 
1476 	/* Transmit channel is first entry i.e. index 0 */
1477 	idx = tx ? 0 : 1;
1478 	idr = tx ? &info->tx_idr : &info->rx_idr;
1479 
1480 	/* check if already allocated, used for multiple device per protocol */
1481 	cinfo = idr_find(idr, prot_id);
1482 	if (cinfo)
1483 		return 0;
1484 
1485 	if (!info->desc->ops->chan_available(dev, idx)) {
1486 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
1487 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
1488 			return -EINVAL;
1489 		goto idr_alloc;
1490 	}
1491 
1492 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
1493 	if (!cinfo)
1494 		return -ENOMEM;
1495 
1496 	cinfo->dev = dev;
1497 
1498 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
1499 	if (ret)
1500 		return ret;
1501 
1502 idr_alloc:
1503 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
1504 	if (ret != prot_id) {
1505 		dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
1506 		return ret;
1507 	}
1508 
1509 	cinfo->handle = &info->handle;
1510 	return 0;
1511 }
1512 
1513 static inline int
1514 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id)
1515 {
1516 	int ret = scmi_chan_setup(info, dev, prot_id, true);
1517 
1518 	if (!ret) /* Rx is optional, hence no error check */
1519 		scmi_chan_setup(info, dev, prot_id, false);
1520 
1521 	return ret;
1522 }
1523 
1524 /**
1525  * scmi_get_protocol_device  - Helper to get/create an SCMI device.
1526  *
1527  * @np: A device node representing a valid active protocols for the referred
1528  * SCMI instance.
1529  * @info: The referred SCMI instance for which we are getting/creating this
1530  * device.
1531  * @prot_id: The protocol ID.
1532  * @name: The device name.
1533  *
1534  * Referring to the specific SCMI instance identified by @info, this helper
1535  * takes care to return a properly initialized device matching the requested
1536  * @proto_id and @name: if device was still not existent it is created as a
1537  * child of the specified SCMI instance @info and its transport properly
1538  * initialized as usual.
1539  *
1540  * Return: A properly initialized scmi device, NULL otherwise.
1541  */
1542 static inline struct scmi_device *
1543 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info,
1544 			 int prot_id, const char *name)
1545 {
1546 	struct scmi_device *sdev;
1547 
1548 	/* Already created for this parent SCMI instance ? */
1549 	sdev = scmi_child_dev_find(info->dev, prot_id, name);
1550 	if (sdev)
1551 		return sdev;
1552 
1553 	pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id);
1554 
1555 	sdev = scmi_device_create(np, info->dev, prot_id, name);
1556 	if (!sdev) {
1557 		dev_err(info->dev, "failed to create %d protocol device\n",
1558 			prot_id);
1559 		return NULL;
1560 	}
1561 
1562 	if (scmi_txrx_setup(info, &sdev->dev, prot_id)) {
1563 		dev_err(&sdev->dev, "failed to setup transport\n");
1564 		scmi_device_destroy(sdev);
1565 		return NULL;
1566 	}
1567 
1568 	return sdev;
1569 }
1570 
1571 static inline void
1572 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
1573 			    int prot_id, const char *name)
1574 {
1575 	struct scmi_device *sdev;
1576 
1577 	sdev = scmi_get_protocol_device(np, info, prot_id, name);
1578 	if (!sdev)
1579 		return;
1580 
1581 	/* setup handle now as the transport is ready */
1582 	scmi_set_handle(sdev);
1583 }
1584 
1585 /**
1586  * scmi_create_protocol_devices  - Create devices for all pending requests for
1587  * this SCMI instance.
1588  *
1589  * @np: The device node describing the protocol
1590  * @info: The SCMI instance descriptor
1591  * @prot_id: The protocol ID
1592  *
1593  * All devices previously requested for this instance (if any) are found and
1594  * created by scanning the proper @&scmi_requested_devices entry.
1595  */
1596 static void scmi_create_protocol_devices(struct device_node *np,
1597 					 struct scmi_info *info, int prot_id)
1598 {
1599 	struct list_head *phead;
1600 
1601 	mutex_lock(&scmi_requested_devices_mtx);
1602 	phead = idr_find(&scmi_requested_devices, prot_id);
1603 	if (phead) {
1604 		struct scmi_requested_dev *rdev;
1605 
1606 		list_for_each_entry(rdev, phead, node)
1607 			scmi_create_protocol_device(np, info, prot_id,
1608 						    rdev->id_table->name);
1609 	}
1610 	mutex_unlock(&scmi_requested_devices_mtx);
1611 }
1612 
1613 /**
1614  * scmi_protocol_device_request  - Helper to request a device
1615  *
1616  * @id_table: A protocol/name pair descriptor for the device to be created.
