1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/device.h> 19 #include <linux/export.h> 20 #include <linux/idr.h> 21 #include <linux/io.h> 22 #include <linux/kernel.h> 23 #include <linux/ktime.h> 24 #include <linux/hashtable.h> 25 #include <linux/list.h> 26 #include <linux/module.h> 27 #include <linux/of_address.h> 28 #include <linux/of_device.h> 29 #include <linux/processor.h> 30 #include <linux/refcount.h> 31 #include <linux/slab.h> 32 33 #include "common.h" 34 #include "notify.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/scmi.h> 38 39 enum scmi_error_codes { 40 SCMI_SUCCESS = 0, /* Success */ 41 SCMI_ERR_SUPPORT = -1, /* Not supported */ 42 SCMI_ERR_PARAMS = -2, /* Invalid Parameters */ 43 SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */ 44 SCMI_ERR_ENTRY = -4, /* Not found */ 45 SCMI_ERR_RANGE = -5, /* Value out of range */ 46 SCMI_ERR_BUSY = -6, /* Device busy */ 47 SCMI_ERR_COMMS = -7, /* Communication Error */ 48 SCMI_ERR_GENERIC = -8, /* Generic Error */ 49 SCMI_ERR_HARDWARE = -9, /* Hardware Error */ 50 SCMI_ERR_PROTOCOL = -10,/* Protocol Error */ 51 }; 52 53 /* List of all SCMI devices active in system */ 54 static LIST_HEAD(scmi_list); 55 /* Protection for the entire list */ 56 static DEFINE_MUTEX(scmi_list_mutex); 57 /* Track the unique id for the transfers for debug & profiling purpose */ 58 static atomic_t transfer_last_id; 59 60 static DEFINE_IDR(scmi_requested_devices); 61 static DEFINE_MUTEX(scmi_requested_devices_mtx); 62 63 struct scmi_requested_dev { 64 const struct scmi_device_id *id_table; 65 struct list_head node; 66 }; 67 68 /** 69 * struct scmi_xfers_info - Structure to manage transfer information 70 * 71 * @xfer_alloc_table: Bitmap table for allocated messages. 72 * Index of this bitmap table is also used for message 73 * sequence identifier. 74 * @xfer_lock: Protection for message allocation 75 * @max_msg: Maximum number of messages that can be pending 76 * @free_xfers: A free list for available to use xfers. It is initialized with 77 * a number of xfers equal to the maximum allowed in-flight 78 * messages. 79 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 80 * currently in-flight messages. 81 */ 82 struct scmi_xfers_info { 83 unsigned long *xfer_alloc_table; 84 spinlock_t xfer_lock; 85 int max_msg; 86 struct hlist_head free_xfers; 87 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 88 }; 89 90 /** 91 * struct scmi_protocol_instance - Describe an initialized protocol instance. 92 * @handle: Reference to the SCMI handle associated to this protocol instance. 93 * @proto: A reference to the protocol descriptor. 94 * @gid: A reference for per-protocol devres management. 95 * @users: A refcount to track effective users of this protocol. 96 * @priv: Reference for optional protocol private data. 97 * @ph: An embedded protocol handle that will be passed down to protocol 98 * initialization code to identify this instance. 99 * 100 * Each protocol is initialized independently once for each SCMI platform in 101 * which is defined by DT and implemented by the SCMI server fw. 102 */ 103 struct scmi_protocol_instance { 104 const struct scmi_handle *handle; 105 const struct scmi_protocol *proto; 106 void *gid; 107 refcount_t users; 108 void *priv; 109 struct scmi_protocol_handle ph; 110 }; 111 112 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 113 114 /** 115 * struct scmi_info - Structure representing a SCMI instance 116 * 117 * @dev: Device pointer 118 * @desc: SoC description for this instance 119 * @version: SCMI revision information containing protocol version, 120 * implementation version and (sub-)vendor identification. 121 * @handle: Instance of SCMI handle to send to clients 122 * @tx_minfo: Universal Transmit Message management info 123 * @rx_minfo: Universal Receive Message management info 124 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 125 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 126 * @protocols: IDR for protocols' instance descriptors initialized for 127 * this SCMI instance: populated on protocol's first attempted 128 * usage. 129 * @protocols_mtx: A mutex to protect protocols instances initialization. 130 * @protocols_imp: List of protocols implemented, currently maximum of 131 * MAX_PROTOCOLS_IMP elements allocated by the base protocol 132 * @active_protocols: IDR storing device_nodes for protocols actually defined 133 * in the DT and confirmed as implemented by fw. 134 * @notify_priv: Pointer to private data structure specific to notifications. 135 * @node: List head 136 * @users: Number of users of this instance 137 */ 138 struct scmi_info { 139 struct device *dev; 140 const struct scmi_desc *desc; 141 struct scmi_revision_info version; 142 struct scmi_handle handle; 143 struct scmi_xfers_info tx_minfo; 144 struct scmi_xfers_info rx_minfo; 145 struct idr tx_idr; 146 struct idr rx_idr; 147 struct idr protocols; 148 /* Ensure mutual exclusive access to protocols instance array */ 149 struct mutex protocols_mtx; 150 u8 *protocols_imp; 151 struct idr active_protocols; 152 void *notify_priv; 153 struct list_head node; 154 int users; 155 }; 156 157 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 158 159 static const int scmi_linux_errmap[] = { 160 /* better than switch case as long as return value is continuous */ 161 0, /* SCMI_SUCCESS */ 162 -EOPNOTSUPP, /* SCMI_ERR_SUPPORT */ 163 -EINVAL, /* SCMI_ERR_PARAM */ 164 -EACCES, /* SCMI_ERR_ACCESS */ 165 -ENOENT, /* SCMI_ERR_ENTRY */ 166 -ERANGE, /* SCMI_ERR_RANGE */ 167 -EBUSY, /* SCMI_ERR_BUSY */ 168 -ECOMM, /* SCMI_ERR_COMMS */ 169 -EIO, /* SCMI_ERR_GENERIC */ 170 -EREMOTEIO, /* SCMI_ERR_HARDWARE */ 171 -EPROTO, /* SCMI_ERR_PROTOCOL */ 172 }; 173 174 static inline int scmi_to_linux_errno(int errno) 175 { 176 int err_idx = -errno; 177 178 if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap)) 179 return scmi_linux_errmap[err_idx]; 180 return -EIO; 181 } 182 183 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 184 void *priv) 185 { 186 struct scmi_info *info = handle_to_scmi_info(handle); 187 188 info->notify_priv = priv; 189 /* Ensure updated protocol private date are visible */ 190 smp_wmb(); 191 } 192 193 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 194 { 195 struct scmi_info *info = handle_to_scmi_info(handle); 196 197 /* Ensure protocols_private_data has been updated */ 198 smp_rmb(); 199 return info->notify_priv; 200 } 201 202 /** 203 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 204 * 205 * @minfo: Pointer to Tx/Rx Message management info based on channel type 206 * @xfer: The xfer to act upon 207 * 208 * Pick the next unused monotonically increasing token and set it into 209 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 210 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 211 * of incorrect association of a late and expired xfer with a live in-flight 212 * transaction, both happening to re-use the same token identifier. 213 * 214 * Since platform is NOT required to answer our request in-order we should 215 * account for a few rare but possible scenarios: 216 * 217 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 218 * using find_next_zero_bit() starting from candidate next_token bit 219 * 220 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 221 * are plenty of free tokens at start, so try a second pass using 222 * find_next_zero_bit() and starting from 0. 223 * 224 * X = used in-flight 225 * 226 * Normal 227 * ------ 228 * 229 * |- xfer_id picked 230 * -----------+---------------------------------------------------------- 231 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 232 * ---------------------------------------------------------------------- 233 * ^ 234 * |- next_token 235 * 236 * Out-of-order pending at start 237 * ----------------------------- 238 * 239 * |- xfer_id picked, last_token fixed 240 * -----+---------------------------------------------------------------- 241 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 242 * ---------------------------------------------------------------------- 243 * ^ 244 * |- next_token 245 * 246 * 247 * Out-of-order pending at end 248 * --------------------------- 249 * 250 * |- xfer_id picked, last_token fixed 251 * -----+---------------------------------------------------------------- 252 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 253 * ---------------------------------------------------------------------- 254 * ^ 255 * |- next_token 256 * 257 * Context: Assumes to be called with @xfer_lock already acquired. 