1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 18 19 #include <linux/bitmap.h> 20 #include <linux/debugfs.h> 21 #include <linux/device.h> 22 #include <linux/export.h> 23 #include <linux/idr.h> 24 #include <linux/io.h> 25 #include <linux/io-64-nonatomic-hi-lo.h> 26 #include <linux/kernel.h> 27 #include <linux/ktime.h> 28 #include <linux/hashtable.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/of.h> 32 #include <linux/platform_device.h> 33 #include <linux/processor.h> 34 #include <linux/refcount.h> 35 #include <linux/slab.h> 36 37 #include "common.h" 38 #include "notify.h" 39 40 #include "raw_mode.h" 41 42 #define CREATE_TRACE_POINTS 43 #include <trace/events/scmi.h> 44 45 static DEFINE_IDA(scmi_id); 46 47 static DEFINE_IDR(scmi_protocols); 48 static DEFINE_SPINLOCK(protocol_lock); 49 50 /* List of all SCMI devices active in system */ 51 static LIST_HEAD(scmi_list); 52 /* Protection for the entire list */ 53 static DEFINE_MUTEX(scmi_list_mutex); 54 /* Track the unique id for the transfers for debug & profiling purpose */ 55 static atomic_t transfer_last_id; 56 57 static struct dentry *scmi_top_dentry; 58 59 /** 60 * struct scmi_xfers_info - Structure to manage transfer information 61 * 62 * @xfer_alloc_table: Bitmap table for allocated messages. 63 * Index of this bitmap table is also used for message 64 * sequence identifier. 65 * @xfer_lock: Protection for message allocation 66 * @max_msg: Maximum number of messages that can be pending 67 * @free_xfers: A free list for available to use xfers. It is initialized with 68 * a number of xfers equal to the maximum allowed in-flight 69 * messages. 70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 71 * currently in-flight messages. 72 */ 73 struct scmi_xfers_info { 74 unsigned long *xfer_alloc_table; 75 spinlock_t xfer_lock; 76 int max_msg; 77 struct hlist_head free_xfers; 78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 79 }; 80 81 /** 82 * struct scmi_protocol_instance - Describe an initialized protocol instance. 83 * @handle: Reference to the SCMI handle associated to this protocol instance. 84 * @proto: A reference to the protocol descriptor. 85 * @gid: A reference for per-protocol devres management. 86 * @users: A refcount to track effective users of this protocol. 87 * @priv: Reference for optional protocol private data. 88 * @ph: An embedded protocol handle that will be passed down to protocol 89 * initialization code to identify this instance. 90 * 91 * Each protocol is initialized independently once for each SCMI platform in 92 * which is defined by DT and implemented by the SCMI server fw. 93 */ 94 struct scmi_protocol_instance { 95 const struct scmi_handle *handle; 96 const struct scmi_protocol *proto; 97 void *gid; 98 refcount_t users; 99 void *priv; 100 struct scmi_protocol_handle ph; 101 }; 102 103 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 104 105 /** 106 * struct scmi_debug_info - Debug common info 107 * @top_dentry: A reference to the top debugfs dentry 108 * @name: Name of this SCMI instance 109 * @type: Type of this SCMI instance 110 * @is_atomic: Flag to state if the transport of this instance is atomic 111 */ 112 struct scmi_debug_info { 113 struct dentry *top_dentry; 114 const char *name; 115 const char *type; 116 bool is_atomic; 117 }; 118 119 /** 120 * struct scmi_info - Structure representing a SCMI instance 121 * 122 * @id: A sequence number starting from zero identifying this instance 123 * @dev: Device pointer 124 * @desc: SoC description for this instance 125 * @version: SCMI revision information containing protocol version, 126 * implementation version and (sub-)vendor identification. 127 * @handle: Instance of SCMI handle to send to clients 128 * @tx_minfo: Universal Transmit Message management info 129 * @rx_minfo: Universal Receive Message management info 130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 132 * @protocols: IDR for protocols' instance descriptors initialized for 133 * this SCMI instance: populated on protocol's first attempted 134 * usage. 135 * @protocols_mtx: A mutex to protect protocols instances initialization. 136 * @protocols_imp: List of protocols implemented, currently maximum of 137 * scmi_revision_info.num_protocols elements allocated by the 138 * base protocol 139 * @active_protocols: IDR storing device_nodes for protocols actually defined 140 * in the DT and confirmed as implemented by fw. 141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 142 * in microseconds, for atomic operations. 143 * Only SCMI synchronous commands reported by the platform 144 * to have an execution latency lesser-equal to the threshold 145 * should be considered for atomic mode operation: such 146 * decision is finally left up to the SCMI drivers. 147 * @notify_priv: Pointer to private data structure specific to notifications. 148 * @node: List head 149 * @users: Number of users of this instance 150 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus 151 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi 152 * bus 153 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance 154 * @dbg: A pointer to debugfs related data (if any) 155 * @raw: An opaque reference handle used by SCMI Raw mode. 156 */ 157 struct scmi_info { 158 int id; 159 struct device *dev; 160 const struct scmi_desc *desc; 161 struct scmi_revision_info version; 162 struct scmi_handle handle; 163 struct scmi_xfers_info tx_minfo; 164 struct scmi_xfers_info rx_minfo; 165 struct idr tx_idr; 166 struct idr rx_idr; 167 struct idr protocols; 168 /* Ensure mutual exclusive access to protocols instance array */ 169 struct mutex protocols_mtx; 170 u8 *protocols_imp; 171 struct idr active_protocols; 172 unsigned int atomic_threshold; 173 void *notify_priv; 174 struct list_head node; 175 int users; 176 struct notifier_block bus_nb; 177 struct notifier_block dev_req_nb; 178 /* Serialize device creation process for this instance */ 179 struct mutex devreq_mtx; 180 struct scmi_debug_info *dbg; 181 void *raw; 182 }; 183 184 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 185 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb) 186 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb) 187 188 static const struct scmi_protocol *scmi_protocol_get(int protocol_id) 189 { 190 const struct scmi_protocol *proto; 191 192 proto = idr_find(&scmi_protocols, protocol_id); 193 if (!proto || !try_module_get(proto->owner)) { 194 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id); 195 return NULL; 196 } 197 198 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id); 199 200 return proto; 201 } 202 203 static void scmi_protocol_put(int protocol_id) 204 { 205 const struct scmi_protocol *proto; 206 207 proto = idr_find(&scmi_protocols, protocol_id); 208 if (proto) 209 module_put(proto->owner); 210 } 211 212 int scmi_protocol_register(const struct scmi_protocol *proto) 213 { 214 int ret; 215 216 if (!proto) { 217 pr_err("invalid protocol\n"); 218 return -EINVAL; 219 } 220 221 if (!proto->instance_init) { 222 pr_err("missing init for protocol 0x%x\n", proto->id); 223 return -EINVAL; 224 } 225 226 spin_lock(&protocol_lock); 227 ret = idr_alloc(&scmi_protocols, (void *)proto, 228 proto->id, proto->id + 1, GFP_ATOMIC); 229 spin_unlock(&protocol_lock); 230 if (ret != proto->id) { 231 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n", 232 proto->id, ret); 233 return ret; 234 } 235 236 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id); 237 238 return 0; 239 } 240 EXPORT_SYMBOL_GPL(scmi_protocol_register); 241 242 void scmi_protocol_unregister(const struct scmi_protocol *proto) 243 { 244 spin_lock(&protocol_lock); 245 idr_remove(&scmi_protocols, proto->id); 246 spin_unlock(&protocol_lock); 247 248 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id); 249 } 250 EXPORT_SYMBOL_GPL(scmi_protocol_unregister); 251 252 /** 253 * scmi_create_protocol_devices - Create devices for all pending requests for 254 * this SCMI instance. 255 * 256 * @np: The device node describing the protocol 257 * @info: The SCMI instance descriptor 258 * @prot_id: The protocol ID 259 * @name: The optional name of the device to be created: if not provided this 260 * call will lead to the creation of all the devices currently requested 261 * for the specified protocol. 262 */ 263 static void scmi_create_protocol_devices(struct device_node *np, 264 struct scmi_info *info, 265 int prot_id, const char *name) 266 { 267 struct scmi_device *sdev; 268 269 mutex_lock(&info->devreq_mtx); 270 sdev = scmi_device_create(np, info->dev, prot_id, name); 271 if (name && !sdev) 272 dev_err(info->dev, 273 "failed to create device for protocol 0x%X (%s)\n", 274 prot_id, name); 275 mutex_unlock(&info->devreq_mtx); 276 } 277 278 static void scmi_destroy_protocol_devices(struct scmi_info *info, 279 int prot_id, const char *name) 280 { 281 mutex_lock(&info->devreq_mtx); 282 scmi_device_destroy(info->dev, prot_id, name); 283 mutex_unlock(&info->devreq_mtx); 284 } 285 286 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 287 void *priv) 288 { 289 struct scmi_info *info = handle_to_scmi_info(handle); 290 291 info->notify_priv = priv; 292 /* Ensure updated protocol private date are visible */ 293 smp_wmb(); 294 } 295 296 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 297 { 298 struct scmi_info *info = handle_to_scmi_info(handle); 299 300 /* Ensure protocols_private_data has been updated */ 301 smp_rmb(); 302 return info->notify_priv; 303 } 304 305 /** 306 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 307 * 308 * @minfo: Pointer to Tx/Rx Message management info based on channel type 309 * @xfer: The xfer to act upon 310 * 311 * Pick the next unused monotonically increasing token and set it into 312 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 313 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 314 * of incorrect association of a late and expired xfer with a live in-flight 315 * transaction, both happening to re-use the same token identifier. 316 * 317 * Since platform is NOT required to answer our request in-order we should 318 * account for a few rare but possible scenarios: 319 * 320 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 321 * using find_next_zero_bit() starting from candidate next_token bit 322 * 323 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 324 * are plenty of free tokens at start, so try a second pass using 325 * find_next_zero_bit() and starting from 0. 326 * 327 * X = used in-flight 328 * 329 * Normal 330 * ------ 331 * 332 * |- xfer_id picked 333 * -----------+---------------------------------------------------------- 334 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 335 * ---------------------------------------------------------------------- 336 * ^ 337 * |- next_token 338 * 339 * Out-of-order pending at start 340 * ----------------------------- 341 * 342 * |- xfer_id picked, last_token fixed 343 * -----+---------------------------------------------------------------- 344 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 345 * ---------------------------------------------------------------------- 346 * ^ 347 * |- next_token 348 * 349 * 350 * Out-of-order pending at end 351 * --------------------------- 352 * 353 * |- xfer_id picked, last_token fixed 354 * -----+---------------------------------------------------------------- 355 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 356 * ---------------------------------------------------------------------- 357 * ^ 358 * |- next_token 359 * 360 * Context: Assumes to be called with @xfer_lock already acquired. 