1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * System Control and Management Interface (SCMI) Message Protocol driver 4 * 5 * SCMI Message Protocol is used between the System Control Processor(SCP) 6 * and the Application Processors(AP). The Message Handling Unit(MHU) 7 * provides a mechanism for inter-processor communication between SCP's 8 * Cortex M3 and AP. 9 * 10 * SCP offers control and management of the core/cluster power states, 11 * various power domain DVFS including the core/cluster, certain system 12 * clocks configuration, thermal sensors and many others. 13 * 14 * Copyright (C) 2018-2021 ARM Ltd. 15 */ 16 17 #include <linux/bitmap.h> 18 #include <linux/device.h> 19 #include <linux/export.h> 20 #include <linux/idr.h> 21 #include <linux/io.h> 22 #include <linux/kernel.h> 23 #include <linux/ktime.h> 24 #include <linux/hashtable.h> 25 #include <linux/list.h> 26 #include <linux/module.h> 27 #include <linux/of_address.h> 28 #include <linux/of_device.h> 29 #include <linux/processor.h> 30 #include <linux/refcount.h> 31 #include <linux/slab.h> 32 33 #include "common.h" 34 #include "notify.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/scmi.h> 38 39 enum scmi_error_codes { 40 SCMI_SUCCESS = 0, /* Success */ 41 SCMI_ERR_SUPPORT = -1, /* Not supported */ 42 SCMI_ERR_PARAMS = -2, /* Invalid Parameters */ 43 SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */ 44 SCMI_ERR_ENTRY = -4, /* Not found */ 45 SCMI_ERR_RANGE = -5, /* Value out of range */ 46 SCMI_ERR_BUSY = -6, /* Device busy */ 47 SCMI_ERR_COMMS = -7, /* Communication Error */ 48 SCMI_ERR_GENERIC = -8, /* Generic Error */ 49 SCMI_ERR_HARDWARE = -9, /* Hardware Error */ 50 SCMI_ERR_PROTOCOL = -10,/* Protocol Error */ 51 }; 52 53 /* List of all SCMI devices active in system */ 54 static LIST_HEAD(scmi_list); 55 /* Protection for the entire list */ 56 static DEFINE_MUTEX(scmi_list_mutex); 57 /* Track the unique id for the transfers for debug & profiling purpose */ 58 static atomic_t transfer_last_id; 59 60 static DEFINE_IDR(scmi_requested_devices); 61 static DEFINE_MUTEX(scmi_requested_devices_mtx); 62 63 struct scmi_requested_dev { 64 const struct scmi_device_id *id_table; 65 struct list_head node; 66 }; 67 68 /** 69 * struct scmi_xfers_info - Structure to manage transfer information 70 * 71 * @xfer_alloc_table: Bitmap table for allocated messages. 72 * Index of this bitmap table is also used for message 73 * sequence identifier. 74 * @xfer_lock: Protection for message allocation 75 * @max_msg: Maximum number of messages that can be pending 76 * @free_xfers: A free list for available to use xfers. It is initialized with 77 * a number of xfers equal to the maximum allowed in-flight 78 * messages. 79 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the 80 * currently in-flight messages. 81 */ 82 struct scmi_xfers_info { 83 unsigned long *xfer_alloc_table; 84 spinlock_t xfer_lock; 85 int max_msg; 86 struct hlist_head free_xfers; 87 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ); 88 }; 89 90 /** 91 * struct scmi_protocol_instance - Describe an initialized protocol instance. 92 * @handle: Reference to the SCMI handle associated to this protocol instance. 93 * @proto: A reference to the protocol descriptor. 94 * @gid: A reference for per-protocol devres management. 95 * @users: A refcount to track effective users of this protocol. 96 * @priv: Reference for optional protocol private data. 97 * @ph: An embedded protocol handle that will be passed down to protocol 98 * initialization code to identify this instance. 