1617  *
1618  * This helper let an SCMI driver request specific devices identified by the
1619  * @id_table to be created for each active SCMI instance.
1620  *
1621  * The requested device name MUST NOT be already existent for any protocol;
1622  * at first the freshly requested @id_table is annotated in the IDR table
1623  * @scmi_requested_devices, then a matching device is created for each already
1624  * active SCMI instance. (if any)
1625  *
1626  * This way the requested device is created straight-away for all the already
1627  * initialized(probed) SCMI instances (handles) and it remains also annotated
1628  * as pending creation if the requesting SCMI driver was loaded before some
1629  * SCMI instance and related transports were available: when such late instance
1630  * is probed, its probe will take care to scan the list of pending requested
1631  * devices and create those on its own (see @scmi_create_protocol_devices and
1632  * its enclosing loop)
1633  *
1634  * Return: 0 on Success
1635  */
1636 int scmi_protocol_device_request(const struct scmi_device_id *id_table)
1637 {
1638 	int ret = 0;
1639 	unsigned int id = 0;
1640 	struct list_head *head, *phead = NULL;
1641 	struct scmi_requested_dev *rdev;
1642 	struct scmi_info *info;
1643 
1644 	pr_debug("Requesting SCMI device (%s) for protocol %x\n",
1645 		 id_table->name, id_table->protocol_id);
1646 
1647 	/*
1648 	 * Search for the matching protocol rdev list and then search
1649 	 * of any existent equally named device...fails if any duplicate found.
1650 	 */
1651 	mutex_lock(&scmi_requested_devices_mtx);
1652 	idr_for_each_entry(&scmi_requested_devices, head, id) {
1653 		if (!phead) {
1654 			/* A list found registered in the IDR is never empty */
1655 			rdev = list_first_entry(head, struct scmi_requested_dev,
1656 						node);
1657 			if (rdev->id_table->protocol_id ==
1658 			    id_table->protocol_id)
1659 				phead = head;
1660 		}
1661 		list_for_each_entry(rdev, head, node) {
1662 			if (!strcmp(rdev->id_table->name, id_table->name)) {
1663 				pr_err("Ignoring duplicate request [%d] %s\n",
1664 				       rdev->id_table->protocol_id,
1665 				       rdev->id_table->name);
1666 				ret = -EINVAL;
1667 				goto out;
1668 			}
1669 		}
1670 	}
1671 
1672 	/*
1673 	 * No duplicate found for requested id_table, so let's create a new
1674 	 * requested device entry for this new valid request.
1675 	 */
1676 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1677 	if (!rdev) {
1678 		ret = -ENOMEM;
1679 		goto out;
1680 	}
1681 	rdev->id_table = id_table;
1682 
1683 	/*
1684 	 * Append the new requested device table descriptor to the head of the
1685 	 * related protocol list, eventually creating such head if not already
1686 	 * there.
1687 	 */
1688 	if (!phead) {
1689 		phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1690 		if (!phead) {
1691 			kfree(rdev);
1692 			ret = -ENOMEM;
1693 			goto out;
1694 		}
1695 		INIT_LIST_HEAD(phead);
1696 
1697 		ret = idr_alloc(&scmi_requested_devices, (void *)phead,
1698 				id_table->protocol_id,
1699 				id_table->protocol_id + 1, GFP_KERNEL);
1700 		if (ret != id_table->protocol_id) {
1701 			pr_err("Failed to save SCMI device - ret:%d\n", ret);
1702 			kfree(rdev);
1703 			kfree(phead);
1704 			ret = -EINVAL;
1705 			goto out;
1706 		}
1707 		ret = 0;
1708 	}
1709 	list_add(&rdev->node, phead);
1710 
1711 	/*
1712 	 * Now effectively create and initialize the requested device for every
1713 	 * already initialized SCMI instance which has registered the requested
1714 	 * protocol as a valid active one: i.e. defined in DT and supported by
1715 	 * current platform FW.