361 * 362 * Return: 0 on Success or error 363 */ 364 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 365 struct scmi_xfer *xfer) 366 { 367 unsigned long xfer_id, next_token; 368 369 /* 370 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 371 * using the pre-allocated transfer_id as a base. 372 * Note that the global transfer_id is shared across all message types 373 * so there could be holes in the allocated set of monotonic sequence 374 * numbers, but that is going to limit the effectiveness of the 375 * mitigation only in very rare limit conditions. 376 */ 377 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 378 379 /* Pick the next available xfer_id >= next_token */ 380 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 381 MSG_TOKEN_MAX, next_token); 382 if (xfer_id == MSG_TOKEN_MAX) { 383 /* 384 * After heavily out-of-order responses, there are no free 385 * tokens ahead, but only at start of xfer_alloc_table so 386 * try again from the beginning. 387 */ 388 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 389 MSG_TOKEN_MAX, 0); 390 /* 391 * Something is wrong if we got here since there can be a 392 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 393 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 394 */ 395 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 396 return -ENOMEM; 397 } 398 399 /* Update +/- last_token accordingly if we skipped some hole */ 400 if (xfer_id != next_token) 401 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 402 403 xfer->hdr.seq = (u16)xfer_id; 404 405 return 0; 406 } 407 408 /** 409 * scmi_xfer_token_clear - Release the token 410 * 411 * @minfo: Pointer to Tx/Rx Message management info based on channel type 412 * @xfer: The xfer to act upon 413 */ 414 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 415 struct scmi_xfer *xfer) 416 { 417 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 418 } 419 420 /** 421 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight 422 * 423 * @xfer: The xfer to register 424 * @minfo: Pointer to Tx/Rx Message management info based on channel type 425 * 426 * Note that this helper assumes that the xfer to be registered as in-flight 427 * had been built using an xfer sequence number which still corresponds to a 428 * free slot in the xfer_alloc_table. 429 * 430 * Context: Assumes to be called with @xfer_lock already acquired. 431 */ 432 static inline void 433 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer, 434 struct scmi_xfers_info *minfo) 435 { 436 /* Set in-flight */ 437 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 438 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq); 439 xfer->pending = true; 440 } 441 442 /** 443 * scmi_xfer_inflight_register - Try to register an xfer as in-flight 444 * 445 * @xfer: The xfer to register 446 * @minfo: Pointer to Tx/Rx Message management info based on channel type 447 * 448 * Note that this helper does NOT assume anything about the sequence number 449 * that was baked into the provided xfer, so it checks at first if it can 450 * be mapped to a free slot and fails with an error if another xfer with the 451 * same sequence number is currently still registered as in-flight. 452 * 453 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer 454 * could not rbe mapped to a free slot in the xfer_alloc_table. 455 */ 456 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer, 457 struct scmi_xfers_info *minfo) 458 { 459 int ret = 0; 460 unsigned long flags; 461 462 spin_lock_irqsave(&minfo->xfer_lock, flags); 463 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table)) 464 scmi_xfer_inflight_register_unlocked(xfer, minfo); 465 else 466 ret = -EBUSY; 467 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 468 469 return ret; 470 } 471 472 /** 473 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in 474 * flight on the TX channel, if possible. 475 * 476 * @handle: Pointer to SCMI entity handle 477 * @xfer: The xfer to register 478 * 479 * Return: 0 on Success, error otherwise 480 */ 481 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle, 482 struct scmi_xfer *xfer) 483 { 484 struct scmi_info *info = handle_to_scmi_info(handle); 485 486 return scmi_xfer_inflight_register(xfer, &info->tx_minfo); 487 } 488 489 /** 490 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer 491 * as pending in-flight 492 * 493 * @xfer: The xfer to act upon 494 * @minfo: Pointer to Tx/Rx Message management info based on channel type 495 * 496 * Return: 0 on Success or error otherwise 497 */ 498 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer, 499 struct scmi_xfers_info *minfo) 500 { 501 int ret; 502 unsigned long flags; 503 504 spin_lock_irqsave(&minfo->xfer_lock, flags); 505 /* Set a new monotonic token as the xfer sequence number */ 506 ret = scmi_xfer_token_set(minfo, xfer); 507 if (!ret) 508 scmi_xfer_inflight_register_unlocked(xfer, minfo); 509 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 510 511 return ret; 512 } 513 514 /** 515 * scmi_xfer_get() - Allocate one message 516 * 517 * @handle: Pointer to SCMI entity handle 518 * @minfo: Pointer to Tx/Rx Message management info based on channel type 519 * 520 * Helper function which is used by various message functions that are 521 * exposed to clients of this driver for allocating a message traffic event. 522 * 523 * Picks an xfer from the free list @free_xfers (if any available) and perform 524 * a basic initialization. 525 * 526 * Note that, at this point, still no sequence number is assigned to the 527 * allocated xfer, nor it is registered as a pending transaction. 528 * 529 * The successfully initialized xfer is refcounted. 530 * 531 * Context: Holds @xfer_lock while manipulating @free_xfers. 532 * 533 * Return: An initialized xfer if all went fine, else pointer error. 534 */ 535 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 536 struct scmi_xfers_info *minfo) 537 { 538 unsigned long flags; 539 struct scmi_xfer *xfer; 540 541 spin_lock_irqsave(&minfo->xfer_lock, flags); 542 if (hlist_empty(&minfo->free_xfers)) { 543 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 544 return ERR_PTR(-ENOMEM); 545 } 546 547 /* grab an xfer from the free_list */ 548 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 549 hlist_del_init(&xfer->node); 550 551 /* 552 * Allocate transfer_id early so that can be used also as base for 553 * monotonic sequence number generation if needed. 554 */ 555 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 556 557 refcount_set(&xfer->users, 1); 558 atomic_set(&xfer->busy, SCMI_XFER_FREE); 559 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 560 561 return xfer; 562 } 563 564 /** 565 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel 566 * 567 * @handle: Pointer to SCMI entity handle 568 * 569 * Note that xfer is taken from the TX channel structures. 570 * 571 * Return: A valid xfer on Success, or an error-pointer otherwise 572 */ 573 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle) 574 { 575 struct scmi_xfer *xfer; 576 struct scmi_info *info = handle_to_scmi_info(handle); 577 578 xfer = scmi_xfer_get(handle, &info->tx_minfo); 579 if (!IS_ERR(xfer)) 580 xfer->flags |= SCMI_XFER_FLAG_IS_RAW; 581 582 return xfer; 583 } 584 585 /** 586 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel 587 * to use for a specific protocol_id Raw transaction. 588 * 589 * @handle: Pointer to SCMI entity handle 590 * @protocol_id: Identifier of the protocol 591 * 592 * Note that in a regular SCMI stack, usually, a protocol has to be defined in 593 * the DT to have an associated channel and be usable; but in Raw mode any 594 * protocol in range is allowed, re-using the Base channel, so as to enable 595 * fuzzing on any protocol without the need of a fully compiled DT. 596 * 597 * Return: A reference to the channel to use, or an ERR_PTR 598 */ 599 struct scmi_chan_info * 600 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id) 601 { 602 struct scmi_chan_info *cinfo; 603 struct scmi_info *info = handle_to_scmi_info(handle); 604 605 cinfo = idr_find(&info->tx_idr, protocol_id); 606 if (!cinfo) { 607 if (protocol_id == SCMI_PROTOCOL_BASE) 608 return ERR_PTR(-EINVAL); 609 /* Use Base channel for protocols not defined for DT */ 610 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE); 611 if (!cinfo) 612 return ERR_PTR(-EINVAL); 613 dev_warn_once(handle->dev, 614 "Using Base channel for protocol 0x%X\n", 615 protocol_id); 616 } 617 618 return cinfo; 619 } 620 621 /** 622 * __scmi_xfer_put() - Release a message 623 * 624 * @minfo: Pointer to Tx/Rx Message management info based on channel type 625 * @xfer: message that was reserved by scmi_xfer_get 626 * 627 * After refcount check, possibly release an xfer, clearing the token slot, 628 * removing xfer from @pending_xfers and putting it back into free_xfers. 629 * 630 * This holds a spinlock to maintain integrity of internal data structures. 631 */ 632 static void 633 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 634 { 635 unsigned long flags; 636 637 spin_lock_irqsave(&minfo->xfer_lock, flags); 638 if (refcount_dec_and_test(&xfer->users)) { 639 if (xfer->pending) { 640 scmi_xfer_token_clear(minfo, xfer); 641 hash_del(&xfer->node); 642 xfer->pending = false; 643 } 644 hlist_add_head(&xfer->node, &minfo->free_xfers); 645 } 646 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 647 } 648 649 /** 650 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get 651 * 652 * @handle: Pointer to SCMI entity handle 653 * @xfer: A reference to the xfer to put 654 * 655 * Note that as with other xfer_put() handlers the xfer is really effectively 656 * released only if there are no more users on the system. 657 */ 658 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer) 659 { 660 struct scmi_info *info = handle_to_scmi_info(handle); 661 662 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW; 663 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET; 664 return __scmi_xfer_put(&info->tx_minfo, xfer); 665 } 666 667 /** 668 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 669 * 670 * @minfo: Pointer to Tx/Rx Message management info based on channel type 671 * @xfer_id: Token ID to lookup in @pending_xfers 672 * 673 * Refcounting is untouched. 674 * 675 * Context: Assumes to be called with @xfer_lock already acquired. 676 * 677 * Return: A valid xfer on Success or error otherwise 678 */ 679 static struct scmi_xfer * 680 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 681 { 682 struct scmi_xfer *xfer = NULL; 683 684 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 685 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 686 687 return xfer ?: ERR_PTR(-EINVAL); 688 } 689 690 /** 691 * scmi_msg_response_validate - Validate message type against state of related 692 * xfer 693 * 694 * @cinfo: A reference to the channel descriptor. 695 * @msg_type: Message type to check 696 * @xfer: A reference to the xfer to validate against @msg_type 697 * 698 * This function checks if @msg_type is congruent with the current state of 699 * a pending @xfer; if an asynchronous delayed response is received before the 700 * related synchronous response (Out-of-Order Delayed Response) the missing 701 * synchronous response is assumed to be OK and completed, carrying on with the 702 * Delayed Response: this is done to address the case in which the underlying 703 * SCMI transport can deliver such out-of-order responses. 704 * 705 * Context: Assumes to be called with xfer->lock already acquired. 706 * 707 * Return: 0 on Success, error otherwise 708 */ 709 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 710 u8 msg_type, 711 struct scmi_xfer *xfer) 712 { 713 /* 714 * Even if a response was indeed expected on this slot at this point, 715 * a buggy platform could wrongly reply feeding us an unexpected 716 * delayed response we're not prepared to handle: bail-out safely 717 * blaming firmware. 