258 * 259 * Return: 0 on Success or error 260 */ 261 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 262 struct scmi_xfer *xfer) 263 { 264 unsigned long xfer_id, next_token; 265 266 /* 267 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 268 * using the pre-allocated transfer_id as a base. 269 * Note that the global transfer_id is shared across all message types 270 * so there could be holes in the allocated set of monotonic sequence 271 * numbers, but that is going to limit the effectiveness of the 272 * mitigation only in very rare limit conditions. 273 */ 274 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 275 276 /* Pick the next available xfer_id >= next_token */ 277 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 278 MSG_TOKEN_MAX, next_token); 279 if (xfer_id == MSG_TOKEN_MAX) { 280 /* 281 * After heavily out-of-order responses, there are no free 282 * tokens ahead, but only at start of xfer_alloc_table so 283 * try again from the beginning. 284 */ 285 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 286 MSG_TOKEN_MAX, 0); 287 /* 288 * Something is wrong if we got here since there can be a 289 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 290 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 291 */ 292 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 293 return -ENOMEM; 294 } 295 296 /* Update +/- last_token accordingly if we skipped some hole */ 297 if (xfer_id != next_token) 298 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 299 300 /* Set in-flight */ 301 set_bit(xfer_id, minfo->xfer_alloc_table); 302 xfer->hdr.seq = (u16)xfer_id; 303 304 return 0; 305 } 306 307 /** 308 * scmi_xfer_token_clear - Release the token 309 * 310 * @minfo: Pointer to Tx/Rx Message management info based on channel type 311 * @xfer: The xfer to act upon 312 */ 313 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 314 struct scmi_xfer *xfer) 315 { 316 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 317 } 318 319 /** 320 * scmi_xfer_get() - Allocate one message 321 * 322 * @handle: Pointer to SCMI entity handle 323 * @minfo: Pointer to Tx/Rx Message management info based on channel type 324 * @set_pending: If true a monotonic token is picked and the xfer is added to 325 * the pending hash table. 326 * 327 * Helper function which is used by various message functions that are 328 * exposed to clients of this driver for allocating a message traffic event. 329 * 330 * Picks an xfer from the free list @free_xfers (if any available) and, if 331 * required, sets a monotonically increasing token and stores the inflight xfer 332 * into the @pending_xfers hashtable for later retrieval. 333 * 334 * The successfully initialized xfer is refcounted. 335 * 336 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and 337 * @free_xfers. 338 * 339 * Return: 0 if all went fine, else corresponding error. 340 */ 341 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 342 struct scmi_xfers_info *minfo, 343 bool set_pending) 344 { 345 int ret; 346 unsigned long flags; 347 struct scmi_xfer *xfer; 348 349 spin_lock_irqsave(&minfo->xfer_lock, flags); 350 if (hlist_empty(&minfo->free_xfers)) { 351 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 352 return ERR_PTR(-ENOMEM); 353 } 354 355 /* grab an xfer from the free_list */ 356 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 357 hlist_del_init(&xfer->node); 358 359 /* 360 * Allocate transfer_id early so that can be used also as base for 361 * monotonic sequence number generation if needed. 362 */ 363 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 364 365 if (set_pending) { 366 /* Pick and set monotonic token */ 367 ret = scmi_xfer_token_set(minfo, xfer); 368 if (!ret) { 369 hash_add(minfo->pending_xfers, &xfer->node, 370 xfer->hdr.seq); 371 xfer->pending = true; 372 } else { 373 dev_err(handle->dev, 374 "Failed to get monotonic token %d\n", ret); 375 hlist_add_head(&xfer->node, &minfo->free_xfers); 376 xfer = ERR_PTR(ret); 377 } 378 } 379 380 if (!IS_ERR(xfer)) { 381 refcount_set(&xfer->users, 1); 382 atomic_set(&xfer->busy, SCMI_XFER_FREE); 383 } 384 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 385 386 return xfer; 387 } 388 389 /** 390 * __scmi_xfer_put() - Release a message 391 * 392 * @minfo: Pointer to Tx/Rx Message management info based on channel type 393 * @xfer: message that was reserved by scmi_xfer_get 394 * 395 * After refcount check, possibly release an xfer, clearing the token slot, 396 * removing xfer from @pending_xfers and putting it back into free_xfers. 397 * 398 * This holds a spinlock to maintain integrity of internal data structures. 399 */ 400 static void 401 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 402 { 403 unsigned long flags; 404 405 spin_lock_irqsave(&minfo->xfer_lock, flags); 406 if (refcount_dec_and_test(&xfer->users)) { 407 if (xfer->pending) { 408 scmi_xfer_token_clear(minfo, xfer); 409 hash_del(&xfer->node); 410 xfer->pending = false; 411 } 412 hlist_add_head(&xfer->node, &minfo->free_xfers); 413 } 414 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 415 } 416 417 /** 418 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 419 * 420 * @minfo: Pointer to Tx/Rx Message management info based on channel type 421 * @xfer_id: Token ID to lookup in @pending_xfers 422 * 423 * Refcounting is untouched. 424 * 425 * Context: Assumes to be called with @xfer_lock already acquired. 426 * 427 * Return: A valid xfer on Success or error otherwise 428 */ 429 static struct scmi_xfer * 430 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 431 { 432 struct scmi_xfer *xfer = NULL; 433 434 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 435 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 436 437 return xfer ?: ERR_PTR(-EINVAL); 438 } 439 440 /** 441 * scmi_msg_response_validate - Validate message type against state of related 442 * xfer 443 * 444 * @cinfo: A reference to the channel descriptor. 445 * @msg_type: Message type to check 446 * @xfer: A reference to the xfer to validate against @msg_type 447 * 448 * This function checks if @msg_type is congruent with the current state of 449 * a pending @xfer; if an asynchronous delayed response is received before the 450 * related synchronous response (Out-of-Order Delayed Response) the missing 451 * synchronous response is assumed to be OK and completed, carrying on with the 452 * Delayed Response: this is done to address the case in which the underlying 453 * SCMI transport can deliver such out-of-order responses. 454 * 455 * Context: Assumes to be called with xfer->lock already acquired. 456 * 457 * Return: 0 on Success, error otherwise 458 */ 459 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 460 u8 msg_type, 461 struct scmi_xfer *xfer) 462 { 463 /* 464 * Even if a response was indeed expected on this slot at this point, 465 * a buggy platform could wrongly reply feeding us an unexpected 466 * delayed response we're not prepared to handle: bail-out safely 467 * blaming firmware. 468 */ 469 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 470 dev_err(cinfo->dev, 471 "Delayed Response for %d not expected! Buggy F/W ?\n", 472 xfer->hdr.seq); 473 return -EINVAL; 474 } 475 476 switch (xfer->state) { 477 case SCMI_XFER_SENT_OK: 478 if (msg_type == MSG_TYPE_DELAYED_RESP) { 479 /* 480 * Delayed Response expected but delivered earlier. 481 * Assume message RESPONSE was OK and skip state. 