1716 	 */
1717 	mutex_lock(&scmi_list_mutex);
1718 	list_for_each_entry(info, &scmi_list, node) {
1719 		struct device_node *child;
1720 
1721 		child = idr_find(&info->active_protocols,
1722 				 id_table->protocol_id);
1723 		if (child) {
1724 			struct scmi_device *sdev;
1725 
1726 			sdev = scmi_get_protocol_device(child, info,
1727 							id_table->protocol_id,
1728 							id_table->name);
1729 			/* Set handle if not already set: device existed */
1730 			if (sdev && !sdev->handle)
1731 				sdev->handle =
1732 					scmi_handle_get_from_info_unlocked(info);
1733 		} else {
1734 			dev_err(info->dev,
1735 				"Failed. SCMI protocol %d not active.\n",
1736 				id_table->protocol_id);
1737 		}
1738 	}
1739 	mutex_unlock(&scmi_list_mutex);
1740 
1741 out:
1742 	mutex_unlock(&scmi_requested_devices_mtx);
1743 
1744 	return ret;
1745 }
1746 
1747 /**
1748  * scmi_protocol_device_unrequest  - Helper to unrequest a device
1749  *
1750  * @id_table: A protocol/name pair descriptor for the device to be unrequested.
1751  *
1752  * An helper to let an SCMI driver release its request about devices; note that
1753  * devices are created and initialized once the first SCMI driver request them
1754  * but they destroyed only on SCMI core unloading/unbinding.
1755  *
1756  * The current SCMI transport layer uses such devices as internal references and
1757  * as such they could be shared as same transport between multiple drivers so
1758  * that cannot be safely destroyed till the whole SCMI stack is removed.
1759  * (unless adding further burden of refcounting.)
1760  */
1761 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table)
1762 {
1763 	struct list_head *phead;
1764 
1765 	pr_debug("Unrequesting SCMI device (%s) for protocol %x\n",
1766 		 id_table->name, id_table->protocol_id);
1767 
1768 	mutex_lock(&scmi_requested_devices_mtx);
1769 	phead = idr_find(&scmi_requested_devices, id_table->protocol_id);
1770 	if (phead) {
1771 		struct scmi_requested_dev *victim, *tmp;
1772 
1773 		list_for_each_entry_safe(victim, tmp, phead, node) {
1774 			if (!strcmp(victim->id_table->name, id_table->name)) {
1775 				list_del(&victim->node);
1776 				kfree(victim);
1777 				break;
1778 			}
1779 		}
1780 
1781 		if (list_empty(phead)) {
1782 			idr_remove(&scmi_requested_devices,
1783 				   id_table->protocol_id);
1784 			kfree(phead);
1785 		}
1786 	}
1787 	mutex_unlock(&scmi_requested_devices_mtx);
1788 }
1789 
1790 static int scmi_cleanup_txrx_channels(struct scmi_info *info)
1791 {
1792 	int ret;
1793 	struct idr *idr = &info->tx_idr;
1794 
1795 	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1796 	idr_destroy(&info->tx_idr);
1797 
1798 	idr = &info->rx_idr;
1799 	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1800 	idr_destroy(&info->rx_idr);
1801 
1802 	return ret;
1803 }
1804 
1805 static int scmi_probe(struct platform_device *pdev)
1806 {
1807 	int ret;
1808 	struct scmi_handle *handle;
1809 	const struct scmi_desc *desc;
1810 	struct scmi_info *info;
1811 	struct device *dev = &pdev->dev;
1812 	struct device_node *child, *np = dev->of_node;
1813 
1814 	desc = of_device_get_match_data(dev);
1815 	if (!desc)
1816 		return -EINVAL;
1817 
1818 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
1819 	if (!info)
1820 		return -ENOMEM;
1821 
1822 	info->dev = dev;
1823 	info->desc = desc;
1824 	INIT_LIST_HEAD(&info->node);
1825 	idr_init(&info->protocols);
1826 	mutex_init(&info->protocols_mtx);
1827 	idr_init(&info->active_protocols);
1828 
1829 	platform_set_drvdata(pdev, info);
1830 	idr_init(&info->tx_idr);
1831 	idr_init(&info->rx_idr);
1832 
1833 	handle = &info->handle;
1834 	handle->dev = info->dev;
1835 	handle->version = &info->version;
1836 	handle->devm_protocol_get = scmi_devm_protocol_get;
1837 	handle->devm_protocol_put = scmi_devm_protocol_put;
1838 
1839 	if (desc->ops->link_supplier) {
1840 		ret = desc->ops->link_supplier(dev);
1841 		if (ret)
1842 			return ret;
1843 	}
1844 
1845 	ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE);
1846 	if (ret)
1847 		return ret;
1848 
1849 	ret = scmi_xfer_info_init(info);
1850 	if (ret)
1851 		goto clear_txrx_setup;
1852 
1853 	if (scmi_notification_init(handle))
1854 		dev_err(dev, "SCMI Notifications NOT available.\n");
1855 
1856 	/*
1857 	 * Trigger SCMI Base protocol initialization.