718 */ 719 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 720 dev_err(cinfo->dev, 721 "Delayed Response for %d not expected! Buggy F/W ?\n", 722 xfer->hdr.seq); 723 return -EINVAL; 724 } 725 726 switch (xfer->state) { 727 case SCMI_XFER_SENT_OK: 728 if (msg_type == MSG_TYPE_DELAYED_RESP) { 729 /* 730 * Delayed Response expected but delivered earlier. 731 * Assume message RESPONSE was OK and skip state. 732 */ 733 xfer->hdr.status = SCMI_SUCCESS; 734 xfer->state = SCMI_XFER_RESP_OK; 735 complete(&xfer->done); 736 dev_warn(cinfo->dev, 737 "Received valid OoO Delayed Response for %d\n", 738 xfer->hdr.seq); 739 } 740 break; 741 case SCMI_XFER_RESP_OK: 742 if (msg_type != MSG_TYPE_DELAYED_RESP) 743 return -EINVAL; 744 break; 745 case SCMI_XFER_DRESP_OK: 746 /* No further message expected once in SCMI_XFER_DRESP_OK */ 747 return -EINVAL; 748 } 749 750 return 0; 751 } 752 753 /** 754 * scmi_xfer_state_update - Update xfer state 755 * 756 * @xfer: A reference to the xfer to update 757 * @msg_type: Type of message being processed. 758 * 759 * Note that this message is assumed to have been already successfully validated 760 * by @scmi_msg_response_validate(), so here we just update the state. 761 * 762 * Context: Assumes to be called on an xfer exclusively acquired using the 763 * busy flag. 764 */ 765 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 766 { 767 xfer->hdr.type = msg_type; 768 769 /* Unknown command types were already discarded earlier */ 770 if (xfer->hdr.type == MSG_TYPE_COMMAND) 771 xfer->state = SCMI_XFER_RESP_OK; 772 else 773 xfer->state = SCMI_XFER_DRESP_OK; 774 } 775 776 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 777 { 778 int ret; 779 780 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 781 782 return ret == SCMI_XFER_FREE; 783 } 784 785 /** 786 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 787 * 788 * @cinfo: A reference to the channel descriptor. 789 * @msg_hdr: A message header to use as lookup key 790 * 791 * When a valid xfer is found for the sequence number embedded in the provided 792 * msg_hdr, reference counting is properly updated and exclusive access to this 793 * xfer is granted till released with @scmi_xfer_command_release. 794 * 795 * Return: A valid @xfer on Success or error otherwise. 796 */ 797 static inline struct scmi_xfer * 798 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 799 { 800 int ret; 801 unsigned long flags; 802 struct scmi_xfer *xfer; 803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 804 struct scmi_xfers_info *minfo = &info->tx_minfo; 805 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 806 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 807 808 /* Are we even expecting this? */ 809 spin_lock_irqsave(&minfo->xfer_lock, flags); 810 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 811 if (IS_ERR(xfer)) { 812 dev_err(cinfo->dev, 813 "Message for %d type %d is not expected!\n", 814 xfer_id, msg_type); 815 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 816 return xfer; 817 } 818 refcount_inc(&xfer->users); 819 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 820 821 spin_lock_irqsave(&xfer->lock, flags); 822 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 823 /* 824 * If a pending xfer was found which was also in a congruent state with 825 * the received message, acquire exclusive access to it setting the busy 826 * flag. 827 * Spins only on the rare limit condition of concurrent reception of 828 * RESP and DRESP for the same xfer. 829 */ 830 if (!ret) { 831 spin_until_cond(scmi_xfer_acquired(xfer)); 832 scmi_xfer_state_update(xfer, msg_type); 833 } 834 spin_unlock_irqrestore(&xfer->lock, flags); 835 836 if (ret) { 837 dev_err(cinfo->dev, 838 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 839 msg_type, xfer_id, msg_hdr, xfer->state); 840 /* On error the refcount incremented above has to be dropped */ 841 __scmi_xfer_put(minfo, xfer); 842 xfer = ERR_PTR(-EINVAL); 843 } 844 845 return xfer; 846 } 847 848 static inline void scmi_xfer_command_release(struct scmi_info *info, 849 struct scmi_xfer *xfer) 850 { 851 atomic_set(&xfer->busy, SCMI_XFER_FREE); 852 __scmi_xfer_put(&info->tx_minfo, xfer); 853 } 854 855 static inline void scmi_clear_channel(struct scmi_info *info, 856 struct scmi_chan_info *cinfo) 857 { 858 if (!cinfo->is_p2a) { 859 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n"); 860 return; 861 } 862 863 if (info->desc->ops->clear_channel) 864 info->desc->ops->clear_channel(cinfo); 865 } 866 867 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 868 u32 msg_hdr, void *priv) 869 { 870 struct scmi_xfer *xfer; 871 struct device *dev = cinfo->dev; 872 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 873 struct scmi_xfers_info *minfo = &info->rx_minfo; 874 ktime_t ts; 875 876 ts = ktime_get_boottime(); 877 xfer = scmi_xfer_get(cinfo->handle, minfo); 878 if (IS_ERR(xfer)) { 879 dev_err(dev, "failed to get free message slot (%ld)\n", 880 PTR_ERR(xfer)); 881 scmi_clear_channel(info, cinfo); 882 return; 883 } 884 885 unpack_scmi_header(msg_hdr, &xfer->hdr); 886 if (priv) 887 /* Ensure order between xfer->priv store and following ops */ 888 smp_store_mb(xfer->priv, priv); 889 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 890 xfer); 891 892 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 893 xfer->hdr.id, "NOTI", xfer->hdr.seq, 894 xfer->hdr.status, xfer->rx.buf, xfer->rx.len); 895 896 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 897 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 898 899 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 900 xfer->hdr.protocol_id, xfer->hdr.seq, 901 MSG_TYPE_NOTIFICATION); 902 903 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 904 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr); 905 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE, 906 cinfo->id); 907 } 908 909 __scmi_xfer_put(minfo, xfer); 910 911 scmi_clear_channel(info, cinfo); 912 } 913 914 static void scmi_handle_response(struct scmi_chan_info *cinfo, 915 u32 msg_hdr, void *priv) 916 { 917 struct scmi_xfer *xfer; 918 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 919 920 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 921 if (IS_ERR(xfer)) { 922 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 923 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv); 924 925 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 926 scmi_clear_channel(info, cinfo); 927 return; 928 } 929 930 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 931 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 932 xfer->rx.len = info->desc->max_msg_size; 933 934 if (priv) 935 /* Ensure order between xfer->priv store and following ops */ 936 smp_store_mb(xfer->priv, priv); 937 info->desc->ops->fetch_response(cinfo, xfer); 938 939 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 940 xfer->hdr.id, 941 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ? 942 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") : 943 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"), 944 xfer->hdr.seq, xfer->hdr.status, 945 xfer->rx.buf, xfer->rx.len); 946 947 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 948 xfer->hdr.protocol_id, xfer->hdr.seq, 949 xfer->hdr.type); 950 951 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 952 scmi_clear_channel(info, cinfo); 953 complete(xfer->async_done); 954 } else { 955 complete(&xfer->done); 956 } 957 958 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 959 /* 960 * When in polling mode avoid to queue the Raw xfer on the IRQ 961 * RX path since it will be already queued at the end of the TX 962 * poll loop. 963 */ 964 if (!xfer->hdr.poll_completion) 965 scmi_raw_message_report(info->raw, xfer, 966 SCMI_RAW_REPLY_QUEUE, 967 cinfo->id); 968 } 969 970 scmi_xfer_command_release(info, xfer); 971 } 972 973 /** 974 * scmi_rx_callback() - callback for receiving messages 975 * 976 * @cinfo: SCMI channel info 977 * @msg_hdr: Message header 978 * @priv: Transport specific private data. 979 * 980 * Processes one received message to appropriate transfer information and 981 * signals completion of the transfer. 982 * 983 * NOTE: This function will be invoked in IRQ context, hence should be 984 * as optimal as possible. 985 */ 986 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 987 { 988 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 989 990 switch (msg_type) { 991 case MSG_TYPE_NOTIFICATION: 992 scmi_handle_notification(cinfo, msg_hdr, priv); 993 break; 994 case MSG_TYPE_COMMAND: 995 case MSG_TYPE_DELAYED_RESP: 996 scmi_handle_response(cinfo, msg_hdr, priv); 997 break; 998 default: 999 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 1000 break; 1001 } 1002 } 1003 1004 /** 1005 * xfer_put() - Release a transmit message 1006 * 1007 * @ph: Pointer to SCMI protocol handle 1008 * @xfer: message that was reserved by xfer_get_init 1009 */ 1010 static void xfer_put(const struct scmi_protocol_handle *ph, 1011 struct scmi_xfer *xfer) 1012 { 1013 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1014 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1015 1016 __scmi_xfer_put(&info->tx_minfo, xfer); 1017 } 1018 1019 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 1020 struct scmi_xfer *xfer, ktime_t stop) 1021 { 1022 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1023 1024 /* 1025 * Poll also on xfer->done so that polling can be forcibly terminated 1026 * in case of out-of-order receptions of delayed responses 1027 */ 1028 return info->desc->ops->poll_done(cinfo, xfer) || 1029 try_wait_for_completion(&xfer->done) || 1030 ktime_after(ktime_get(), stop); 1031 } 1032 1033 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc, 1034 struct scmi_chan_info *cinfo, 1035 struct scmi_xfer *xfer, unsigned int timeout_ms) 1036 { 1037 int ret = 0; 1038 1039 if (xfer->hdr.poll_completion) { 1040 /* 1041 * Real polling is needed only if transport has NOT declared 1042 * itself to support synchronous commands replies. 1043 */ 1044 if (!desc->sync_cmds_completed_on_ret) { 1045 /* 1046 * Poll on xfer using transport provided .poll_done(); 1047 * assumes no completion interrupt was available. 1048 */ 1049 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 1050 1051 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 1052 xfer, stop)); 1053 if (ktime_after(ktime_get(), stop)) { 1054 dev_err(dev, 1055 "timed out in resp(caller: %pS) - polling\n", 1056 (void *)_RET_IP_); 1057 ret = -ETIMEDOUT; 1058 } 1059 } 1060 1061 if (!ret) { 1062 unsigned long flags; 1063 struct scmi_info *info = 1064 handle_to_scmi_info(cinfo->handle); 1065 1066 /* 1067 * Do not fetch_response if an out-of-order delayed 1068 * response is being processed. 1069 */ 1070 spin_lock_irqsave(&xfer->lock, flags); 1071 if (xfer->state == SCMI_XFER_SENT_OK) { 1072 desc->ops->fetch_response(cinfo, xfer); 1073 xfer->state = SCMI_XFER_RESP_OK; 1074 } 1075 spin_unlock_irqrestore(&xfer->lock, flags); 1076 1077 /* Trace polled replies. */ 1078 trace_scmi_msg_dump(info->id, cinfo->id, 1079 xfer->hdr.protocol_id, xfer->hdr.id, 1080 !SCMI_XFER_IS_RAW(xfer) ? 1081 "RESP" : "resp", 1082 xfer->hdr.seq, xfer->hdr.status, 1083 xfer->rx.buf, xfer->rx.len); 1084 1085 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 1086 struct scmi_info *info = 1087 handle_to_scmi_info(cinfo->handle); 1088 1089 scmi_raw_message_report(info->raw, xfer, 1090 SCMI_RAW_REPLY_QUEUE, 1091 cinfo->id); 1092 } 1093 } 1094 } else { 1095 /* And we wait for the response. */ 1096 if (!wait_for_completion_timeout(&xfer->done, 1097 msecs_to_jiffies(timeout_ms))) { 1098 dev_err(dev, "timed out in resp(caller: %pS)\n", 1099 (void *)_RET_IP_); 1100 ret = -ETIMEDOUT; 1101 } 1102 } 1103 1104 return ret; 1105 } 1106 1107 /** 1108 * scmi_wait_for_message_response - An helper to group all the possible ways of 1109 * waiting for a synchronous message response. 