99 * 100 * Each protocol is initialized independently once for each SCMI platform in 101 * which is defined by DT and implemented by the SCMI server fw. 102 */ 103 struct scmi_protocol_instance { 104 const struct scmi_handle *handle; 105 const struct scmi_protocol *proto; 106 void *gid; 107 refcount_t users; 108 void *priv; 109 struct scmi_protocol_handle ph; 110 }; 111 112 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph) 113 114 /** 115 * struct scmi_info - Structure representing a SCMI instance 116 * 117 * @dev: Device pointer 118 * @desc: SoC description for this instance 119 * @version: SCMI revision information containing protocol version, 120 * implementation version and (sub-)vendor identification. 121 * @handle: Instance of SCMI handle to send to clients 122 * @tx_minfo: Universal Transmit Message management info 123 * @rx_minfo: Universal Receive Message management info 124 * @tx_idr: IDR object to map protocol id to Tx channel info pointer 125 * @rx_idr: IDR object to map protocol id to Rx channel info pointer 126 * @protocols: IDR for protocols' instance descriptors initialized for 127 * this SCMI instance: populated on protocol's first attempted 128 * usage. 129 * @protocols_mtx: A mutex to protect protocols instances initialization. 130 * @protocols_imp: List of protocols implemented, currently maximum of 131 * scmi_revision_info.num_protocols elements allocated by the 132 * base protocol 133 * @active_protocols: IDR storing device_nodes for protocols actually defined 134 * in the DT and confirmed as implemented by fw. 135 * @atomic_threshold: Optional system wide DT-configured threshold, expressed 136 * in microseconds, for atomic operations. 137 * Only SCMI synchronous commands reported by the platform 138 * to have an execution latency lesser-equal to the threshold 139 * should be considered for atomic mode operation: such 140 * decision is finally left up to the SCMI drivers. 141 * @notify_priv: Pointer to private data structure specific to notifications. 142 * @node: List head 143 * @users: Number of users of this instance 144 */ 145 struct scmi_info { 146 struct device *dev; 147 const struct scmi_desc *desc; 148 struct scmi_revision_info version; 149 struct scmi_handle handle; 150 struct scmi_xfers_info tx_minfo; 151 struct scmi_xfers_info rx_minfo; 152 struct idr tx_idr; 153 struct idr rx_idr; 154 struct idr protocols; 155 /* Ensure mutual exclusive access to protocols instance array */ 156 struct mutex protocols_mtx; 157 u8 *protocols_imp; 158 struct idr active_protocols; 159 unsigned int atomic_threshold; 160 void *notify_priv; 161 struct list_head node; 162 int users; 163 }; 164 165 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle) 166 167 static const int scmi_linux_errmap[] = { 168 /* better than switch case as long as return value is continuous */ 169 0, /* SCMI_SUCCESS */ 170 -EOPNOTSUPP, /* SCMI_ERR_SUPPORT */ 171 -EINVAL, /* SCMI_ERR_PARAM */ 172 -EACCES, /* SCMI_ERR_ACCESS */ 173 -ENOENT, /* SCMI_ERR_ENTRY */ 174 -ERANGE, /* SCMI_ERR_RANGE */ 175 -EBUSY, /* SCMI_ERR_BUSY */ 176 -ECOMM, /* SCMI_ERR_COMMS */ 177 -EIO, /* SCMI_ERR_GENERIC */ 178 -EREMOTEIO, /* SCMI_ERR_HARDWARE */ 179 -EPROTO, /* SCMI_ERR_PROTOCOL */ 180 }; 181 182 static inline int scmi_to_linux_errno(int errno) 183 { 184 int err_idx = -errno; 185 186 if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap)) 187 return scmi_linux_errmap[err_idx]; 188 return -EIO; 189 } 190 191 void scmi_notification_instance_data_set(const struct scmi_handle *handle, 192 void *priv) 193 { 194 struct scmi_info *info = handle_to_scmi_info(handle); 195 196 info->notify_priv = priv; 197 /* Ensure updated protocol private date are visible */ 198 smp_wmb(); 199 } 200 201 void *scmi_notification_instance_data_get(const struct scmi_handle *handle) 202 { 203 struct scmi_info *info = handle_to_scmi_info(handle); 204 205 /* Ensure protocols_private_data has been updated */ 206 smp_rmb(); 207 return info->notify_priv; 208 } 209 210 /** 211 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand 212 * 213 * @minfo: Pointer to Tx/Rx Message management info based on channel type 214 * @xfer: The xfer to act upon 215 * 216 * Pick the next unused monotonically increasing token and set it into 217 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate 218 * reuse of freshly completed or timed-out xfers, thus mitigating the risk 219 * of incorrect association of a late and expired xfer with a live in-flight 220 * transaction, both happening to re-use the same token identifier. 