482 */ 483 xfer->hdr.status = SCMI_SUCCESS; 484 xfer->state = SCMI_XFER_RESP_OK; 485 complete(&xfer->done); 486 dev_warn(cinfo->dev, 487 "Received valid OoO Delayed Response for %d\n", 488 xfer->hdr.seq); 489 } 490 break; 491 case SCMI_XFER_RESP_OK: 492 if (msg_type != MSG_TYPE_DELAYED_RESP) 493 return -EINVAL; 494 break; 495 case SCMI_XFER_DRESP_OK: 496 /* No further message expected once in SCMI_XFER_DRESP_OK */ 497 return -EINVAL; 498 } 499 500 return 0; 501 } 502 503 /** 504 * scmi_xfer_state_update - Update xfer state 505 * 506 * @xfer: A reference to the xfer to update 507 * @msg_type: Type of message being processed. 508 * 509 * Note that this message is assumed to have been already successfully validated 510 * by @scmi_msg_response_validate(), so here we just update the state. 511 * 512 * Context: Assumes to be called on an xfer exclusively acquired using the 513 * busy flag. 514 */ 515 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 516 { 517 xfer->hdr.type = msg_type; 518 519 /* Unknown command types were already discarded earlier */ 520 if (xfer->hdr.type == MSG_TYPE_COMMAND) 521 xfer->state = SCMI_XFER_RESP_OK; 522 else 523 xfer->state = SCMI_XFER_DRESP_OK; 524 } 525 526 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 527 { 528 int ret; 529 530 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 531 532 return ret == SCMI_XFER_FREE; 533 } 534 535 /** 536 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 537 * 538 * @cinfo: A reference to the channel descriptor. 539 * @msg_hdr: A message header to use as lookup key 540 * 541 * When a valid xfer is found for the sequence number embedded in the provided 542 * msg_hdr, reference counting is properly updated and exclusive access to this 543 * xfer is granted till released with @scmi_xfer_command_release. 544 * 545 * Return: A valid @xfer on Success or error otherwise. 546 */ 547 static inline struct scmi_xfer * 548 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 549 { 550 int ret; 551 unsigned long flags; 552 struct scmi_xfer *xfer; 553 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 554 struct scmi_xfers_info *minfo = &info->tx_minfo; 555 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 556 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 557 558 /* Are we even expecting this? */ 559 spin_lock_irqsave(&minfo->xfer_lock, flags); 560 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 561 if (IS_ERR(xfer)) { 562 dev_err(cinfo->dev, 563 "Message for %d type %d is not expected!\n", 564 xfer_id, msg_type); 565 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 566 return xfer; 567 } 568 refcount_inc(&xfer->users); 569 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 570 571 spin_lock_irqsave(&xfer->lock, flags); 572 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 573 /* 574 * If a pending xfer was found which was also in a congruent state with 575 * the received message, acquire exclusive access to it setting the busy 576 * flag. 577 * Spins only on the rare limit condition of concurrent reception of 578 * RESP and DRESP for the same xfer. 579 */ 580 if (!ret) { 581 spin_until_cond(scmi_xfer_acquired(xfer)); 582 scmi_xfer_state_update(xfer, msg_type); 583 } 584 spin_unlock_irqrestore(&xfer->lock, flags); 585 586 if (ret) { 587 dev_err(cinfo->dev, 588 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 589 msg_type, xfer_id, msg_hdr, xfer->state); 590 /* On error the refcount incremented above has to be dropped */ 591 __scmi_xfer_put(minfo, xfer); 592 xfer = ERR_PTR(-EINVAL); 593 } 594 595 return xfer; 596 } 597 598 static inline void scmi_xfer_command_release(struct scmi_info *info, 599 struct scmi_xfer *xfer) 600 { 601 atomic_set(&xfer->busy, SCMI_XFER_FREE); 602 __scmi_xfer_put(&info->tx_minfo, xfer); 603 } 604 605 static inline void scmi_clear_channel(struct scmi_info *info, 606 struct scmi_chan_info *cinfo) 607 { 608 if (info->desc->ops->clear_channel) 609 info->desc->ops->clear_channel(cinfo); 610 } 611 612 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 613 u32 msg_hdr, void *priv) 614 { 615 struct scmi_xfer *xfer; 616 struct device *dev = cinfo->dev; 617 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 618 struct scmi_xfers_info *minfo = &info->rx_minfo; 619 ktime_t ts; 620 621 ts = ktime_get_boottime(); 622 xfer = scmi_xfer_get(cinfo->handle, minfo, false); 623 if (IS_ERR(xfer)) { 624 dev_err(dev, "failed to get free message slot (%ld)\n", 625 PTR_ERR(xfer)); 626 scmi_clear_channel(info, cinfo); 627 return; 628 } 629 630 unpack_scmi_header(msg_hdr, &xfer->hdr); 631 if (priv) 632 xfer->priv = priv; 633 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 634 xfer); 635 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 636 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 637 638 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 639 xfer->hdr.protocol_id, xfer->hdr.seq, 640 MSG_TYPE_NOTIFICATION); 641 642 __scmi_xfer_put(minfo, xfer); 643 644 scmi_clear_channel(info, cinfo); 645 } 646 647 static void scmi_handle_response(struct scmi_chan_info *cinfo, 648 u32 msg_hdr, void *priv) 649 { 650 struct scmi_xfer *xfer; 651 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 652 653 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 654 if (IS_ERR(xfer)) { 655 scmi_clear_channel(info, cinfo); 656 return; 657 } 658 659 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 660 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 661 xfer->rx.len = info->desc->max_msg_size; 662 663 if (priv) 664 xfer->priv = priv; 665 info->desc->ops->fetch_response(cinfo, xfer); 666 667 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 668 xfer->hdr.protocol_id, xfer->hdr.seq, 669 xfer->hdr.type); 670 671 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 672 scmi_clear_channel(info, cinfo); 673 complete(xfer->async_done); 674 } else { 675 complete(&xfer->done); 676 } 677 678 scmi_xfer_command_release(info, xfer); 679 } 680 681 /** 682 * scmi_rx_callback() - callback for receiving messages 683 * 684 * @cinfo: SCMI channel info 685 * @msg_hdr: Message header 686 * @priv: Transport specific private data. 687 * 688 * Processes one received message to appropriate transfer information and 689 * signals completion of the transfer. 690 * 691 * NOTE: This function will be invoked in IRQ context, hence should be 692 * as optimal as possible. 693 */ 694 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 695 { 696 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 697 698 switch (msg_type) { 699 case MSG_TYPE_NOTIFICATION: 700 scmi_handle_notification(cinfo, msg_hdr, priv); 701 break; 702 case MSG_TYPE_COMMAND: 703 case MSG_TYPE_DELAYED_RESP: 704 scmi_handle_response(cinfo, msg_hdr, priv); 705 break; 706 default: 707 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 708 break; 709 } 710 } 711 712 /** 713 * xfer_put() - Release a transmit message 714 * 715 * @ph: Pointer to SCMI protocol handle 716 * @xfer: message that was reserved by xfer_get_init 717 */ 718 static void xfer_put(const struct scmi_protocol_handle *ph, 719 struct scmi_xfer *xfer) 720 { 721 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 722 struct scmi_info *info = handle_to_scmi_info(pi->handle); 723 724 __scmi_xfer_put(&info->tx_minfo, xfer); 725 } 726 727 #define SCMI_MAX_POLL_TO_NS (100 * NSEC_PER_USEC) 728 729 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 730 struct scmi_xfer *xfer, ktime_t stop) 731 { 732 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 733 734 /* 735 * Poll also on xfer->done so that polling can be forcibly terminated 736 * in case of out-of-order receptions of delayed responses 737 */ 738 return info->desc->ops->poll_done(cinfo, xfer) || 739 try_wait_for_completion(&xfer->done) || 740 ktime_after(ktime_get(), stop); 741 } 742 743 /** 744 * do_xfer() - Do one transfer 745 * 746 * @ph: Pointer to SCMI protocol handle 747 * @xfer: Transfer to initiate and wait for response 748 * 749 * Return: -ETIMEDOUT in case of no response, if transmit error, 750 * return corresponding error, else if all goes well, 751 * return 0. 752 */ 753 static int do_xfer(const struct scmi_protocol_handle *ph, 754 struct scmi_xfer *xfer) 755 { 756 int ret; 757 int timeout; 758 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 759 struct scmi_info *info = handle_to_scmi_info(pi->handle); 760 struct device *dev = info->dev; 761 struct scmi_chan_info *cinfo; 762 763 if (xfer->hdr.poll_completion && !info->desc->ops->poll_done) { 764 dev_warn_once(dev, 765 "Polling mode is not supported by transport.