1858 	 * It's mandatory and won't be ever released/deinit until the
1859 	 * SCMI stack is shutdown/unloaded as a whole.
1860 	 */
1861 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
1862 	if (ret) {
1863 		dev_err(dev, "unable to communicate with SCMI\n");
1864 		goto notification_exit;
1865 	}
1866 
1867 	mutex_lock(&scmi_list_mutex);
1868 	list_add_tail(&info->node, &scmi_list);
1869 	mutex_unlock(&scmi_list_mutex);
1870 
1871 	for_each_available_child_of_node(np, child) {
1872 		u32 prot_id;
1873 
1874 		if (of_property_read_u32(child, "reg", &prot_id))
1875 			continue;
1876 
1877 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
1878 			dev_err(dev, "Out of range protocol %d\n", prot_id);
1879 
1880 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
1881 			dev_err(dev, "SCMI protocol %d not implemented\n",
1882 				prot_id);
1883 			continue;
1884 		}
1885 
1886 		/*
1887 		 * Save this valid DT protocol descriptor amongst
1888 		 * @active_protocols for this SCMI instance/
1889 		 */
1890 		ret = idr_alloc(&info->active_protocols, child,
1891 				prot_id, prot_id + 1, GFP_KERNEL);
1892 		if (ret != prot_id) {
1893 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
1894 				prot_id);
1895 			continue;
1896 		}
1897 
1898 		of_node_get(child);
1899 		scmi_create_protocol_devices(child, info, prot_id);
1900 	}
1901 
1902 	return 0;
1903 
1904 notification_exit:
1905 	scmi_notification_exit(&info->handle);
1906 clear_txrx_setup:
1907 	scmi_cleanup_txrx_channels(info);
1908 	return ret;
1909 }
1910 
1911 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id)
1912 {
1913 	idr_remove(idr, id);
1914 }
1915 
1916 static int scmi_remove(struct platform_device *pdev)
1917 {
1918 	int ret = 0, id;
1919 	struct scmi_info *info = platform_get_drvdata(pdev);
1920 	struct device_node *child;
1921 
1922 	mutex_lock(&scmi_list_mutex);
1923 	if (info->users)
1924 		ret = -EBUSY;
1925 	else
1926 		list_del(&info->node);
1927 	mutex_unlock(&scmi_list_mutex);
1928 
1929 	if (ret)
1930 		return ret;
1931 
1932 	scmi_notification_exit(&info->handle);
1933 
1934 	mutex_lock(&info->protocols_mtx);
1935 	idr_destroy(&info->protocols);
1936 	mutex_unlock(&info->protocols_mtx);
1937 
1938 	idr_for_each_entry(&info->active_protocols, child, id)
1939 		of_node_put(child);
1940 	idr_destroy(&info->active_protocols);
1941 
1942 	/* Safe to free channels since no more users */
1943 	return scmi_cleanup_txrx_channels(info);
1944 }
1945 
1946 static ssize_t protocol_version_show(struct device *dev,
1947 				     struct device_attribute *attr, char *buf)
1948 {
1949 	struct scmi_info *info = dev_get_drvdata(dev);
1950 
1951 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
1952 		       info->version.minor_ver);
1953 }
1954 static DEVICE_ATTR_RO(protocol_version);
1955 
1956 static ssize_t firmware_version_show(struct device *dev,
1957 				     struct device_attribute *attr, char *buf)
1958 {
1959 	struct scmi_info *info = dev_get_drvdata(dev);
1960 
1961 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
1962 }
1963 static DEVICE_ATTR_RO(firmware_version);
1964 
1965 static ssize_t vendor_id_show(struct device *dev,
1966 			      struct device_attribute *attr, char *buf)
1967 {
1968 	struct scmi_info *info = dev_get_drvdata(dev);
1969 
1970 	return sprintf(buf, "%s\n", info->version.vendor_id);
1971 }
1972 static DEVICE_ATTR_RO(vendor_id);
1973 
1974 static ssize_t sub_vendor_id_show(struct device *dev,
1975 				  struct device_attribute *attr, char *buf)
1976 {
1977 	struct scmi_info *info = dev_get_drvdata(dev);
1978 
1979 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
1980 }
1981 static DEVICE_ATTR_RO(sub_vendor_id);
1982 
1983 static struct attribute *versions_attrs[] = {