221 * 222 * Since platform is NOT required to answer our request in-order we should 223 * account for a few rare but possible scenarios: 224 * 225 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token 226 * using find_next_zero_bit() starting from candidate next_token bit 227 * 228 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we 229 * are plenty of free tokens at start, so try a second pass using 230 * find_next_zero_bit() and starting from 0. 231 * 232 * X = used in-flight 233 * 234 * Normal 235 * ------ 236 * 237 * |- xfer_id picked 238 * -----------+---------------------------------------------------------- 239 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X| 240 * ---------------------------------------------------------------------- 241 * ^ 242 * |- next_token 243 * 244 * Out-of-order pending at start 245 * ----------------------------- 246 * 247 * |- xfer_id picked, last_token fixed 248 * -----+---------------------------------------------------------------- 249 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| | 250 * ---------------------------------------------------------------------- 251 * ^ 252 * |- next_token 253 * 254 * 255 * Out-of-order pending at end 256 * --------------------------- 257 * 258 * |- xfer_id picked, last_token fixed 259 * -----+---------------------------------------------------------------- 260 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X| 261 * ---------------------------------------------------------------------- 262 * ^ 263 * |- next_token 264 * 265 * Context: Assumes to be called with @xfer_lock already acquired. 266 * 267 * Return: 0 on Success or error 268 */ 269 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo, 270 struct scmi_xfer *xfer) 271 { 272 unsigned long xfer_id, next_token; 273 274 /* 275 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1] 276 * using the pre-allocated transfer_id as a base. 277 * Note that the global transfer_id is shared across all message types 278 * so there could be holes in the allocated set of monotonic sequence 279 * numbers, but that is going to limit the effectiveness of the 280 * mitigation only in very rare limit conditions. 281 */ 282 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1)); 283 284 /* Pick the next available xfer_id >= next_token */ 285 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 286 MSG_TOKEN_MAX, next_token); 287 if (xfer_id == MSG_TOKEN_MAX) { 288 /* 289 * After heavily out-of-order responses, there are no free 290 * tokens ahead, but only at start of xfer_alloc_table so 291 * try again from the beginning. 292 */ 293 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table, 294 MSG_TOKEN_MAX, 0); 295 /* 296 * Something is wrong if we got here since there can be a 297 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages 298 * but we have not found any free token [0, MSG_TOKEN_MAX - 1]. 