\n"); 766 return -EINVAL; 767 } 768 769 /* 770 * Initialise protocol id now from protocol handle to avoid it being 771 * overridden by mistake (or malice) by the protocol code mangling with 772 * the scmi_xfer structure prior to this. 773 */ 774 xfer->hdr.protocol_id = pi->proto->id; 775 reinit_completion(&xfer->done); 776 777 cinfo = idr_find(&info->tx_idr, xfer->hdr.protocol_id); 778 if (unlikely(!cinfo)) 779 return -EINVAL; 780 781 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 782 xfer->hdr.protocol_id, xfer->hdr.seq, 783 xfer->hdr.poll_completion); 784 785 xfer->state = SCMI_XFER_SENT_OK; 786 /* 787 * Even though spinlocking is not needed here since no race is possible 788 * on xfer->state due to the monotonically increasing tokens allocation, 789 * we must anyway ensure xfer->state initialization is not re-ordered 790 * after the .send_message() to be sure that on the RX path an early 791 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 792 */ 793 smp_mb(); 794 795 ret = info->desc->ops->send_message(cinfo, xfer); 796 if (ret < 0) { 797 dev_dbg(dev, "Failed to send message %d\n", ret); 798 return ret; 799 } 800 801 if (xfer->hdr.poll_completion) { 802 ktime_t stop = ktime_add_ns(ktime_get(), SCMI_MAX_POLL_TO_NS); 803 804 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, stop)); 805 if (ktime_before(ktime_get(), stop)) { 806 unsigned long flags; 807 808 /* 809 * Do not fetch_response if an out-of-order delayed 810 * response is being processed. 811 */ 812 spin_lock_irqsave(&xfer->lock, flags); 813 if (xfer->state == SCMI_XFER_SENT_OK) { 814 info->desc->ops->fetch_response(cinfo, xfer); 815 xfer->state = SCMI_XFER_RESP_OK; 816 } 817 spin_unlock_irqrestore(&xfer->lock, flags); 818 } else { 819 ret = -ETIMEDOUT; 820 } 821 } else { 822 /* And we wait for the response. */ 823 timeout = msecs_to_jiffies(info->desc->max_rx_timeout_ms); 824 if (!wait_for_completion_timeout(&xfer->done, timeout)) { 825 dev_err(dev, "timed out in resp(caller: %pS)\n", 826 (void *)_RET_IP_); 827 ret = -ETIMEDOUT; 828 } 829 } 830 831 if (!ret && xfer->hdr.status) 832 ret = scmi_to_linux_errno(xfer->hdr.status); 833 834 if (info->desc->ops->mark_txdone) 835 info->desc->ops->mark_txdone(cinfo, ret); 836 837 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 838 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 839 840 return ret; 841 } 842 843 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 844 struct scmi_xfer *xfer) 845 { 846 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 847 struct scmi_info *info = handle_to_scmi_info(pi->handle); 848 849 xfer->rx.len = info->desc->max_msg_size; 850 } 851 852 #define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC) 853 854 /** 855 * do_xfer_with_response() - Do one transfer and wait until the delayed 856 * response is received 857 * 858 * @ph: Pointer to SCMI protocol handle 859 * @xfer: Transfer to initiate and wait for response 860 * 861 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 862 * return corresponding error, else if all goes well, return 0. 863 */ 864 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 865 struct scmi_xfer *xfer) 866 { 867 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 868 DECLARE_COMPLETION_ONSTACK(async_response); 869 870 xfer->async_done = &async_response; 871 872 ret = do_xfer(ph, xfer); 873 if (!ret) { 874 if (!wait_for_completion_timeout(xfer->async_done, timeout)) 875 ret = -ETIMEDOUT; 876 else if (xfer->hdr.status) 877 ret = scmi_to_linux_errno(xfer->hdr.status); 878 } 879 880 xfer->async_done = NULL; 881 return ret; 882 } 883 884 /** 885 * xfer_get_init() - Allocate and initialise one message for transmit 886 * 887 * @ph: Pointer to SCMI protocol handle 888 * @msg_id: Message identifier 889 * @tx_size: transmit message size 890 * @rx_size: receive message size 891 * @p: pointer to the allocated and initialised message 892 * 893 * This function allocates the message using @scmi_xfer_get and 894 * initialise the header. 895 * 896 * Return: 0 if all went fine with @p pointing to message, else 897 * corresponding error. 898 */ 899 static int xfer_get_init(const struct scmi_protocol_handle *ph, 900 u8 msg_id, size_t tx_size, size_t rx_size, 901 struct scmi_xfer **p) 902 { 903 int ret; 904 struct scmi_xfer *xfer; 905 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 906 struct scmi_info *info = handle_to_scmi_info(pi->handle); 907 struct scmi_xfers_info *minfo = &info->tx_minfo; 908 struct device *dev = info->dev; 909 910 /* Ensure we have sane transfer sizes */ 911 if (rx_size > info->desc->max_msg_size || 912 tx_size > info->desc->max_msg_size) 913 return -ERANGE; 914 915 xfer = scmi_xfer_get(pi->handle, minfo, true); 916 if (IS_ERR(xfer)) { 917 ret = PTR_ERR(xfer); 918 dev_err(dev, "failed to get free message slot(%d)\n", ret); 919 return ret; 920 } 921 922 xfer->tx.len = tx_size; 923 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 924 xfer->hdr.type = MSG_TYPE_COMMAND; 925 xfer->hdr.id = msg_id; 926 xfer->hdr.poll_completion = false; 927 928 *p = xfer; 929 930 return 0; 931 } 932 933 /** 934 * version_get() - command to get the revision of the SCMI entity 935 * 936 * @ph: Pointer to SCMI protocol handle 937 * @version: Holds returned version of protocol. 938 * 939 * Updates the SCMI information in the internal data structure. 940 * 941 * Return: 0 if all went fine, else return appropriate error. 942 */ 943 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 944 { 945 int ret; 946 __le32 *rev_info; 947 struct scmi_xfer *t; 948 949 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 950 if (ret) 951 return ret; 952 953 ret = do_xfer(ph, t); 954 if (!ret) { 955 rev_info = t->rx.buf; 956 *version = le32_to_cpu(*rev_info); 957 } 958 959 xfer_put(ph, t); 960 return ret; 961 } 962 963 /** 964 * scmi_set_protocol_priv - Set protocol specific data at init time 965 * 966 * @ph: A reference to the protocol handle. 967 * @priv: The private data to set. 968 * 969 * Return: 0 on Success 970 */ 971 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 972 void *priv) 973 { 974 struct scmi_protocol_instance *pi = ph_to_pi(ph); 975 976 pi->priv = priv; 977 978 return 0; 979 } 980 981 /** 982 * scmi_get_protocol_priv - Set protocol specific data at init time 983 * 984 * @ph: A reference to the protocol handle. 985 * 986 * Return: Protocol private data if any was set. 987 */ 988 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 989 { 990 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 991 992 return pi->priv; 993 } 994 995 static const struct scmi_xfer_ops xfer_ops = { 996 .version_get = version_get, 997 .xfer_get_init = xfer_get_init, 998 .reset_rx_to_maxsz = reset_rx_to_maxsz, 999 .do_xfer = do_xfer, 1000 .do_xfer_with_response = do_xfer_with_response, 1001 .xfer_put = xfer_put, 1002 }; 1003 1004 /** 1005 * scmi_revision_area_get - Retrieve version memory area. 1006 * 1007 * @ph: A reference to the protocol handle. 1008 * 1009 * A helper to grab the version memory area reference during SCMI Base protocol 1010 * initialization. 1011 * 1012 * Return: A reference to the version memory area associated to the SCMI 1013 * instance underlying this protocol handle. 1014 */ 1015 struct scmi_revision_info * 1016 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1017 { 1018 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1019 1020 return pi->handle->version; 1021 } 1022 1023 /** 1024 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1025 * instance descriptor. 1026 * @info: The reference to the related SCMI instance. 1027 * @proto: The protocol descriptor. 1028 * 1029 * Allocate a new protocol instance descriptor, using the provided @proto 1030 * description, against the specified SCMI instance @info, and initialize it; 1031 * all resources management is handled via a dedicated per-protocol devres 1032 * group. 1033 * 1034 * Context: Assumes to be called with @protocols_mtx already acquired. 