1110 * 1111 * @cinfo: SCMI channel info 1112 * @xfer: Reference to the transfer being waited for. 1113 * 1114 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 1115 * configuration flags like xfer->hdr.poll_completion. 1116 * 1117 * Return: 0 on Success, error otherwise. 1118 */ 1119 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 1120 struct scmi_xfer *xfer) 1121 { 1122 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1123 struct device *dev = info->dev; 1124 1125 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 1126 xfer->hdr.protocol_id, xfer->hdr.seq, 1127 info->desc->max_rx_timeout_ms, 1128 xfer->hdr.poll_completion); 1129 1130 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer, 1131 info->desc->max_rx_timeout_ms); 1132 } 1133 1134 /** 1135 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message 1136 * reply to an xfer raw request on a specific channel for the required timeout. 1137 * 1138 * @cinfo: SCMI channel info 1139 * @xfer: Reference to the transfer being waited for. 1140 * @timeout_ms: The maximum timeout in milliseconds 1141 * 1142 * Return: 0 on Success, error otherwise. 1143 */ 1144 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo, 1145 struct scmi_xfer *xfer, 1146 unsigned int timeout_ms) 1147 { 1148 int ret; 1149 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 1150 struct device *dev = info->dev; 1151 1152 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms); 1153 if (ret) 1154 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n", 1155 pack_scmi_header(&xfer->hdr)); 1156 1157 return ret; 1158 } 1159 1160 /** 1161 * do_xfer() - Do one transfer 1162 * 1163 * @ph: Pointer to SCMI protocol handle 1164 * @xfer: Transfer to initiate and wait for response 1165 * 1166 * Return: -ETIMEDOUT in case of no response, if transmit error, 1167 * return corresponding error, else if all goes well, 1168 * return 0. 1169 */ 1170 static int do_xfer(const struct scmi_protocol_handle *ph, 1171 struct scmi_xfer *xfer) 1172 { 1173 int ret; 1174 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1175 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1176 struct device *dev = info->dev; 1177 struct scmi_chan_info *cinfo; 1178 1179 /* Check for polling request on custom command xfers at first */ 1180 if (xfer->hdr.poll_completion && 1181 !is_transport_polling_capable(info->desc)) { 1182 dev_warn_once(dev, 1183 "Polling mode is not supported by transport.\n"); 1184 return -EINVAL; 1185 } 1186 1187 cinfo = idr_find(&info->tx_idr, pi->proto->id); 1188 if (unlikely(!cinfo)) 1189 return -EINVAL; 1190 1191 /* True ONLY if also supported by transport. */ 1192 if (is_polling_enabled(cinfo, info->desc)) 1193 xfer->hdr.poll_completion = true; 1194 1195 /* 1196 * Initialise protocol id now from protocol handle to avoid it being 1197 * overridden by mistake (or malice) by the protocol code mangling with 1198 * the scmi_xfer structure prior to this. 1199 */ 1200 xfer->hdr.protocol_id = pi->proto->id; 1201 reinit_completion(&xfer->done); 1202 1203 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 1204 xfer->hdr.protocol_id, xfer->hdr.seq, 1205 xfer->hdr.poll_completion); 1206 1207 /* Clear any stale status */ 1208 xfer->hdr.status = SCMI_SUCCESS; 1209 xfer->state = SCMI_XFER_SENT_OK; 1210 /* 1211 * Even though spinlocking is not needed here since no race is possible 1212 * on xfer->state due to the monotonically increasing tokens allocation, 1213 * we must anyway ensure xfer->state initialization is not re-ordered 1214 * after the .send_message() to be sure that on the RX path an early 1215 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 1216 */ 1217 smp_mb(); 1218 1219 ret = info->desc->ops->send_message(cinfo, xfer); 1220 if (ret < 0) { 1221 dev_dbg(dev, "Failed to send message %d\n", ret); 1222 return ret; 1223 } 1224 1225 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id, 1226 xfer->hdr.id, "CMND", xfer->hdr.seq, 1227 xfer->hdr.status, xfer->tx.buf, xfer->tx.len); 1228 1229 ret = scmi_wait_for_message_response(cinfo, xfer); 1230 if (!ret && xfer->hdr.status) 1231 ret = scmi_to_linux_errno(xfer->hdr.status); 1232 1233 if (info->desc->ops->mark_txdone) 1234 info->desc->ops->mark_txdone(cinfo, ret, xfer); 1235 1236 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 1237 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 1238 1239 return ret; 1240 } 1241 1242 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 1243 struct scmi_xfer *xfer) 1244 { 1245 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1246 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1247 1248 xfer->rx.len = info->desc->max_msg_size; 1249 } 1250 1251 /** 1252 * do_xfer_with_response() - Do one transfer and wait until the delayed 1253 * response is received 1254 * 1255 * @ph: Pointer to SCMI protocol handle 1256 * @xfer: Transfer to initiate and wait for response 1257 * 1258 * Using asynchronous commands in atomic/polling mode should be avoided since 1259 * it could cause long busy-waiting here, so ignore polling for the delayed 1260 * response and WARN if it was requested for this command transaction since 1261 * upper layers should refrain from issuing such kind of requests. 1262 * 1263 * The only other option would have been to refrain from using any asynchronous 1264 * command even if made available, when an atomic transport is detected, and 1265 * instead forcibly use the synchronous version (thing that can be easily 1266 * attained at the protocol layer), but this would also have led to longer 1267 * stalls of the channel for synchronous commands and possibly timeouts. 1268 * (in other words there is usually a good reason if a platform provides an 1269 * asynchronous version of a command and we should prefer to use it...just not 1270 * when using atomic/polling mode) 1271 * 1272 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 1273 * return corresponding error, else if all goes well, return 0. 1274 */ 1275 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 1276 struct scmi_xfer *xfer) 1277 { 1278 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 1279 DECLARE_COMPLETION_ONSTACK(async_response); 1280 1281 xfer->async_done = &async_response; 1282 1283 /* 1284 * Delayed responses should not be polled, so an async command should 1285 * not have been used when requiring an atomic/poll context; WARN and 1286 * perform instead a sleeping wait. 1287 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 1288 */ 1289 WARN_ON_ONCE(xfer->hdr.poll_completion); 1290 1291 ret = do_xfer(ph, xfer); 1292 if (!ret) { 1293 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 1294 dev_err(ph->dev, 1295 "timed out in delayed resp(caller: %pS)\n", 1296 (void *)_RET_IP_); 1297 ret = -ETIMEDOUT; 1298 } else if (xfer->hdr.status) { 1299 ret = scmi_to_linux_errno(xfer->hdr.status); 1300 } 1301 } 1302 1303 xfer->async_done = NULL; 1304 return ret; 1305 } 1306 1307 /** 1308 * xfer_get_init() - Allocate and initialise one message for transmit 1309 * 1310 * @ph: Pointer to SCMI protocol handle 1311 * @msg_id: Message identifier 1312 * @tx_size: transmit message size 1313 * @rx_size: receive message size 1314 * @p: pointer to the allocated and initialised message 1315 * 1316 * This function allocates the message using @scmi_xfer_get and 1317 * initialise the header. 1318 * 1319 * Return: 0 if all went fine with @p pointing to message, else 1320 * corresponding error. 1321 */ 1322 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1323 u8 msg_id, size_t tx_size, size_t rx_size, 1324 struct scmi_xfer **p) 1325 { 1326 int ret; 1327 struct scmi_xfer *xfer; 1328 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1329 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1330 struct scmi_xfers_info *minfo = &info->tx_minfo; 1331 struct device *dev = info->dev; 1332 1333 /* Ensure we have sane transfer sizes */ 1334 if (rx_size > info->desc->max_msg_size || 1335 tx_size > info->desc->max_msg_size) 1336 return -ERANGE; 1337 1338 xfer = scmi_xfer_get(pi->handle, minfo); 1339 if (IS_ERR(xfer)) { 1340 ret = PTR_ERR(xfer); 1341 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1342 return ret; 1343 } 1344 1345 /* Pick a sequence number and register this xfer as in-flight */ 1346 ret = scmi_xfer_pending_set(xfer, minfo); 1347 if (ret) { 1348 dev_err(pi->handle->dev, 1349 "Failed to get monotonic token %d\n", ret); 1350 __scmi_xfer_put(minfo, xfer); 1351 return ret; 1352 } 1353 1354 xfer->tx.len = tx_size; 1355 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1356 xfer->hdr.type = MSG_TYPE_COMMAND; 1357 xfer->hdr.id = msg_id; 1358 xfer->hdr.poll_completion = false; 1359 1360 *p = xfer; 1361 1362 return 0; 1363 } 1364 1365 /** 1366 * version_get() - command to get the revision of the SCMI entity 1367 * 1368 * @ph: Pointer to SCMI protocol handle 1369 * @version: Holds returned version of protocol. 1370 * 1371 * Updates the SCMI information in the internal data structure. 1372 * 1373 * Return: 0 if all went fine, else return appropriate error. 1374 */ 1375 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1376 { 1377 int ret; 1378 __le32 *rev_info; 1379 struct scmi_xfer *t; 1380 1381 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1382 if (ret) 1383 return ret; 1384 1385 ret = do_xfer(ph, t); 1386 if (!ret) { 1387 rev_info = t->rx.buf; 1388 *version = le32_to_cpu(*rev_info); 1389 } 1390 1391 xfer_put(ph, t); 1392 return ret; 1393 } 1394 1395 /** 1396 * scmi_set_protocol_priv - Set protocol specific data at init time 1397 * 1398 * @ph: A reference to the protocol handle. 1399 * @priv: The private data to set. 1400 * 1401 * Return: 0 on Success 1402 */ 1403 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1404 void *priv) 1405 { 1406 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1407 1408 pi->priv = priv; 1409 1410 return 0; 1411 } 1412 1413 /** 1414 * scmi_get_protocol_priv - Set protocol specific data at init time 1415 * 1416 * @ph: A reference to the protocol handle. 1417 * 1418 * Return: Protocol private data if any was set. 1419 */ 1420 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1421 { 1422 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1423 1424 return pi->priv; 1425 } 1426 1427 static const struct scmi_xfer_ops xfer_ops = { 1428 .version_get = version_get, 1429 .xfer_get_init = xfer_get_init, 1430 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1431 .do_xfer = do_xfer, 1432 .do_xfer_with_response = do_xfer_with_response, 1433 .xfer_put = xfer_put, 1434 }; 1435 1436 struct scmi_msg_resp_domain_name_get { 1437 __le32 flags; 1438 u8 name[SCMI_MAX_STR_SIZE]; 1439 }; 1440 1441 /** 1442 * scmi_common_extended_name_get - Common helper to get extended resources name 1443 * @ph: A protocol handle reference. 1444 * @cmd_id: The specific command ID to use. 1445 * @res_id: The specific resource ID to use. 1446 * @name: A pointer to the preallocated area where the retrieved name will be 1447 * stored as a NULL terminated string. 1448 * @len: The len in bytes of the @name char array. 