299 */ 300 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX)) 301 return -ENOMEM; 302 } 303 304 /* Update +/- last_token accordingly if we skipped some hole */ 305 if (xfer_id != next_token) 306 atomic_add((int)(xfer_id - next_token), &transfer_last_id); 307 308 /* Set in-flight */ 309 set_bit(xfer_id, minfo->xfer_alloc_table); 310 xfer->hdr.seq = (u16)xfer_id; 311 312 return 0; 313 } 314 315 /** 316 * scmi_xfer_token_clear - Release the token 317 * 318 * @minfo: Pointer to Tx/Rx Message management info based on channel type 319 * @xfer: The xfer to act upon 320 */ 321 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo, 322 struct scmi_xfer *xfer) 323 { 324 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table); 325 } 326 327 /** 328 * scmi_xfer_get() - Allocate one message 329 * 330 * @handle: Pointer to SCMI entity handle 331 * @minfo: Pointer to Tx/Rx Message management info based on channel type 332 * @set_pending: If true a monotonic token is picked and the xfer is added to 333 * the pending hash table. 334 * 335 * Helper function which is used by various message functions that are 336 * exposed to clients of this driver for allocating a message traffic event. 337 * 338 * Picks an xfer from the free list @free_xfers (if any available) and, if 339 * required, sets a monotonically increasing token and stores the inflight xfer 340 * into the @pending_xfers hashtable for later retrieval. 341 * 342 * The successfully initialized xfer is refcounted. 343 * 344 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and 345 * @free_xfers. 346 * 347 * Return: 0 if all went fine, else corresponding error. 348 */ 349 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle, 350 struct scmi_xfers_info *minfo, 351 bool set_pending) 352 { 353 int ret; 354 unsigned long flags; 355 struct scmi_xfer *xfer; 356 357 spin_lock_irqsave(&minfo->xfer_lock, flags); 358 if (hlist_empty(&minfo->free_xfers)) { 359 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 360 return ERR_PTR(-ENOMEM); 361 } 362 363 /* grab an xfer from the free_list */ 364 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node); 365 hlist_del_init(&xfer->node); 366 367 /* 368 * Allocate transfer_id early so that can be used also as base for 369 * monotonic sequence number generation if needed. 370 */ 371 xfer->transfer_id = atomic_inc_return(&transfer_last_id); 372 373 if (set_pending) { 374 /* Pick and set monotonic token */ 375 ret = scmi_xfer_token_set(minfo, xfer); 376 if (!ret) { 377 hash_add(minfo->pending_xfers, &xfer->node, 378 xfer->hdr.seq); 379 xfer->pending = true; 380 } else { 381 dev_err(handle->dev, 382 "Failed to get monotonic token %d\n", ret); 383 hlist_add_head(&xfer->node, &minfo->free_xfers); 384 xfer = ERR_PTR(ret); 385 } 386 } 387 388 if (!IS_ERR(xfer)) { 389 refcount_set(&xfer->users, 1); 390 atomic_set(&xfer->busy, SCMI_XFER_FREE); 391 } 392 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 393 394 return xfer; 395 } 396 397 /** 398 * __scmi_xfer_put() - Release a message 399 * 400 * @minfo: Pointer to Tx/Rx Message management info based on channel type 401 * @xfer: message that was reserved by scmi_xfer_get 402 * 403 * After refcount check, possibly release an xfer, clearing the token slot, 404 * removing xfer from @pending_xfers and putting it back into free_xfers. 405 * 406 * This holds a spinlock to maintain integrity of internal data structures. 407 */ 408 static void 409 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer) 410 { 411 unsigned long flags; 412 413 spin_lock_irqsave(&minfo->xfer_lock, flags); 414 if (refcount_dec_and_test(&xfer->users)) { 415 if (xfer->pending) { 416 scmi_xfer_token_clear(minfo, xfer); 417 hash_del(&xfer->node); 418 xfer->pending = false; 419 } 420 hlist_add_head(&xfer->node, &minfo->free_xfers); 421 } 422 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 423 } 424 425 /** 426 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id 427 * 428 * @minfo: Pointer to Tx/Rx Message management info based on channel type 429 * @xfer_id: Token ID to lookup in @pending_xfers 430 * 431 * Refcounting is untouched. 432 * 433 * Context: Assumes to be called with @xfer_lock already acquired. 