1035 * Return: A reference to a freshly allocated and initialized protocol instance 1036 * or ERR_PTR on failure. On failure the @proto reference is at first 1037 * put using @scmi_protocol_put() before releasing all the devres group. 1038 */ 1039 static struct scmi_protocol_instance * 1040 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1041 const struct scmi_protocol *proto) 1042 { 1043 int ret = -ENOMEM; 1044 void *gid; 1045 struct scmi_protocol_instance *pi; 1046 const struct scmi_handle *handle = &info->handle; 1047 1048 /* Protocol specific devres group */ 1049 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1050 if (!gid) { 1051 scmi_protocol_put(proto->id); 1052 goto out; 1053 } 1054 1055 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1056 if (!pi) 1057 goto clean; 1058 1059 pi->gid = gid; 1060 pi->proto = proto; 1061 pi->handle = handle; 1062 pi->ph.dev = handle->dev; 1063 pi->ph.xops = &xfer_ops; 1064 pi->ph.set_priv = scmi_set_protocol_priv; 1065 pi->ph.get_priv = scmi_get_protocol_priv; 1066 refcount_set(&pi->users, 1); 1067 /* proto->init is assured NON NULL by scmi_protocol_register */ 1068 ret = pi->proto->instance_init(&pi->ph); 1069 if (ret) 1070 goto clean; 1071 1072 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1073 GFP_KERNEL); 1074 if (ret != proto->id) 1075 goto clean; 1076 1077 /* 1078 * Warn but ignore events registration errors since we do not want 1079 * to skip whole protocols if their notifications are messed up. 1080 */ 1081 if (pi->proto->events) { 1082 ret = scmi_register_protocol_events(handle, pi->proto->id, 1083 &pi->ph, 1084 pi->proto->events); 1085 if (ret) 1086 dev_warn(handle->dev, 1087 "Protocol:%X - Events Registration Failed - err:%d\n", 1088 pi->proto->id, ret); 1089 } 1090 1091 devres_close_group(handle->dev, pi->gid); 1092 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1093 1094 return pi; 1095 1096 clean: 1097 /* Take care to put the protocol module's owner before releasing all */ 1098 scmi_protocol_put(proto->id); 1099 devres_release_group(handle->dev, gid); 1100 out: 1101 return ERR_PTR(ret); 1102 } 1103 1104 /** 1105 * scmi_get_protocol_instance - Protocol initialization helper. 1106 * @handle: A reference to the SCMI platform instance. 1107 * @protocol_id: The protocol being requested. 1108 * 1109 * In case the required protocol has never been requested before for this 1110 * instance, allocate and initialize all the needed structures while handling 1111 * resource allocation with a dedicated per-protocol devres subgroup. 1112 * 1113 * Return: A reference to an initialized protocol instance or error on failure: 1114 * in particular returns -EPROBE_DEFER when the desired protocol could 1115 * NOT be found. 1116 */ 1117 static struct scmi_protocol_instance * __must_check 1118 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1119 { 1120 struct scmi_protocol_instance *pi; 1121 struct scmi_info *info = handle_to_scmi_info(handle); 1122 1123 mutex_lock(&info->protocols_mtx); 1124 pi = idr_find(&info->protocols, protocol_id); 1125 1126 if (pi) { 1127 refcount_inc(&pi->users); 1128 } else { 1129 const struct scmi_protocol *proto; 1130 1131 /* Fails if protocol not registered on bus */ 1132 proto = scmi_protocol_get(protocol_id); 1133 if (proto) 1134 pi = scmi_alloc_init_protocol_instance(info, proto); 1135 else 1136 pi = ERR_PTR(-EPROBE_DEFER); 1137 } 1138 mutex_unlock(&info->protocols_mtx); 1139 1140 return pi; 1141 } 1142 1143 /** 1144 * scmi_protocol_acquire - Protocol acquire 1145 * @handle: A reference to the SCMI platform instance. 1146 * @protocol_id: The protocol being requested. 1147 * 1148 * Register a new user for the requested protocol on the specified SCMI 1149 * platform instance, possibly triggering its initialization on first user. 1150 * 1151 * Return: 0 if protocol was acquired successfully. 1152 */ 1153 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 1154 { 1155 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 1156 } 1157 1158 /** 1159 * scmi_protocol_release - Protocol de-initialization helper. 1160 * @handle: A reference to the SCMI platform instance. 1161 * @protocol_id: The protocol being requested. 1162 * 1163 * Remove one user for the specified protocol and triggers de-initialization 1164 * and resources de-allocation once the last user has gone. 1165 */ 1166 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 1167 { 1168 struct scmi_info *info = handle_to_scmi_info(handle); 1169 struct scmi_protocol_instance *pi; 1170 1171 mutex_lock(&info->protocols_mtx); 1172 pi = idr_find(&info->protocols, protocol_id); 1173 if (WARN_ON(!pi)) 1174 goto out; 1175 1176 if (refcount_dec_and_test(&pi->users)) { 1177 void *gid = pi->gid; 1178 1179 if (pi->proto->events) 1180 scmi_deregister_protocol_events(handle, protocol_id); 1181 1182 if (pi->proto->instance_deinit) 1183 pi->proto->instance_deinit(&pi->ph); 1184 1185 idr_remove(&info->protocols, protocol_id); 1186 1187 scmi_protocol_put(protocol_id); 1188 1189 devres_release_group(handle->dev, gid); 1190 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 1191 protocol_id); 1192 } 1193 1194 out: 1195 mutex_unlock(&info->protocols_mtx); 1196 } 1197 1198 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 1199 u8 *prot_imp) 1200 { 1201 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1202 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1203 1204 info->protocols_imp = prot_imp; 1205 } 1206 1207 static bool 1208 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 1209 { 1210 int i; 1211 struct scmi_info *info = handle_to_scmi_info(handle); 1212 1213 if (!info->protocols_imp) 1214 return false; 1215 1216 for (i = 0; i < MAX_PROTOCOLS_IMP; i++) 1217 if (info->protocols_imp[i] == prot_id) 1218 return true; 1219 return false; 1220 } 1221 1222 struct scmi_protocol_devres { 1223 const struct scmi_handle *handle; 1224 u8 protocol_id; 1225 }; 1226 1227 static void scmi_devm_release_protocol(struct device *dev, void *res) 1228 { 1229 struct scmi_protocol_devres *dres = res; 1230 1231 scmi_protocol_release(dres->handle, dres->protocol_id); 1232 } 1233 1234 /** 1235 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 1236 * @sdev: A reference to an scmi_device whose embedded struct device is to 1237 * be used for devres accounting. 1238 * @protocol_id: The protocol being requested. 1239 * @ph: A pointer reference used to pass back the associated protocol handle. 1240 * 1241 * Get hold of a protocol accounting for its usage, eventually triggering its 1242 * initialization, and returning the protocol specific operations and related 1243 * protocol handle which will be used as first argument in most of the 1244 * protocols operations methods. 1245 * Being a devres based managed method, protocol hold will be automatically 1246 * released, and possibly de-initialized on last user, once the SCMI driver 1247 * owning the scmi_device is unbound from it. 1248 * 1249 * Return: A reference to the requested protocol operations or error. 1250 * Must be checked for errors by caller. 1251 */ 1252 static const void __must_check * 1253 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 1254 struct scmi_protocol_handle **ph) 1255 { 1256 struct scmi_protocol_instance *pi; 1257 struct scmi_protocol_devres *dres; 1258 struct scmi_handle *handle = sdev->handle; 1259 1260 if (!ph) 1261 return ERR_PTR(-EINVAL); 1262 1263 dres = devres_alloc(scmi_devm_release_protocol, 1264 sizeof(*dres), GFP_KERNEL); 1265 if (!dres) 1266 return ERR_PTR(-ENOMEM); 1267 1268 pi = scmi_get_protocol_instance(handle, protocol_id); 1269 if (IS_ERR(pi)) { 1270 devres_free(dres); 1271 return pi; 1272 } 1273 1274 dres->handle = handle; 1275 dres->protocol_id = protocol_id; 1276 devres_add(&sdev->dev, dres); 1277 1278 *ph = &pi->ph; 1279 1280 return pi->proto->ops; 1281 } 1282 1283 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 1284 { 1285 struct scmi_protocol_devres *dres = res; 1286 1287 if (WARN_ON(!dres || !data)) 1288 return 0; 1289 1290 return dres->protocol_id == *((u8 *)data); 1291 } 1292 1293 /** 1294 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 1295 * @sdev: A reference to an scmi_device whose embedded struct device is to 1296 * be used for devres accounting. 