1984 	&dev_attr_firmware_version.attr,
1985 	&dev_attr_protocol_version.attr,
1986 	&dev_attr_vendor_id.attr,
1987 	&dev_attr_sub_vendor_id.attr,
1988 	NULL,
1989 };
1990 ATTRIBUTE_GROUPS(versions);
1991 
1992 /* Each compatible listed below must have descriptor associated with it */
1993 static const struct of_device_id scmi_of_match[] = {
1994 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
1995 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
1996 #endif
1997 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
1998 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
1999 #endif
2000 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2001 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2002 #endif
2003 	{ /* Sentinel */ },
2004 };
2005 
2006 MODULE_DEVICE_TABLE(of, scmi_of_match);
2007 
2008 static struct platform_driver scmi_driver = {
2009 	.driver = {
2010 		   .name = "arm-scmi",
2011 		   .of_match_table = scmi_of_match,
2012 		   .dev_groups = versions_groups,
2013 		   },
2014 	.probe = scmi_probe,
2015 	.remove = scmi_remove,
2016 };
2017 
2018 /**
2019  * __scmi_transports_setup  - Common helper to call transport-specific
2020  * .init/.exit code if provided.
2021  *
2022  * @init: A flag to distinguish between init and exit.
2023  *
2024  * Note that, if provided, we invoke .init/.exit functions for all the
2025  * transports currently compiled in.
2026  *
2027  * Return: 0 on Success.
2028  */
2029 static inline int __scmi_transports_setup(bool init)
2030 {
2031 	int ret = 0;
2032 	const struct of_device_id *trans;
2033 
2034 	for (trans = scmi_of_match; trans->data; trans++) {
2035 		const struct scmi_desc *tdesc = trans->data;
2036 
2037 		if ((init && !tdesc->transport_init) ||
2038 		    (!init && !tdesc->transport_exit))
2039 			continue;
2040 
2041 		if (init)
2042 			ret = tdesc->transport_init();
2043 		else
2044 			tdesc->transport_exit();
2045 
2046 		if (ret) {
2047 			pr_err("SCMI transport %s FAILED initialization!\n",
2048 			       trans->compatible);
2049 			break;
2050 		}
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 static int __init scmi_transports_init(void)
2057 {
2058 	return __scmi_transports_setup(true);
2059 }
2060 
2061 static void __exit scmi_transports_exit(void)
2062 {
2063 	__scmi_transports_setup(false);
2064 }
2065 
2066 static int __init scmi_driver_init(void)
2067 {
2068 	int ret;
2069 
2070 	/* Bail out if no SCMI transport was configured */
2071 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
2072 		return -EINVAL;
2073 
2074 	scmi_bus_init();
2075 
2076 	/* Initialize any compiled-in transport which provided an init/exit */
2077 	ret = scmi_transports_init();
2078 	if (ret)
2079 		return ret;
2080 
2081 	scmi_base_register();
2082 
2083 	scmi_clock_register();
2084 	scmi_perf_register();
2085 	scmi_power_register();
2086 	scmi_reset_register();
2087 	scmi_sensors_register();
2088 	scmi_voltage_register();
2089 	scmi_system_register();
2090 
2091 	return platform_driver_register(&scmi_driver);
2092 }
2093 subsys_initcall(scmi_driver_init);
2094 
2095 static void __exit scmi_driver_exit(void)
2096 {
2097 	scmi_base_unregister();
2098 
2099 	scmi_clock_unregister();
2100 	scmi_perf_unregister();
2101 	scmi_power_unregister();
2102 	scmi_reset_unregister();
2103 	scmi_sensors_unregister();
2104 	scmi_voltage_unregister();
2105 	scmi_system_unregister();
2106 
2107 	scmi_bus_exit();
2108 
2109 	scmi_transports_exit();
2110 
2111 	platform_driver_unregister(&scmi_driver);
2112 }
2113 module_exit(scmi_driver_exit);
2114 
2115 MODULE_ALIAS("platform:arm-scmi");
2116 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
2117 MODULE_DESCRIPTION("ARM SCMI protocol driver");
2118 MODULE_LICENSE("GPL v2");
2119