1449 * 1450 * Return: 0 on Succcess 1451 */ 1452 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1453 u8 cmd_id, u32 res_id, char *name, 1454 size_t len) 1455 { 1456 int ret; 1457 struct scmi_xfer *t; 1458 struct scmi_msg_resp_domain_name_get *resp; 1459 1460 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id), 1461 sizeof(*resp), &t); 1462 if (ret) 1463 goto out; 1464 1465 put_unaligned_le32(res_id, t->tx.buf); 1466 resp = t->rx.buf; 1467 1468 ret = ph->xops->do_xfer(ph, t); 1469 if (!ret) 1470 strscpy(name, resp->name, len); 1471 1472 ph->xops->xfer_put(ph, t); 1473 out: 1474 if (ret) 1475 dev_warn(ph->dev, 1476 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1477 res_id, ret, name); 1478 return ret; 1479 } 1480 1481 /** 1482 * struct scmi_iterator - Iterator descriptor 1483 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1484 * a proper custom command payload for each multi-part command request. 1485 * @resp: A reference to the response RX buffer; used by @update_state and 1486 * @process_response to parse the multi-part replies. 1487 * @t: A reference to the underlying xfer initialized and used transparently by 1488 * the iterator internal routines. 1489 * @ph: A reference to the associated protocol handle to be used. 1490 * @ops: A reference to the custom provided iterator operations. 1491 * @state: The current iterator state; used and updated in turn by the iterators 1492 * internal routines and by the caller-provided @scmi_iterator_ops. 1493 * @priv: A reference to optional private data as provided by the caller and 1494 * passed back to the @@scmi_iterator_ops. 1495 */ 1496 struct scmi_iterator { 1497 void *msg; 1498 void *resp; 1499 struct scmi_xfer *t; 1500 const struct scmi_protocol_handle *ph; 1501 struct scmi_iterator_ops *ops; 1502 struct scmi_iterator_state state; 1503 void *priv; 1504 }; 1505 1506 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1507 struct scmi_iterator_ops *ops, 1508 unsigned int max_resources, u8 msg_id, 1509 size_t tx_size, void *priv) 1510 { 1511 int ret; 1512 struct scmi_iterator *i; 1513 1514 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1515 if (!i) 1516 return ERR_PTR(-ENOMEM); 1517 1518 i->ph = ph; 1519 i->ops = ops; 1520 i->priv = priv; 1521 1522 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1523 if (ret) { 1524 devm_kfree(ph->dev, i); 1525 return ERR_PTR(ret); 1526 } 1527 1528 i->state.max_resources = max_resources; 1529 i->msg = i->t->tx.buf; 1530 i->resp = i->t->rx.buf; 1531 1532 return i; 1533 } 1534 1535 static int scmi_iterator_run(void *iter) 1536 { 1537 int ret = -EINVAL; 1538 struct scmi_iterator_ops *iops; 1539 const struct scmi_protocol_handle *ph; 1540 struct scmi_iterator_state *st; 1541 struct scmi_iterator *i = iter; 1542 1543 if (!i || !i->ops || !i->ph) 1544 return ret; 1545 1546 iops = i->ops; 1547 ph = i->ph; 1548 st = &i->state; 1549 1550 do { 1551 iops->prepare_message(i->msg, st->desc_index, i->priv); 1552 ret = ph->xops->do_xfer(ph, i->t); 1553 if (ret) 1554 break; 1555 1556 st->rx_len = i->t->rx.len; 1557 ret = iops->update_state(st, i->resp, i->priv); 1558 if (ret) 1559 break; 1560 1561 if (st->num_returned > st->max_resources - st->desc_index) { 1562 dev_err(ph->dev, 1563 "No. of resources can't exceed %d\n", 1564 st->max_resources); 1565 ret = -EINVAL; 1566 break; 1567 } 1568 1569 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1570 st->loop_idx++) { 1571 ret = iops->process_response(ph, i->resp, st, i->priv); 1572 if (ret) 1573 goto out; 1574 } 1575 1576 st->desc_index += st->num_returned; 1577 ph->xops->reset_rx_to_maxsz(ph, i->t); 1578 /* 1579 * check for both returned and remaining to avoid infinite 1580 * loop due to buggy firmware 1581 */ 1582 } while (st->num_returned && st->num_remaining); 1583 1584 out: 1585 /* Finalize and destroy iterator */ 1586 ph->xops->xfer_put(ph, i->t); 1587 devm_kfree(ph->dev, i); 1588 1589 return ret; 1590 } 1591 1592 struct scmi_msg_get_fc_info { 1593 __le32 domain; 1594 __le32 message_id; 1595 }; 1596 1597 struct scmi_msg_resp_desc_fc { 1598 __le32 attr; 1599 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0)) 1600 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x)) 1601 __le32 rate_limit; 1602 __le32 chan_addr_low; 1603 __le32 chan_addr_high; 1604 __le32 chan_size; 1605 __le32 db_addr_low; 1606 __le32 db_addr_high; 1607 __le32 db_set_lmask; 1608 __le32 db_set_hmask; 1609 __le32 db_preserve_lmask; 1610 __le32 db_preserve_hmask; 1611 }; 1612 1613 static void 1614 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph, 1615 u8 describe_id, u32 message_id, u32 valid_size, 1616 u32 domain, void __iomem **p_addr, 1617 struct scmi_fc_db_info **p_db) 1618 { 1619 int ret; 1620 u32 flags; 1621 u64 phys_addr; 1622 u8 size; 1623 void __iomem *addr; 1624 struct scmi_xfer *t; 1625 struct scmi_fc_db_info *db = NULL; 1626 struct scmi_msg_get_fc_info *info; 1627 struct scmi_msg_resp_desc_fc *resp; 1628 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1629 1630 if (!p_addr) { 1631 ret = -EINVAL; 1632 goto err_out; 1633 } 1634 1635 ret = ph->xops->xfer_get_init(ph, describe_id, 1636 sizeof(*info), sizeof(*resp), &t); 1637 if (ret) 1638 goto err_out; 1639 1640 info = t->tx.buf; 1641 info->domain = cpu_to_le32(domain); 1642 info->message_id = cpu_to_le32(message_id); 1643 1644 /* 1645 * Bail out on error leaving fc_info addresses zeroed; this includes 1646 * the case in which the requested domain/message_id does NOT support 1647 * fastchannels at all. 1648 */ 1649 ret = ph->xops->do_xfer(ph, t); 1650 if (ret) 1651 goto err_xfer; 1652 1653 resp = t->rx.buf; 1654 flags = le32_to_cpu(resp->attr); 1655 size = le32_to_cpu(resp->chan_size); 1656 if (size != valid_size) { 1657 ret = -EINVAL; 1658 goto err_xfer; 1659 } 1660 1661 phys_addr = le32_to_cpu(resp->chan_addr_low); 1662 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32; 1663 addr = devm_ioremap(ph->dev, phys_addr, size); 1664 if (!addr) { 1665 ret = -EADDRNOTAVAIL; 1666 goto err_xfer; 1667 } 1668 1669 *p_addr = addr; 1670 1671 if (p_db && SUPPORTS_DOORBELL(flags)) { 1672 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL); 1673 if (!db) { 1674 ret = -ENOMEM; 1675 goto err_db; 1676 } 1677 1678 size = 1 << DOORBELL_REG_WIDTH(flags); 1679 phys_addr = le32_to_cpu(resp->db_addr_low); 1680 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32; 1681 addr = devm_ioremap(ph->dev, phys_addr, size); 1682 if (!addr) { 1683 ret = -EADDRNOTAVAIL; 1684 goto err_db_mem; 1685 } 1686 1687 db->addr = addr; 1688 db->width = size; 1689 db->set = le32_to_cpu(resp->db_set_lmask); 1690 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32; 1691 db->mask = le32_to_cpu(resp->db_preserve_lmask); 1692 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32; 1693 1694 *p_db = db; 1695 } 1696 1697 ph->xops->xfer_put(ph, t); 1698 1699 dev_dbg(ph->dev, 1700 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n", 1701 pi->proto->id, message_id, domain); 1702 1703 return; 1704 1705 err_db_mem: 1706 devm_kfree(ph->dev, db); 1707 1708 err_db: 1709 *p_addr = NULL; 1710 1711 err_xfer: 1712 ph->xops->xfer_put(ph, t); 1713 1714 err_out: 1715 dev_warn(ph->dev, 1716 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n", 1717 pi->proto->id, message_id, domain, ret); 1718 } 1719 1720 #define SCMI_PROTO_FC_RING_DB(w) \ 1721 do { \ 1722 u##w val = 0; \ 1723 \ 1724 if (db->mask) \ 1725 val = ioread##w(db->addr) & db->mask; \ 1726 iowrite##w((u##w)db->set | val, db->addr); \ 1727 } while (0) 1728 1729 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db) 1730 { 1731 if (!db || !db->addr) 1732 return; 1733 1734 if (db->width == 1) 1735 SCMI_PROTO_FC_RING_DB(8); 1736 else if (db->width == 2) 1737 SCMI_PROTO_FC_RING_DB(16); 1738 else if (db->width == 4) 1739 SCMI_PROTO_FC_RING_DB(32); 1740 else /* db->width == 8 */ 1741 #ifdef CONFIG_64BIT 1742 SCMI_PROTO_FC_RING_DB(64); 1743 #else 1744 { 1745 u64 val = 0; 1746 1747 if (db->mask) 1748 val = ioread64_hi_lo(db->addr) & db->mask; 1749 iowrite64_hi_lo(db->set | val, db->addr); 1750 } 1751 #endif 1752 } 1753 1754 static const struct scmi_proto_helpers_ops helpers_ops = { 1755 .extended_name_get = scmi_common_extended_name_get, 1756 .iter_response_init = scmi_iterator_init, 1757 .iter_response_run = scmi_iterator_run, 1758 .fastchannel_init = scmi_common_fastchannel_init, 1759 .fastchannel_db_ring = scmi_common_fastchannel_db_ring, 1760 }; 1761 1762 /** 1763 * scmi_revision_area_get - Retrieve version memory area. 1764 * 1765 * @ph: A reference to the protocol handle. 1766 * 1767 * A helper to grab the version memory area reference during SCMI Base protocol 1768 * initialization. 1769 * 1770 * Return: A reference to the version memory area associated to the SCMI 1771 * instance underlying this protocol handle. 1772 */ 1773 struct scmi_revision_info * 1774 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1775 { 1776 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1777 1778 return pi->handle->version; 1779 } 1780 1781 /** 1782 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1783 * instance descriptor. 1784 * @info: The reference to the related SCMI instance. 1785 * @proto: The protocol descriptor. 1786 * 1787 * Allocate a new protocol instance descriptor, using the provided @proto 1788 * description, against the specified SCMI instance @info, and initialize it; 1789 * all resources management is handled via a dedicated per-protocol devres 1790 * group. 1791 * 1792 * Context: Assumes to be called with @protocols_mtx already acquired. 1793 * Return: A reference to a freshly allocated and initialized protocol instance 1794 * or ERR_PTR on failure. On failure the @proto reference is at first 1795 * put using @scmi_protocol_put() before releasing all the devres group. 1796 */ 1797 static struct scmi_protocol_instance * 1798 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1799 const struct scmi_protocol *proto) 1800 { 1801 int ret = -ENOMEM; 1802 void *gid; 1803 struct scmi_protocol_instance *pi; 1804 const struct scmi_handle *handle = &info->handle; 1805 1806 /* Protocol specific devres group */ 1807 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1808 if (!gid) { 1809 scmi_protocol_put(proto->id); 1810 goto out; 1811 } 1812 1813 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1814 if (!pi) 1815 goto clean; 1816 1817 pi->gid = gid; 1818 pi->proto = proto; 1819 pi->handle = handle; 1820 pi->ph.dev = handle->dev; 1821 pi->ph.xops = &xfer_ops; 1822 pi->ph.hops = &helpers_ops; 1823 pi->ph.set_priv = scmi_set_protocol_priv; 1824 pi->ph.get_priv = scmi_get_protocol_priv; 1825 refcount_set(&pi->users, 1); 1826 /* proto->init is assured NON NULL by scmi_protocol_register */ 1827 ret = pi->proto->instance_init(&pi->ph); 1828 if (ret) 1829 goto clean; 1830 1831 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1832 GFP_KERNEL); 1833 if (ret != proto->id) 1834 goto clean; 1835 1836 /* 1837 * Warn but ignore events registration errors since we do not want 1838 * to skip whole protocols if their notifications are messed up. 1839 */ 1840 if (pi->proto->events) { 1841 ret = scmi_register_protocol_events(handle, pi->proto->id, 1842 &pi->ph, 1843 pi->proto->events); 1844 if (ret) 1845 dev_warn(handle->dev, 1846 "Protocol:%X - Events Registration Failed - err:%d\n", 1847 pi->proto->id, ret); 1848 } 1849 1850 devres_close_group(handle->dev, pi->gid); 1851 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1852 1853 return pi; 1854 1855 clean: 1856 /* Take care to put the protocol module's owner before releasing all */ 1857 scmi_protocol_put(proto->id); 1858 devres_release_group(handle->dev, gid); 1859 out: 1860 return ERR_PTR(ret); 1861 } 1862 1863 /** 1864 * scmi_get_protocol_instance - Protocol initialization helper. 1865 * @handle: A reference to the SCMI platform instance. 1866 * @protocol_id: The protocol being requested. 1867 * 1868 * In case the required protocol has never been requested before for this 1869 * instance, allocate and initialize all the needed structures while handling 1870 * resource allocation with a dedicated per-protocol devres subgroup. 