1297 * @protocol_id: The protocol being requested. 1298 * 1299 * Explicitly release a protocol hold previously obtained calling the above 1300 * @scmi_devm_protocol_get. 1301 */ 1302 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 1303 { 1304 int ret; 1305 1306 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 1307 scmi_devm_protocol_match, &protocol_id); 1308 WARN_ON(ret); 1309 } 1310 1311 static inline 1312 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info) 1313 { 1314 info->users++; 1315 return &info->handle; 1316 } 1317 1318 /** 1319 * scmi_handle_get() - Get the SCMI handle for a device 1320 * 1321 * @dev: pointer to device for which we want SCMI handle 1322 * 1323 * NOTE: The function does not track individual clients of the framework 1324 * and is expected to be maintained by caller of SCMI protocol library. 1325 * scmi_handle_put must be balanced with successful scmi_handle_get 1326 * 1327 * Return: pointer to handle if successful, NULL on error 1328 */ 1329 struct scmi_handle *scmi_handle_get(struct device *dev) 1330 { 1331 struct list_head *p; 1332 struct scmi_info *info; 1333 struct scmi_handle *handle = NULL; 1334 1335 mutex_lock(&scmi_list_mutex); 1336 list_for_each(p, &scmi_list) { 1337 info = list_entry(p, struct scmi_info, node); 1338 if (dev->parent == info->dev) { 1339 handle = scmi_handle_get_from_info_unlocked(info); 1340 break; 1341 } 1342 } 1343 mutex_unlock(&scmi_list_mutex); 1344 1345 return handle; 1346 } 1347 1348 /** 1349 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 1350 * 1351 * @handle: handle acquired by scmi_handle_get 1352 * 1353 * NOTE: The function does not track individual clients of the framework 1354 * and is expected to be maintained by caller of SCMI protocol library. 1355 * scmi_handle_put must be balanced with successful scmi_handle_get 1356 * 1357 * Return: 0 is successfully released 1358 * if null was passed, it returns -EINVAL; 1359 */ 1360 int scmi_handle_put(const struct scmi_handle *handle) 1361 { 1362 struct scmi_info *info; 1363 1364 if (!handle) 1365 return -EINVAL; 1366 1367 info = handle_to_scmi_info(handle); 1368 mutex_lock(&scmi_list_mutex); 1369 if (!WARN_ON(!info->users)) 1370 info->users--; 1371 mutex_unlock(&scmi_list_mutex); 1372 1373 return 0; 1374 } 1375 1376 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 1377 struct scmi_xfers_info *info) 1378 { 1379 int i; 1380 struct scmi_xfer *xfer; 1381 struct device *dev = sinfo->dev; 1382 const struct scmi_desc *desc = sinfo->desc; 1383 1384 /* Pre-allocated messages, no more than what hdr.seq can support */ 1385 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 1386 dev_err(dev, 1387 "Invalid maximum messages %d, not in range [1 - %lu]\n", 1388 info->max_msg, MSG_TOKEN_MAX); 1389 return -EINVAL; 1390 } 1391 1392 hash_init(info->pending_xfers); 1393 1394 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 1395 info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX), 1396 sizeof(long), GFP_KERNEL); 1397 if (!info->xfer_alloc_table) 1398 return -ENOMEM; 1399 1400 /* 1401 * Preallocate a number of xfers equal to max inflight messages, 1402 * pre-initialize the buffer pointer to pre-allocated buffers and 1403 * attach all of them to the free list 1404 */ 1405 INIT_HLIST_HEAD(&info->free_xfers); 1406 for (i = 0; i < info->max_msg; i++) { 1407 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 1408 if (!xfer) 1409 return -ENOMEM; 1410 1411 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 1412 GFP_KERNEL); 1413 if (!xfer->rx.buf) 1414 return -ENOMEM; 1415 1416 xfer->tx.buf = xfer->rx.buf; 1417 init_completion(&xfer->done); 1418 spin_lock_init(&xfer->lock); 1419 1420 /* Add initialized xfer to the free list */ 1421 hlist_add_head(&xfer->node, &info->free_xfers); 1422 } 1423 1424 spin_lock_init(&info->xfer_lock); 1425 1426 return 0; 1427 } 1428 1429 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 1430 { 1431 const struct scmi_desc *desc = sinfo->desc; 1432 1433 if (!desc->ops->get_max_msg) { 1434 sinfo->tx_minfo.max_msg = desc->max_msg; 1435 sinfo->rx_minfo.max_msg = desc->max_msg; 1436 } else { 1437 struct scmi_chan_info *base_cinfo; 1438 1439 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 1440 if (!base_cinfo) 1441 return -EINVAL; 1442 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 1443 1444 /* RX channel is optional so can be skipped */ 1445 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 1446 if (base_cinfo) 1447 sinfo->rx_minfo.max_msg = 1448 desc->ops->get_max_msg(base_cinfo); 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int scmi_xfer_info_init(struct scmi_info *sinfo) 1455 { 1456 int ret; 1457 1458 ret = scmi_channels_max_msg_configure(sinfo); 1459 if (ret) 1460 return ret; 1461 1462 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 1463 if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE)) 1464 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 1465 1466 return ret; 1467 } 1468 1469 static int scmi_chan_setup(struct scmi_info *info, struct device *dev, 1470 int prot_id, bool tx) 1471 { 1472 int ret, idx; 1473 struct scmi_chan_info *cinfo; 1474 struct idr *idr; 1475 1476 /* Transmit channel is first entry i.e. index 0 */ 1477 idx = tx ? 0 : 1; 1478 idr = tx ? &info->tx_idr : &info->rx_idr; 1479 1480 /* check if already allocated, used for multiple device per protocol */ 1481 cinfo = idr_find(idr, prot_id); 1482 if (cinfo) 1483 return 0; 1484 1485 if (!info->desc->ops->chan_available(dev, idx)) { 1486 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 1487 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 1488 return -EINVAL; 1489 goto idr_alloc; 1490 } 1491 1492 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 1493 if (!cinfo) 1494 return -ENOMEM; 1495 1496 cinfo->dev = dev; 1497 1498 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 1499 if (ret) 1500 return ret; 1501 1502 idr_alloc: 1503 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 1504 if (ret != prot_id) { 1505 dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret); 1506 return ret; 1507 } 1508 1509 cinfo->handle = &info->handle; 1510 return 0; 1511 } 1512 1513 static inline int 1514 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id) 1515 { 1516 int ret = scmi_chan_setup(info, dev, prot_id, true); 1517 1518 if (!ret) /* Rx is optional, hence no error check */ 1519 scmi_chan_setup(info, dev, prot_id, false); 1520 1521 return ret; 1522 } 1523 1524 /** 1525 * scmi_get_protocol_device - Helper to get/create an SCMI device. 1526 * 1527 * @np: A device node representing a valid active protocols for the referred 1528 * SCMI instance. 1529 * @info: The referred SCMI instance for which we are getting/creating this 1530 * device. 1531 * @prot_id: The protocol ID. 1532 * @name: The device name. 1533 * 1534 * Referring to the specific SCMI instance identified by @info, this helper 1535 * takes care to return a properly initialized device matching the requested 1536 * @proto_id and @name: if device was still not existent it is created as a 1537 * child of the specified SCMI instance @info and its transport properly 1538 * initialized as usual. 1539 * 1540 * Return: A properly initialized scmi device, NULL otherwise. 1541 */ 1542 static inline struct scmi_device * 1543 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info, 1544 int prot_id, const char *name) 1545 { 1546 struct scmi_device *sdev; 1547 1548 /* Already created for this parent SCMI instance ? */ 1549 sdev = scmi_child_dev_find(info->dev, prot_id, name); 1550 if (sdev) 1551 return sdev; 1552 1553 pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id); 1554 1555 sdev = scmi_device_create(np, info->dev, prot_id, name); 1556 if (!sdev) { 1557 dev_err(info->dev, "failed to create %d protocol device\n", 1558 prot_id); 1559 return NULL; 1560 } 1561 1562 if (scmi_txrx_setup(info, &sdev->dev, prot_id)) { 1563 dev_err(&sdev->dev, "failed to setup transport\n"); 1564 scmi_device_destroy(sdev); 1565 return NULL; 1566 } 1567 1568 return sdev; 1569 } 1570 1571 static inline void 1572 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info, 1573 int prot_id, const char *name) 1574 { 1575 struct scmi_device *sdev; 1576 1577 sdev = scmi_get_protocol_device(np, info, prot_id, name); 1578 if (!sdev) 1579 return; 1580 1581 /* setup handle now as the transport is ready */ 1582 scmi_set_handle(sdev); 1583 } 1584 1585 /** 1586 * scmi_create_protocol_devices - Create devices for all pending requests for 1587 * this SCMI instance. 