1871 * 1872 * Return: A reference to an initialized protocol instance or error on failure: 1873 * in particular returns -EPROBE_DEFER when the desired protocol could 1874 * NOT be found. 1875 */ 1876 static struct scmi_protocol_instance * __must_check 1877 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1878 { 1879 struct scmi_protocol_instance *pi; 1880 struct scmi_info *info = handle_to_scmi_info(handle); 1881 1882 mutex_lock(&info->protocols_mtx); 1883 pi = idr_find(&info->protocols, protocol_id); 1884 1885 if (pi) { 1886 refcount_inc(&pi->users); 1887 } else { 1888 const struct scmi_protocol *proto; 1889 1890 /* Fails if protocol not registered on bus */ 1891 proto = scmi_protocol_get(protocol_id); 1892 if (proto) 1893 pi = scmi_alloc_init_protocol_instance(info, proto); 1894 else 1895 pi = ERR_PTR(-EPROBE_DEFER); 1896 } 1897 mutex_unlock(&info->protocols_mtx); 1898 1899 return pi; 1900 } 1901 1902 /** 1903 * scmi_protocol_acquire - Protocol acquire 1904 * @handle: A reference to the SCMI platform instance. 1905 * @protocol_id: The protocol being requested. 1906 * 1907 * Register a new user for the requested protocol on the specified SCMI 1908 * platform instance, possibly triggering its initialization on first user. 1909 * 1910 * Return: 0 if protocol was acquired successfully. 1911 */ 1912 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 1913 { 1914 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 1915 } 1916 1917 /** 1918 * scmi_protocol_release - Protocol de-initialization helper. 1919 * @handle: A reference to the SCMI platform instance. 1920 * @protocol_id: The protocol being requested. 1921 * 1922 * Remove one user for the specified protocol and triggers de-initialization 1923 * and resources de-allocation once the last user has gone. 1924 */ 1925 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 1926 { 1927 struct scmi_info *info = handle_to_scmi_info(handle); 1928 struct scmi_protocol_instance *pi; 1929 1930 mutex_lock(&info->protocols_mtx); 1931 pi = idr_find(&info->protocols, protocol_id); 1932 if (WARN_ON(!pi)) 1933 goto out; 1934 1935 if (refcount_dec_and_test(&pi->users)) { 1936 void *gid = pi->gid; 1937 1938 if (pi->proto->events) 1939 scmi_deregister_protocol_events(handle, protocol_id); 1940 1941 if (pi->proto->instance_deinit) 1942 pi->proto->instance_deinit(&pi->ph); 1943 1944 idr_remove(&info->protocols, protocol_id); 1945 1946 scmi_protocol_put(protocol_id); 1947 1948 devres_release_group(handle->dev, gid); 1949 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 1950 protocol_id); 1951 } 1952 1953 out: 1954 mutex_unlock(&info->protocols_mtx); 1955 } 1956 1957 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 1958 u8 *prot_imp) 1959 { 1960 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1961 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1962 1963 info->protocols_imp = prot_imp; 1964 } 1965 1966 static bool 1967 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 1968 { 1969 int i; 1970 struct scmi_info *info = handle_to_scmi_info(handle); 1971 struct scmi_revision_info *rev = handle->version; 1972 1973 if (!info->protocols_imp) 1974 return false; 1975 1976 for (i = 0; i < rev->num_protocols; i++) 1977 if (info->protocols_imp[i] == prot_id) 1978 return true; 1979 return false; 1980 } 1981 1982 struct scmi_protocol_devres { 1983 const struct scmi_handle *handle; 1984 u8 protocol_id; 1985 }; 1986 1987 static void scmi_devm_release_protocol(struct device *dev, void *res) 1988 { 1989 struct scmi_protocol_devres *dres = res; 1990 1991 scmi_protocol_release(dres->handle, dres->protocol_id); 1992 } 1993 1994 static struct scmi_protocol_instance __must_check * 1995 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id) 1996 { 1997 struct scmi_protocol_instance *pi; 1998 struct scmi_protocol_devres *dres; 1999 2000 dres = devres_alloc(scmi_devm_release_protocol, 2001 sizeof(*dres), GFP_KERNEL); 2002 if (!dres) 2003 return ERR_PTR(-ENOMEM); 2004 2005 pi = scmi_get_protocol_instance(sdev->handle, protocol_id); 2006 if (IS_ERR(pi)) { 2007 devres_free(dres); 2008 return pi; 2009 } 2010 2011 dres->handle = sdev->handle; 2012 dres->protocol_id = protocol_id; 2013 devres_add(&sdev->dev, dres); 2014 2015 return pi; 2016 } 2017 2018 /** 2019 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 2020 * @sdev: A reference to an scmi_device whose embedded struct device is to 2021 * be used for devres accounting. 2022 * @protocol_id: The protocol being requested. 2023 * @ph: A pointer reference used to pass back the associated protocol handle. 2024 * 2025 * Get hold of a protocol accounting for its usage, eventually triggering its 2026 * initialization, and returning the protocol specific operations and related 2027 * protocol handle which will be used as first argument in most of the 2028 * protocols operations methods. 2029 * Being a devres based managed method, protocol hold will be automatically 2030 * released, and possibly de-initialized on last user, once the SCMI driver 2031 * owning the scmi_device is unbound from it. 2032 * 2033 * Return: A reference to the requested protocol operations or error. 2034 * Must be checked for errors by caller. 2035 */ 2036 static const void __must_check * 2037 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 2038 struct scmi_protocol_handle **ph) 2039 { 2040 struct scmi_protocol_instance *pi; 2041 2042 if (!ph) 2043 return ERR_PTR(-EINVAL); 2044 2045 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2046 if (IS_ERR(pi)) 2047 return pi; 2048 2049 *ph = &pi->ph; 2050 2051 return pi->proto->ops; 2052 } 2053 2054 /** 2055 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol 2056 * @sdev: A reference to an scmi_device whose embedded struct device is to 2057 * be used for devres accounting. 2058 * @protocol_id: The protocol being requested. 2059 * 2060 * Get hold of a protocol accounting for its usage, possibly triggering its 2061 * initialization but without getting access to its protocol specific operations 2062 * and handle. 2063 * 2064 * Being a devres based managed method, protocol hold will be automatically 2065 * released, and possibly de-initialized on last user, once the SCMI driver 2066 * owning the scmi_device is unbound from it. 2067 * 2068 * Return: 0 on SUCCESS 2069 */ 2070 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev, 2071 u8 protocol_id) 2072 { 2073 struct scmi_protocol_instance *pi; 2074 2075 pi = scmi_devres_protocol_instance_get(sdev, protocol_id); 2076 if (IS_ERR(pi)) 2077 return PTR_ERR(pi); 2078 2079 return 0; 2080 } 2081 2082 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 2083 { 2084 struct scmi_protocol_devres *dres = res; 2085 2086 if (WARN_ON(!dres || !data)) 2087 return 0; 2088 2089 return dres->protocol_id == *((u8 *)data); 2090 } 2091 2092 /** 2093 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 2094 * @sdev: A reference to an scmi_device whose embedded struct device is to 2095 * be used for devres accounting. 2096 * @protocol_id: The protocol being requested. 2097 * 2098 * Explicitly release a protocol hold previously obtained calling the above 2099 * @scmi_devm_protocol_get. 2100 */ 2101 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 2102 { 2103 int ret; 2104 2105 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 2106 scmi_devm_protocol_match, &protocol_id); 2107 WARN_ON(ret); 2108 } 2109 2110 /** 2111 * scmi_is_transport_atomic - Method to check if underlying transport for an 2112 * SCMI instance is configured as atomic. 2113 * 2114 * @handle: A reference to the SCMI platform instance. 2115 * @atomic_threshold: An optional return value for the system wide currently 2116 * configured threshold for atomic operations. 2117 * 2118 * Return: True if transport is configured as atomic 2119 */ 2120 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 2121 unsigned int *atomic_threshold) 2122 { 2123 bool ret; 2124 struct scmi_info *info = handle_to_scmi_info(handle); 2125 2126 ret = info->desc->atomic_enabled && 2127 is_transport_polling_capable(info->desc); 2128 if (ret && atomic_threshold) 2129 *atomic_threshold = info->atomic_threshold; 2130 2131 return ret; 2132 } 2133 2134 /** 2135 * scmi_handle_get() - Get the SCMI handle for a device 2136 * 2137 * @dev: pointer to device for which we want SCMI handle 2138 * 2139 * NOTE: The function does not track individual clients of the framework 2140 * and is expected to be maintained by caller of SCMI protocol library. 2141 * scmi_handle_put must be balanced with successful scmi_handle_get 2142 * 2143 * Return: pointer to handle if successful, NULL on error 2144 */ 2145 static struct scmi_handle *scmi_handle_get(struct device *dev) 2146 { 2147 struct list_head *p; 2148 struct scmi_info *info; 2149 struct scmi_handle *handle = NULL; 2150 2151 mutex_lock(&scmi_list_mutex); 2152 list_for_each(p, &scmi_list) { 2153 info = list_entry(p, struct scmi_info, node); 2154 if (dev->parent == info->dev) { 2155 info->users++; 2156 handle = &info->handle; 2157 break; 2158 } 2159 } 2160 mutex_unlock(&scmi_list_mutex); 2161 2162 return handle; 2163 } 2164 2165 /** 2166 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 2167 * 2168 * @handle: handle acquired by scmi_handle_get 2169 * 2170 * NOTE: The function does not track individual clients of the framework 2171 * and is expected to be maintained by caller of SCMI protocol library. 2172 * scmi_handle_put must be balanced with successful scmi_handle_get 2173 * 2174 * Return: 0 is successfully released 2175 * if null was passed, it returns -EINVAL; 2176 */ 2177 static int scmi_handle_put(const struct scmi_handle *handle) 2178 { 2179 struct scmi_info *info; 2180 2181 if (!handle) 2182 return -EINVAL; 2183 2184 info = handle_to_scmi_info(handle); 2185 mutex_lock(&scmi_list_mutex); 2186 if (!WARN_ON(!info->users)) 2187 info->users--; 2188 mutex_unlock(&scmi_list_mutex); 2189 2190 return 0; 2191 } 2192 2193 static void scmi_device_link_add(struct device *consumer, 2194 struct device *supplier) 2195 { 2196 struct device_link *link; 2197 2198 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER); 2199 2200 WARN_ON(!link); 2201 } 2202 2203 static void scmi_set_handle(struct scmi_device *scmi_dev) 2204 { 2205 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev); 2206 if (scmi_dev->handle) 2207 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev); 2208 } 2209 2210 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 2211 struct scmi_xfers_info *info) 2212 { 2213 int i; 2214 struct scmi_xfer *xfer; 2215 struct device *dev = sinfo->dev; 2216 const struct scmi_desc *desc = sinfo->desc; 2217 2218 /* Pre-allocated messages, no more than what hdr.seq can support */ 2219 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 2220 dev_err(dev, 2221 "Invalid maximum messages %d, not in range [1 - %lu]\n", 2222 info->max_msg, MSG_TOKEN_MAX); 2223 return -EINVAL; 2224 } 2225 2226 hash_init(info->pending_xfers); 2227 2228 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 2229 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX, 2230 GFP_KERNEL); 2231 if (!info->xfer_alloc_table) 2232 return -ENOMEM; 2233 2234 /* 2235 * Preallocate a number of xfers equal to max inflight messages, 2236 * pre-initialize the buffer pointer to pre-allocated buffers and 2237 * attach all of them to the free list 2238 */ 2239 INIT_HLIST_HEAD(&info->free_xfers); 2240 for (i = 0; i < info->max_msg; i++) { 2241 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 2242 if (!xfer) 2243 return -ENOMEM; 2244 2245 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 2246 GFP_KERNEL); 2247 if (!xfer->rx.buf) 2248 return -ENOMEM; 2249 2250 xfer->tx.buf = xfer->rx.buf; 2251 init_completion(&xfer->done); 2252 spin_lock_init(&xfer->lock); 2253 2254 /* Add initialized xfer to the free list */ 2255 hlist_add_head(&xfer->node, &info->free_xfers); 2256 } 2257 2258 spin_lock_init(&info->xfer_lock); 2259 2260 return 0; 2261 } 2262 2263 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 2264 { 2265 const struct scmi_desc *desc = sinfo->desc; 2266 2267 if (!desc->ops->get_max_msg) { 2268 sinfo->tx_minfo.max_msg = desc->max_msg; 2269 sinfo->rx_minfo.max_msg = desc->max_msg; 2270 } else { 2271 struct scmi_chan_info *base_cinfo; 2272 2273 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 2274 if (!base_cinfo) 2275 return -EINVAL; 2276 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 2277 2278 /* RX channel is optional so can be skipped */ 2279 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 2280 if (base_cinfo) 2281 sinfo->rx_minfo.max_msg = 2282 desc->ops->get_max_msg(base_cinfo); 2283 } 2284 2285 return 0; 2286 } 2287 2288 static int scmi_xfer_info_init(struct scmi_info *sinfo) 2289 { 2290 int ret; 2291 2292 ret = scmi_channels_max_msg_configure(sinfo); 2293 if (ret) 2294 return ret; 2295 2296 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 2297 if (!ret && !idr_is_empty(&sinfo->rx_idr)) 2298 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 2299 2300 return ret; 2301 } 2302 2303 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node, 2304 int prot_id, bool tx) 2305 { 2306 int ret, idx; 2307 char name[32]; 2308 struct scmi_chan_info *cinfo; 2309 struct idr *idr; 2310 struct scmi_device *tdev = NULL; 2311 2312 /* Transmit channel is first entry i.e. index 0 */ 2313 idx = tx ? 0 : 1; 2314 idr = tx ? &info->tx_idr : &info->rx_idr; 2315 2316 if (!info->desc->ops->chan_available(of_node, idx)) { 2317 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 2318 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 2319 return -EINVAL; 2320 goto idr_alloc; 2321 } 2322 2323 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 2324 if (!cinfo) 2325 return -ENOMEM; 2326 2327 cinfo->is_p2a = !tx; 2328 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms; 2329 2330 /* Create a unique name for this transport device */ 2331 snprintf(name, 32, "__scmi_transport_device_%s_%02X", 2332 idx ? "rx" : "tx", prot_id); 2333 /* Create a uniquely named, dedicated transport device for this chan */ 2334 tdev = scmi_device_create(of_node, info->dev, prot_id, name); 2335 if (!tdev) { 2336 dev_err(info->dev, 2337 "failed to create transport device (%s)\n", name); 2338 devm_kfree(info->dev, cinfo); 2339 return -EINVAL; 2340 } 2341 of_node_get(of_node); 2342 2343 cinfo->id = prot_id; 2344 cinfo->dev = &tdev->dev; 2345 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 2346 if (ret) { 2347 of_node_put(of_node); 2348 scmi_device_destroy(info->dev, prot_id, name); 2349 devm_kfree(info->dev, cinfo); 2350 return ret; 2351 } 2352 2353 if (tx && is_polling_required(cinfo, info->desc)) { 2354 if (is_transport_polling_capable(info->desc)) 2355 dev_info(&tdev->dev, 2356 "Enabled polling mode TX channel - prot_id:%d\n", 2357 prot_id); 2358 else 2359 dev_warn(&tdev->dev, 2360 "Polling mode NOT supported by transport.\n"); 2361 } 2362 2363 idr_alloc: 2364 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 2365 if (ret != prot_id) { 2366 dev_err(info->dev, 2367 "unable to allocate SCMI idr slot err %d\n", ret); 2368 /* Destroy channel and device only if created by this call. */ 2369 if (tdev) { 2370 of_node_put(of_node); 2371 scmi_device_destroy(info->dev, prot_id, name); 2372 devm_kfree(info->dev, cinfo); 2373 } 2374 return ret; 2375 } 2376 2377 cinfo->handle = &info->handle; 2378 return 0; 2379 } 2380 2381 static inline int 2382 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node, 2383 int prot_id) 2384 { 2385 int ret = scmi_chan_setup(info, of_node, prot_id, true); 2386 2387 if (!ret) { 2388 /* Rx is optional, report only memory errors */ 2389 ret = scmi_chan_setup(info, of_node, prot_id, false); 2390 if (ret && ret != -ENOMEM) 2391 ret = 0; 2392 } 2393 2394 return ret; 2395 } 2396 2397 /** 2398 * scmi_channels_setup - Helper to initialize all required channels 2399 * 2400 * @info: The SCMI instance descriptor. 2401 * 2402 * Initialize all the channels found described in the DT against the underlying 2403 * configured transport using custom defined dedicated devices instead of 2404 * borrowing devices from the SCMI drivers; this way channels are initialized 2405 * upfront during core SCMI stack probing and are no more coupled with SCMI 2406 * devices used by SCMI drivers. 2407 * 2408 * Note that, even though a pair of TX/RX channels is associated to each 2409 * protocol defined in the DT, a distinct freshly initialized channel is 2410 * created only if the DT node for the protocol at hand describes a dedicated 2411 * channel: in all the other cases the common BASE protocol channel is reused. 2412 * 2413 * Return: 0 on Success 2414 */ 2415 static int scmi_channels_setup(struct scmi_info *info) 2416 { 2417 int ret; 2418 struct device_node *child, *top_np = info->dev->of_node; 2419 2420 /* Initialize a common generic channel at first */ 2421 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE); 2422 if (ret) 2423 return ret; 2424 2425 for_each_available_child_of_node(top_np, child) { 2426 u32 prot_id; 2427 2428 if (of_property_read_u32(child, "reg", &prot_id)) 2429 continue; 2430 2431 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2432 dev_err(info->dev, 2433 "Out of range protocol %d\n", prot_id); 2434 2435 ret = scmi_txrx_setup(info, child, prot_id); 2436 if (ret) { 2437 of_node_put(child); 2438 return ret; 2439 } 2440 } 2441 2442 return 0; 2443 } 2444 2445 static int scmi_chan_destroy(int id, void *p, void *idr) 2446 { 2447 struct scmi_chan_info *cinfo = p; 2448 2449 if (cinfo->dev) { 2450 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 2451 struct scmi_device *sdev = to_scmi_dev(cinfo->dev); 2452 2453 of_node_put(cinfo->dev->of_node); 2454 scmi_device_destroy(info->dev, id, sdev->name); 2455 cinfo->dev = NULL; 2456 } 2457 2458 idr_remove(idr, id); 2459 2460 return 0; 2461 } 2462 2463 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr) 2464 { 2465 /* At first free all channels at the transport layer ... */ 2466 idr_for_each(idr, info->desc->ops->chan_free, idr); 2467 2468 /* ...then destroy all underlying devices */ 2469 idr_for_each(idr, scmi_chan_destroy, idr); 2470 2471 idr_destroy(idr); 2472 } 2473 2474 static void scmi_cleanup_txrx_channels(struct scmi_info *info) 2475 { 2476 scmi_cleanup_channels(info, &info->tx_idr); 2477 2478 scmi_cleanup_channels(info, &info->rx_idr); 2479 } 2480 2481 static int scmi_bus_notifier(struct notifier_block *nb, 2482 unsigned long action, void *data) 2483 { 2484 struct scmi_info *info = bus_nb_to_scmi_info(nb); 2485 struct scmi_device *sdev = to_scmi_dev(data); 2486 2487 /* Skip transport devices and devices of different SCMI instances */ 2488 if (!strncmp(sdev->name, "__scmi_transport_device", 23) || 2489 sdev->dev.parent != info->dev) 2490 return NOTIFY_DONE; 2491 2492 switch (action) { 2493 case BUS_NOTIFY_BIND_DRIVER: 2494 /* setup handle now as the transport is ready */ 2495 scmi_set_handle(sdev); 2496 break; 2497 case BUS_NOTIFY_UNBOUND_DRIVER: 2498 scmi_handle_put(sdev->handle); 2499 sdev->handle = NULL; 2500 break; 2501 default: 2502 return NOTIFY_DONE; 2503 } 2504 2505 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev), 2506 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ? 2507 "about to be BOUND." : "UNBOUND."); 2508 2509 return NOTIFY_OK; 2510 } 2511 2512 static int scmi_device_request_notifier(struct notifier_block *nb, 2513 unsigned long action, void *data) 2514 { 2515 struct device_node *np; 2516 struct scmi_device_id *id_table = data; 2517 struct scmi_info *info = req_nb_to_scmi_info(nb); 2518 2519 np = idr_find(&info->active_protocols, id_table->protocol_id); 2520 if (!np) 2521 return NOTIFY_DONE; 2522 2523 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n", 2524 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-", 2525 id_table->name, id_table->protocol_id); 2526 2527 switch (action) { 2528 case SCMI_BUS_NOTIFY_DEVICE_REQUEST: 2529 scmi_create_protocol_devices(np, info, id_table->protocol_id, 2530 id_table->name); 2531 break; 2532 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST: 2533 scmi_destroy_protocol_devices(info, id_table->protocol_id, 2534 id_table->name); 2535 break; 2536 default: 2537 return NOTIFY_DONE; 2538 } 2539 2540 return NOTIFY_OK; 2541 } 2542 2543 static void scmi_debugfs_common_cleanup(void *d) 2544 { 2545 struct scmi_debug_info *dbg = d; 2546 2547 if (!dbg) 2548 return; 2549 2550 debugfs_remove_recursive(dbg->top_dentry); 2551 kfree(dbg->name); 2552 kfree(dbg->type); 2553 } 2554 2555 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info) 2556 { 2557 char top_dir[16]; 2558 struct dentry *trans, *top_dentry; 2559 struct scmi_debug_info *dbg; 2560 const char *c_ptr = NULL; 2561 2562 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL); 2563 if (!dbg) 2564 return NULL; 2565 2566 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL); 2567 if (!dbg->name) { 2568 devm_kfree(info->dev, dbg); 2569 return NULL; 2570 } 2571 2572 of_property_read_string(info->dev->of_node, "compatible", &c_ptr); 2573 dbg->type = kstrdup(c_ptr, GFP_KERNEL); 2574 if (!dbg->type) { 2575 kfree(dbg->name); 2576 devm_kfree(info->dev, dbg); 2577 return NULL; 2578 } 2579 2580 snprintf(top_dir, 16, "%d", info->id); 2581 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry); 2582 trans = debugfs_create_dir("transport", top_dentry); 2583 2584 dbg->is_atomic = info->desc->atomic_enabled && 2585 is_transport_polling_capable(info->desc); 2586 2587 debugfs_create_str("instance_name", 0400, top_dentry, 2588 (char **)&dbg->name); 2589 2590 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry, 2591 &info->atomic_threshold); 2592 2593 debugfs_create_str("type", 0400, trans, (char **)&dbg->type); 2594 2595 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic); 2596 2597 debugfs_create_u32("max_rx_timeout_ms", 0400, trans, 2598 (u32 *)&info->desc->max_rx_timeout_ms); 2599 2600 debugfs_create_u32("max_msg_size", 0400, trans, 2601 (u32 *)&info->desc->max_msg_size); 2602 2603 debugfs_create_u32("tx_max_msg", 0400, trans, 2604 (u32 *)&info->tx_minfo.max_msg); 2605 2606 debugfs_create_u32("rx_max_msg", 0400, trans, 2607 (u32 *)&info->rx_minfo.max_msg); 2608 2609 dbg->top_dentry = top_dentry; 2610 2611 if (devm_add_action_or_reset(info->dev, 2612 scmi_debugfs_common_cleanup, dbg)) 2613 return NULL; 2614 2615 return dbg; 2616 } 2617 2618 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info) 2619 { 2620 int id, num_chans = 0, ret = 0; 2621 struct scmi_chan_info *cinfo; 2622 u8 channels[SCMI_MAX_CHANNELS] = {}; 2623 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {}; 2624 2625 if (!info->dbg) 2626 return -EINVAL; 2627 2628 /* Enumerate all channels to collect their ids */ 2629 idr_for_each_entry(&info->tx_idr, cinfo, id) { 2630 /* 2631 * Cannot happen, but be defensive. 