1588 * 1589 * @np: The device node describing the protocol 1590 * @info: The SCMI instance descriptor 1591 * @prot_id: The protocol ID 1592 * 1593 * All devices previously requested for this instance (if any) are found and 1594 * created by scanning the proper @&scmi_requested_devices entry. 1595 */ 1596 static void scmi_create_protocol_devices(struct device_node *np, 1597 struct scmi_info *info, int prot_id) 1598 { 1599 struct list_head *phead; 1600 1601 mutex_lock(&scmi_requested_devices_mtx); 1602 phead = idr_find(&scmi_requested_devices, prot_id); 1603 if (phead) { 1604 struct scmi_requested_dev *rdev; 1605 1606 list_for_each_entry(rdev, phead, node) 1607 scmi_create_protocol_device(np, info, prot_id, 1608 rdev->id_table->name); 1609 } 1610 mutex_unlock(&scmi_requested_devices_mtx); 1611 } 1612 1613 /** 1614 * scmi_protocol_device_request - Helper to request a device 1615 * 1616 * @id_table: A protocol/name pair descriptor for the device to be created. 1617 * 1618 * This helper let an SCMI driver request specific devices identified by the 1619 * @id_table to be created for each active SCMI instance. 1620 * 1621 * The requested device name MUST NOT be already existent for any protocol; 1622 * at first the freshly requested @id_table is annotated in the IDR table 1623 * @scmi_requested_devices, then a matching device is created for each already 1624 * active SCMI instance. (if any) 1625 * 1626 * This way the requested device is created straight-away for all the already 1627 * initialized(probed) SCMI instances (handles) and it remains also annotated 1628 * as pending creation if the requesting SCMI driver was loaded before some 1629 * SCMI instance and related transports were available: when such late instance 1630 * is probed, its probe will take care to scan the list of pending requested 1631 * devices and create those on its own (see @scmi_create_protocol_devices and 1632 * its enclosing loop) 1633 * 1634 * Return: 0 on Success 1635 */ 1636 int scmi_protocol_device_request(const struct scmi_device_id *id_table) 1637 { 1638 int ret = 0; 1639 unsigned int id = 0; 1640 struct list_head *head, *phead = NULL; 1641 struct scmi_requested_dev *rdev; 1642 struct scmi_info *info; 1643 1644 pr_debug("Requesting SCMI device (%s) for protocol %x\n", 1645 id_table->name, id_table->protocol_id); 1646 1647 /* 1648 * Search for the matching protocol rdev list and then search 1649 * of any existent equally named device...fails if any duplicate found. 1650 */ 1651 mutex_lock(&scmi_requested_devices_mtx); 1652 idr_for_each_entry(&scmi_requested_devices, head, id) { 1653 if (!phead) { 1654 /* A list found registered in the IDR is never empty */ 1655 rdev = list_first_entry(head, struct scmi_requested_dev, 1656 node); 1657 if (rdev->id_table->protocol_id == 1658 id_table->protocol_id) 1659 phead = head; 1660 } 1661 list_for_each_entry(rdev, head, node) { 1662 if (!strcmp(rdev->id_table->name, id_table->name)) { 1663 pr_err("Ignoring duplicate request [%d] %s\n", 1664 rdev->id_table->protocol_id, 1665 rdev->id_table->name); 1666 ret = -EINVAL; 1667 goto out; 1668 } 1669 } 1670 } 1671 1672 /* 1673 * No duplicate found for requested id_table, so let's create a new 1674 * requested device entry for this new valid request. 1675 */ 1676 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 1677 if (!rdev) { 1678 ret = -ENOMEM; 1679 goto out; 1680 } 1681 rdev->id_table = id_table; 1682 1683 /* 1684 * Append the new requested device table descriptor to the head of the 1685 * related protocol list, eventually creating such head if not already 1686 * there. 1687 */ 1688 if (!phead) { 1689 phead = kzalloc(sizeof(*phead), GFP_KERNEL); 1690 if (!phead) { 1691 kfree(rdev); 1692 ret = -ENOMEM; 1693 goto out; 1694 } 1695 INIT_LIST_HEAD(phead); 1696 1697 ret = idr_alloc(&scmi_requested_devices, (void *)phead, 1698 id_table->protocol_id, 1699 id_table->protocol_id + 1, GFP_KERNEL); 1700 if (ret != id_table->protocol_id) { 1701 pr_err("Failed to save SCMI device - ret:%d\n", ret); 1702 kfree(rdev); 1703 kfree(phead); 1704 ret = -EINVAL; 1705 goto out; 1706 } 1707 ret = 0; 1708 } 1709 list_add(&rdev->node, phead); 1710 1711 /* 1712 * Now effectively create and initialize the requested device for every 1713 * already initialized SCMI instance which has registered the requested 1714 * protocol as a valid active one: i.e. defined in DT and supported by 1715 * current platform FW. 1716 */ 1717 mutex_lock(&scmi_list_mutex); 1718 list_for_each_entry(info, &scmi_list, node) { 1719 struct device_node *child; 1720 1721 child = idr_find(&info->active_protocols, 1722 id_table->protocol_id); 1723 if (child) { 1724 struct scmi_device *sdev; 1725 1726 sdev = scmi_get_protocol_device(child, info, 1727 id_table->protocol_id, 1728 id_table->name); 1729 /* Set handle if not already set: device existed */ 1730 if (sdev && !sdev->handle) 1731 sdev->handle = 1732 scmi_handle_get_from_info_unlocked(info); 1733 } else { 1734 dev_err(info->dev, 1735 "Failed. SCMI protocol %d not active.\n", 1736 id_table->protocol_id); 1737 } 1738 } 1739 mutex_unlock(&scmi_list_mutex); 1740 1741 out: 1742 mutex_unlock(&scmi_requested_devices_mtx); 1743 1744 return ret; 1745 } 1746 1747 /** 1748 * scmi_protocol_device_unrequest - Helper to unrequest a device 1749 * 1750 * @id_table: A protocol/name pair descriptor for the device to be unrequested. 1751 * 1752 * An helper to let an SCMI driver release its request about devices; note that 1753 * devices are created and initialized once the first SCMI driver request them 1754 * but they destroyed only on SCMI core unloading/unbinding. 1755 * 1756 * The current SCMI transport layer uses such devices as internal references and 1757 * as such they could be shared as same transport between multiple drivers so 1758 * that cannot be safely destroyed till the whole SCMI stack is removed. 1759 * (unless adding further burden of refcounting.) 1760 */ 1761 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table) 1762 { 1763 struct list_head *phead; 1764 1765 pr_debug("Unrequesting SCMI device (%s) for protocol %x\n", 1766 id_table->name, id_table->protocol_id); 1767 1768 mutex_lock(&scmi_requested_devices_mtx); 1769 phead = idr_find(&scmi_requested_devices, id_table->protocol_id); 1770 if (phead) { 1771 struct scmi_requested_dev *victim, *tmp; 1772 1773 list_for_each_entry_safe(victim, tmp, phead, node) { 1774 if (!strcmp(victim->id_table->name, id_table->name)) { 1775 list_del(&victim->node); 1776 kfree(victim); 1777 break; 1778 } 1779 } 1780 1781 if (list_empty(phead)) { 1782 idr_remove(&scmi_requested_devices, 1783 id_table->protocol_id); 1784 kfree(phead); 1785 } 1786 } 1787 mutex_unlock(&scmi_requested_devices_mtx); 1788 } 1789 1790 static int scmi_cleanup_txrx_channels(struct scmi_info *info) 1791 { 1792 int ret; 1793 struct idr *idr = &info->tx_idr; 1794 1795 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 1796 idr_destroy(&info->tx_idr); 1797 1798 idr = &info->rx_idr; 1799 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 1800 idr_destroy(&info->rx_idr); 1801 1802 return ret; 1803 } 1804 1805 static int scmi_probe(struct platform_device *pdev) 1806 { 1807 int ret; 1808 struct scmi_handle *handle; 1809 const struct scmi_desc *desc; 1810 struct scmi_info *info; 1811 struct device *dev = &pdev->dev; 1812 struct device_node *child, *np = dev->of_node; 1813 1814 desc = of_device_get_match_data(dev); 1815 if (!desc) 1816 return -EINVAL; 1817 1818 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 1819 if (!info) 1820 return -ENOMEM; 1821 1822 info->dev = dev; 1823 info->desc = desc; 1824 INIT_LIST_HEAD(&info->node); 1825 idr_init(&info->protocols); 1826 mutex_init(&info->protocols_mtx); 1827 idr_init(&info->active_protocols); 1828 1829 platform_set_drvdata(pdev, info); 1830 idr_init(&info->tx_idr); 1831 idr_init(&info->rx_idr); 1832 1833 handle = &info->handle; 1834 handle->dev = info->dev; 1835 handle->version = &info->version; 1836 handle->devm_protocol_get = scmi_devm_protocol_get; 1837 handle->devm_protocol_put = scmi_devm_protocol_put; 1838 1839 if (desc->ops->link_supplier) { 1840 ret = desc->ops->link_supplier(dev); 1841 if (ret) 1842 return ret; 1843 } 1844 1845 ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE); 1846 if (ret) 1847 return ret; 1848 1849 ret = scmi_xfer_info_init(info); 1850 if (ret) 1851 goto clear_txrx_setup; 1852 1853 if (scmi_notification_init(handle)) 1854 dev_err(dev, "SCMI Notifications NOT available.