2632 * Zero as num_chans is ok, warn and carry on. 2633 */ 2634 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) { 2635 dev_warn(info->dev, 2636 "SCMI RAW - Error enumerating channels\n"); 2637 break; 2638 } 2639 2640 if (!test_bit(cinfo->id, protos)) { 2641 channels[num_chans++] = cinfo->id; 2642 set_bit(cinfo->id, protos); 2643 } 2644 } 2645 2646 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry, 2647 info->id, channels, num_chans, 2648 info->desc, info->tx_minfo.max_msg); 2649 if (IS_ERR(info->raw)) { 2650 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n"); 2651 ret = PTR_ERR(info->raw); 2652 info->raw = NULL; 2653 } 2654 2655 return ret; 2656 } 2657 2658 static int scmi_probe(struct platform_device *pdev) 2659 { 2660 int ret; 2661 struct scmi_handle *handle; 2662 const struct scmi_desc *desc; 2663 struct scmi_info *info; 2664 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX); 2665 struct device *dev = &pdev->dev; 2666 struct device_node *child, *np = dev->of_node; 2667 2668 desc = of_device_get_match_data(dev); 2669 if (!desc) 2670 return -EINVAL; 2671 2672 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2673 if (!info) 2674 return -ENOMEM; 2675 2676 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL); 2677 if (info->id < 0) 2678 return info->id; 2679 2680 info->dev = dev; 2681 info->desc = desc; 2682 info->bus_nb.notifier_call = scmi_bus_notifier; 2683 info->dev_req_nb.notifier_call = scmi_device_request_notifier; 2684 INIT_LIST_HEAD(&info->node); 2685 idr_init(&info->protocols); 2686 mutex_init(&info->protocols_mtx); 2687 idr_init(&info->active_protocols); 2688 mutex_init(&info->devreq_mtx); 2689 2690 platform_set_drvdata(pdev, info); 2691 idr_init(&info->tx_idr); 2692 idr_init(&info->rx_idr); 2693 2694 handle = &info->handle; 2695 handle->dev = info->dev; 2696 handle->version = &info->version; 2697 handle->devm_protocol_acquire = scmi_devm_protocol_acquire; 2698 handle->devm_protocol_get = scmi_devm_protocol_get; 2699 handle->devm_protocol_put = scmi_devm_protocol_put; 2700 2701 /* System wide atomic threshold for atomic ops .. if any */ 2702 if (!of_property_read_u32(np, "atomic-threshold-us", 2703 &info->atomic_threshold)) 2704 dev_info(dev, 2705 "SCMI System wide atomic threshold set to %d us\n", 2706 info->atomic_threshold); 2707 handle->is_transport_atomic = scmi_is_transport_atomic; 2708 2709 if (desc->ops->link_supplier) { 2710 ret = desc->ops->link_supplier(dev); 2711 if (ret) 2712 goto clear_ida; 2713 } 2714 2715 /* Setup all channels described in the DT at first */ 2716 ret = scmi_channels_setup(info); 2717 if (ret) 2718 goto clear_ida; 2719 2720 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb); 2721 if (ret) 2722 goto clear_txrx_setup; 2723 2724 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh, 2725 &info->dev_req_nb); 2726 if (ret) 2727 goto clear_bus_notifier; 2728 2729 ret = scmi_xfer_info_init(info); 2730 if (ret) 2731 goto clear_dev_req_notifier; 2732 2733 if (scmi_top_dentry) { 2734 info->dbg = scmi_debugfs_common_setup(info); 2735 if (!info->dbg) 2736 dev_warn(dev, "Failed to setup SCMI debugfs.\n"); 2737 2738 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) { 2739 ret = scmi_debugfs_raw_mode_setup(info); 2740 if (!coex) { 2741 if (ret) 2742 goto clear_dev_req_notifier; 2743 2744 /* Bail out anyway when coex disabled. */ 2745 return 0; 2746 } 2747 2748 /* Coex enabled, carry on in any case. */ 2749 dev_info(dev, "SCMI RAW Mode COEX enabled !\n"); 2750 } 2751 } 2752 2753 if (scmi_notification_init(handle)) 2754 dev_err(dev, "SCMI Notifications NOT available.\n"); 2755 2756 if (info->desc->atomic_enabled && 2757 !is_transport_polling_capable(info->desc)) 2758 dev_err(dev, 2759 "Transport is not polling capable. Atomic mode not supported.\n"); 2760 2761 /* 2762 * Trigger SCMI Base protocol initialization. 2763 * It's mandatory and won't be ever released/deinit until the 2764 * SCMI stack is shutdown/unloaded as a whole. 2765 */ 2766 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 2767 if (ret) { 2768 dev_err(dev, "unable to communicate with SCMI\n"); 2769 if (coex) 2770 return 0; 2771 goto notification_exit; 2772 } 2773 2774 mutex_lock(&scmi_list_mutex); 2775 list_add_tail(&info->node, &scmi_list); 2776 mutex_unlock(&scmi_list_mutex); 2777 2778 for_each_available_child_of_node(np, child) { 2779 u32 prot_id; 2780 2781 if (of_property_read_u32(child, "reg", &prot_id)) 2782 continue; 2783 2784 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2785 dev_err(dev, "Out of range protocol %d\n", prot_id); 2786 2787 if (!scmi_is_protocol_implemented(handle, prot_id)) { 2788 dev_err(dev, "SCMI protocol %d not implemented\n", 2789 prot_id); 2790 continue; 2791 } 2792 2793 /* 2794 * Save this valid DT protocol descriptor amongst 2795 * @active_protocols for this SCMI instance/ 2796 */ 2797 ret = idr_alloc(&info->active_protocols, child, 2798 prot_id, prot_id + 1, GFP_KERNEL); 2799 if (ret != prot_id) { 2800 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 2801 prot_id); 2802 continue; 2803 } 2804 2805 of_node_get(child); 2806 scmi_create_protocol_devices(child, info, prot_id, NULL); 2807 } 2808 2809 return 0; 2810 2811 notification_exit: 2812 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 2813 scmi_raw_mode_cleanup(info->raw); 2814 scmi_notification_exit(&info->handle); 2815 clear_dev_req_notifier: 2816 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 2817 &info->dev_req_nb); 2818 clear_bus_notifier: 2819 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 2820 clear_txrx_setup: 2821 scmi_cleanup_txrx_channels(info); 2822 clear_ida: 2823 ida_free(&scmi_id, info->id); 2824 return ret; 2825 } 2826 2827 static int scmi_remove(struct platform_device *pdev) 2828 { 2829 int id; 2830 struct scmi_info *info = platform_get_drvdata(pdev); 2831 struct device_node *child; 2832 2833 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) 2834 scmi_raw_mode_cleanup(info->raw); 2835 2836 mutex_lock(&scmi_list_mutex); 2837 if (info->users) 2838 dev_warn(&pdev->dev, 2839 "Still active SCMI users will be forcibly unbound.\n"); 2840 list_del(&info->node); 2841 mutex_unlock(&scmi_list_mutex); 2842 2843 scmi_notification_exit(&info->handle); 2844 2845 mutex_lock(&info->protocols_mtx); 2846 idr_destroy(&info->protocols); 2847 mutex_unlock(&info->protocols_mtx); 2848 2849 idr_for_each_entry(&info->active_protocols, child, id) 2850 of_node_put(child); 2851 idr_destroy(&info->active_protocols); 2852 2853 blocking_notifier_chain_unregister(&scmi_requested_devices_nh, 2854 &info->dev_req_nb); 2855 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb); 2856 2857 /* Safe to free channels since no more users */ 2858 scmi_cleanup_txrx_channels(info); 2859 2860 ida_free(&scmi_id, info->id); 2861 2862 return 0; 2863 } 2864 2865 static ssize_t protocol_version_show(struct device *dev, 2866 struct device_attribute *attr, char *buf) 2867 { 2868 struct scmi_info *info = dev_get_drvdata(dev); 2869 2870 return sprintf(buf, "%u.%u\n", info->version.major_ver, 2871 info->version.minor_ver); 2872 } 2873 static DEVICE_ATTR_RO(protocol_version); 2874 2875 static ssize_t firmware_version_show(struct device *dev, 2876 struct device_attribute *attr, char *buf) 2877 { 2878 struct scmi_info *info = dev_get_drvdata(dev); 2879 2880 return sprintf(buf, "0x%x\n", info->version.impl_ver); 2881 } 2882 static DEVICE_ATTR_RO(firmware_version); 2883 2884 static ssize_t vendor_id_show(struct device *dev, 2885 struct device_attribute *attr, char *buf) 2886 { 2887 struct scmi_info *info = dev_get_drvdata(dev); 2888 2889 return sprintf(buf, "%s\n", info->version.vendor_id); 2890 } 2891 static DEVICE_ATTR_RO(vendor_id); 2892 2893 static ssize_t sub_vendor_id_show(struct device *dev, 2894 struct device_attribute *attr, char *buf) 2895 { 2896 struct scmi_info *info = dev_get_drvdata(dev); 2897 2898 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 2899 } 2900 static DEVICE_ATTR_RO(sub_vendor_id); 2901 2902 static struct attribute *versions_attrs[] = { 2903 &dev_attr_firmware_version.attr, 2904 &dev_attr_protocol_version.attr, 2905 &dev_attr_vendor_id.attr, 2906 &dev_attr_sub_vendor_id.attr, 2907 NULL, 2908 }; 2909 ATTRIBUTE_GROUPS(versions); 2910 2911 /* Each compatible listed below must have descriptor associated with it */ 2912 static const struct of_device_id scmi_of_match[] = { 2913 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 2914 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 2915 #endif 2916 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 2917 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 2918 #endif 2919 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 2920 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 2921 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc}, 2922 #endif 2923 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 2924 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 2925 #endif 2926 { /* Sentinel */ }, 2927 }; 2928 2929 MODULE_DEVICE_TABLE(of, scmi_of_match); 2930 2931 static struct platform_driver scmi_driver = { 2932 .driver = { 2933 .name = "arm-scmi", 2934 .suppress_bind_attrs = true, 2935 .of_match_table = scmi_of_match, 2936 .dev_groups = versions_groups, 2937 }, 2938 .probe = scmi_probe, 2939 .remove = scmi_remove, 2940 }; 2941 2942 /** 2943 * __scmi_transports_setup - Common helper to call transport-specific 2944 * .init/.exit code if provided. 2945 * 2946 * @init: A flag to distinguish between init and exit. 2947 * 2948 * Note that, if provided, we invoke .init/.exit functions for all the 2949 * transports currently compiled in. 2950 * 2951 * Return: 0 on Success. 2952 */ 2953 static inline int __scmi_transports_setup(bool init) 2954 { 2955 int ret = 0; 2956 const struct of_device_id *trans; 2957 2958 for (trans = scmi_of_match; trans->data; trans++) { 2959 const struct scmi_desc *tdesc = trans->data; 2960 2961 if ((init && !tdesc->transport_init) || 2962 (!init && !tdesc->transport_exit)) 2963 continue; 2964 2965 if (init) 2966 ret = tdesc->transport_init(); 2967 else 2968 tdesc->transport_exit(); 2969 2970 if (ret) { 2971 pr_err("SCMI transport %s FAILED initialization!\n", 2972 trans->compatible); 2973 break; 2974 } 2975 } 2976 2977 return ret; 2978 } 2979 2980 static int __init scmi_transports_init(void) 2981 { 2982 return __scmi_transports_setup(true); 2983 } 2984 2985 static void __exit scmi_transports_exit(void) 2986 { 2987 __scmi_transports_setup(false); 2988 } 2989 2990 static struct dentry *scmi_debugfs_init(void) 2991 { 2992 struct dentry *d; 2993 2994 d = debugfs_create_dir("scmi", NULL); 2995 if (IS_ERR(d)) { 2996 pr_err("Could NOT create SCMI top dentry.\n"); 2997 return NULL; 2998 } 2999 3000 return d; 3001 } 3002 3003 static int __init scmi_driver_init(void) 3004 { 3005 int ret; 3006 3007 /* Bail out if no SCMI transport was configured */ 3008 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 3009 return -EINVAL; 3010 3011 /* Initialize any compiled-in transport which provided an init/exit */ 3012 ret = scmi_transports_init(); 3013 if (ret) 3014 return ret; 3015 3016 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS)) 3017 scmi_top_dentry = scmi_debugfs_init(); 3018 3019 scmi_base_register(); 3020 3021 scmi_clock_register(); 3022 scmi_perf_register(); 3023 scmi_power_register(); 3024 scmi_reset_register(); 3025 scmi_sensors_register(); 3026 scmi_voltage_register(); 3027 scmi_system_register(); 3028 scmi_powercap_register(); 3029 3030 return platform_driver_register(&scmi_driver); 3031 } 3032 module_init(scmi_driver_init); 3033 3034 static void __exit scmi_driver_exit(void) 3035 { 3036 scmi_base_unregister(); 3037 3038 scmi_clock_unregister(); 3039 scmi_perf_unregister(); 3040 scmi_power_unregister(); 3041 scmi_reset_unregister(); 3042 scmi_sensors_unregister(); 3043 scmi_voltage_unregister(); 3044 scmi_system_unregister(); 3045 scmi_powercap_unregister(); 3046 3047 scmi_transports_exit(); 3048 3049 platform_driver_unregister(&scmi_driver); 3050 3051 debugfs_remove_recursive(scmi_top_dentry); 3052 } 3053 module_exit(scmi_driver_exit); 3054 3055 MODULE_ALIAS("platform:arm-scmi"); 3056 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 3057 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 3058 MODULE_LICENSE("GPL v2"); 3059