\n"); 1855 1856 /* 1857 * Trigger SCMI Base protocol initialization. 1858 * It's mandatory and won't be ever released/deinit until the 1859 * SCMI stack is shutdown/unloaded as a whole. 1860 */ 1861 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 1862 if (ret) { 1863 dev_err(dev, "unable to communicate with SCMI\n"); 1864 goto notification_exit; 1865 } 1866 1867 mutex_lock(&scmi_list_mutex); 1868 list_add_tail(&info->node, &scmi_list); 1869 mutex_unlock(&scmi_list_mutex); 1870 1871 for_each_available_child_of_node(np, child) { 1872 u32 prot_id; 1873 1874 if (of_property_read_u32(child, "reg", &prot_id)) 1875 continue; 1876 1877 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 1878 dev_err(dev, "Out of range protocol %d\n", prot_id); 1879 1880 if (!scmi_is_protocol_implemented(handle, prot_id)) { 1881 dev_err(dev, "SCMI protocol %d not implemented\n", 1882 prot_id); 1883 continue; 1884 } 1885 1886 /* 1887 * Save this valid DT protocol descriptor amongst 1888 * @active_protocols for this SCMI instance/ 1889 */ 1890 ret = idr_alloc(&info->active_protocols, child, 1891 prot_id, prot_id + 1, GFP_KERNEL); 1892 if (ret != prot_id) { 1893 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 1894 prot_id); 1895 continue; 1896 } 1897 1898 of_node_get(child); 1899 scmi_create_protocol_devices(child, info, prot_id); 1900 } 1901 1902 return 0; 1903 1904 notification_exit: 1905 scmi_notification_exit(&info->handle); 1906 clear_txrx_setup: 1907 scmi_cleanup_txrx_channels(info); 1908 return ret; 1909 } 1910 1911 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id) 1912 { 1913 idr_remove(idr, id); 1914 } 1915 1916 static int scmi_remove(struct platform_device *pdev) 1917 { 1918 int ret = 0, id; 1919 struct scmi_info *info = platform_get_drvdata(pdev); 1920 struct device_node *child; 1921 1922 mutex_lock(&scmi_list_mutex); 1923 if (info->users) 1924 ret = -EBUSY; 1925 else 1926 list_del(&info->node); 1927 mutex_unlock(&scmi_list_mutex); 1928 1929 if (ret) 1930 return ret; 1931 1932 scmi_notification_exit(&info->handle); 1933 1934 mutex_lock(&info->protocols_mtx); 1935 idr_destroy(&info->protocols); 1936 mutex_unlock(&info->protocols_mtx); 1937 1938 idr_for_each_entry(&info->active_protocols, child, id) 1939 of_node_put(child); 1940 idr_destroy(&info->active_protocols); 1941 1942 /* Safe to free channels since no more users */ 1943 return scmi_cleanup_txrx_channels(info); 1944 } 1945 1946 static ssize_t protocol_version_show(struct device *dev, 1947 struct device_attribute *attr, char *buf) 1948 { 1949 struct scmi_info *info = dev_get_drvdata(dev); 1950 1951 return sprintf(buf, "%u.%u\n", info->version.major_ver, 1952 info->version.minor_ver); 1953 } 1954 static DEVICE_ATTR_RO(protocol_version); 1955 1956 static ssize_t firmware_version_show(struct device *dev, 1957 struct device_attribute *attr, char *buf) 1958 { 1959 struct scmi_info *info = dev_get_drvdata(dev); 1960 1961 return sprintf(buf, "0x%x\n", info->version.impl_ver); 1962 } 1963 static DEVICE_ATTR_RO(firmware_version); 1964 1965 static ssize_t vendor_id_show(struct device *dev, 1966 struct device_attribute *attr, char *buf) 1967 { 1968 struct scmi_info *info = dev_get_drvdata(dev); 1969 1970 return sprintf(buf, "%s\n", info->version.vendor_id); 1971 } 1972 static DEVICE_ATTR_RO(vendor_id); 1973 1974 static ssize_t sub_vendor_id_show(struct device *dev, 1975 struct device_attribute *attr, char *buf) 1976 { 1977 struct scmi_info *info = dev_get_drvdata(dev); 1978 1979 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 1980 } 1981 static DEVICE_ATTR_RO(sub_vendor_id); 1982 1983 static struct attribute *versions_attrs[] = { 1984 &dev_attr_firmware_version.attr, 1985 &dev_attr_protocol_version.attr, 1986 &dev_attr_vendor_id.attr, 1987 &dev_attr_sub_vendor_id.attr, 1988 NULL, 1989 }; 1990 ATTRIBUTE_GROUPS(versions); 1991 1992 /* Each compatible listed below must have descriptor associated with it */ 1993 static const struct of_device_id scmi_of_match[] = { 1994 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 1995 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 1996 #endif 1997 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 1998 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 1999 #endif 2000 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 2001 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 2002 #endif 2003 { /* Sentinel */ }, 2004 }; 2005 2006 MODULE_DEVICE_TABLE(of, scmi_of_match); 2007 2008 static struct platform_driver scmi_driver = { 2009 .driver = { 2010 .name = "arm-scmi", 2011 .of_match_table = scmi_of_match, 2012 .dev_groups = versions_groups, 2013 }, 2014 .probe = scmi_probe, 2015 .remove = scmi_remove, 2016 }; 2017 2018 /** 2019 * __scmi_transports_setup - Common helper to call transport-specific 2020 * .init/.exit code if provided. 2021 * 2022 * @init: A flag to distinguish between init and exit. 2023 * 2024 * Note that, if provided, we invoke .init/.exit functions for all the 2025 * transports currently compiled in. 2026 * 2027 * Return: 0 on Success. 2028 */ 2029 static inline int __scmi_transports_setup(bool init) 2030 { 2031 int ret = 0; 2032 const struct of_device_id *trans; 2033 2034 for (trans = scmi_of_match; trans->data; trans++) { 2035 const struct scmi_desc *tdesc = trans->data; 2036 2037 if ((init && !tdesc->transport_init) || 2038 (!init && !tdesc->transport_exit)) 2039 continue; 2040 2041 if (init) 2042 ret = tdesc->transport_init(); 2043 else 2044 tdesc->transport_exit(); 2045 2046 if (ret) { 2047 pr_err("SCMI transport %s FAILED initialization!\n", 2048 trans->compatible); 2049 break; 2050 } 2051 } 2052 2053 return ret; 2054 } 2055 2056 static int __init scmi_transports_init(void) 2057 { 2058 return __scmi_transports_setup(true); 2059 } 2060 2061 static void __exit scmi_transports_exit(void) 2062 { 2063 __scmi_transports_setup(false); 2064 } 2065 2066 static int __init scmi_driver_init(void) 2067 { 2068 int ret; 2069 2070 /* Bail out if no SCMI transport was configured */ 2071 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 2072 return -EINVAL; 2073 2074 scmi_bus_init(); 2075 2076 /* Initialize any compiled-in transport which provided an init/exit */ 2077 ret = scmi_transports_init(); 2078 if (ret) 2079 return ret; 2080 2081 scmi_base_register(); 2082 2083 scmi_clock_register(); 2084 scmi_perf_register(); 2085 scmi_power_register(); 2086 scmi_reset_register(); 2087 scmi_sensors_register(); 2088 scmi_voltage_register(); 2089 scmi_system_register(); 2090 2091 return platform_driver_register(&scmi_driver); 2092 } 2093 subsys_initcall(scmi_driver_init); 2094 2095 static void __exit scmi_driver_exit(void) 2096 { 2097 scmi_base_unregister(); 2098 2099 scmi_clock_unregister(); 2100 scmi_perf_unregister(); 2101 scmi_power_unregister(); 2102 scmi_reset_unregister(); 2103 scmi_sensors_unregister(); 2104 scmi_voltage_unregister(); 2105 scmi_system_unregister(); 2106 2107 scmi_bus_exit(); 2108 2109 scmi_transports_exit(); 2110 2111 platform_driver_unregister(&scmi_driver); 2112 } 2113 module_exit(scmi_driver_exit); 2114 2115 MODULE_ALIAS("platform: arm-scmi"); 2116 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 2117 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 2118 MODULE_LICENSE("GPL v2"); 2119