434 * 435 * Return: A valid xfer on Success or error otherwise 436 */ 437 static struct scmi_xfer * 438 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id) 439 { 440 struct scmi_xfer *xfer = NULL; 441 442 if (test_bit(xfer_id, minfo->xfer_alloc_table)) 443 xfer = XFER_FIND(minfo->pending_xfers, xfer_id); 444 445 return xfer ?: ERR_PTR(-EINVAL); 446 } 447 448 /** 449 * scmi_msg_response_validate - Validate message type against state of related 450 * xfer 451 * 452 * @cinfo: A reference to the channel descriptor. 453 * @msg_type: Message type to check 454 * @xfer: A reference to the xfer to validate against @msg_type 455 * 456 * This function checks if @msg_type is congruent with the current state of 457 * a pending @xfer; if an asynchronous delayed response is received before the 458 * related synchronous response (Out-of-Order Delayed Response) the missing 459 * synchronous response is assumed to be OK and completed, carrying on with the 460 * Delayed Response: this is done to address the case in which the underlying 461 * SCMI transport can deliver such out-of-order responses. 462 * 463 * Context: Assumes to be called with xfer->lock already acquired. 464 * 465 * Return: 0 on Success, error otherwise 466 */ 467 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo, 468 u8 msg_type, 469 struct scmi_xfer *xfer) 470 { 471 /* 472 * Even if a response was indeed expected on this slot at this point, 473 * a buggy platform could wrongly reply feeding us an unexpected 474 * delayed response we're not prepared to handle: bail-out safely 475 * blaming firmware. 476 */ 477 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) { 478 dev_err(cinfo->dev, 479 "Delayed Response for %d not expected! Buggy F/W ?\n", 480 xfer->hdr.seq); 481 return -EINVAL; 482 } 483 484 switch (xfer->state) { 485 case SCMI_XFER_SENT_OK: 486 if (msg_type == MSG_TYPE_DELAYED_RESP) { 487 /* 488 * Delayed Response expected but delivered earlier. 489 * Assume message RESPONSE was OK and skip state. 490 */ 491 xfer->hdr.status = SCMI_SUCCESS; 492 xfer->state = SCMI_XFER_RESP_OK; 493 complete(&xfer->done); 494 dev_warn(cinfo->dev, 495 "Received valid OoO Delayed Response for %d\n", 496 xfer->hdr.seq); 497 } 498 break; 499 case SCMI_XFER_RESP_OK: 500 if (msg_type != MSG_TYPE_DELAYED_RESP) 501 return -EINVAL; 502 break; 503 case SCMI_XFER_DRESP_OK: 504 /* No further message expected once in SCMI_XFER_DRESP_OK */ 505 return -EINVAL; 506 } 507 508 return 0; 509 } 510 511 /** 512 * scmi_xfer_state_update - Update xfer state 513 * 514 * @xfer: A reference to the xfer to update 515 * @msg_type: Type of message being processed. 516 * 517 * Note that this message is assumed to have been already successfully validated 518 * by @scmi_msg_response_validate(), so here we just update the state. 519 * 520 * Context: Assumes to be called on an xfer exclusively acquired using the 521 * busy flag. 522 */ 523 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type) 524 { 525 xfer->hdr.type = msg_type; 526 527 /* Unknown command types were already discarded earlier */ 528 if (xfer->hdr.type == MSG_TYPE_COMMAND) 529 xfer->state = SCMI_XFER_RESP_OK; 530 else 531 xfer->state = SCMI_XFER_DRESP_OK; 532 } 533 534 static bool scmi_xfer_acquired(struct scmi_xfer *xfer) 535 { 536 int ret; 537 538 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY); 539 540 return ret == SCMI_XFER_FREE; 541 } 542 543 /** 544 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer 545 * 546 * @cinfo: A reference to the channel descriptor. 547 * @msg_hdr: A message header to use as lookup key 548 * 549 * When a valid xfer is found for the sequence number embedded in the provided 550 * msg_hdr, reference counting is properly updated and exclusive access to this 551 * xfer is granted till released with @scmi_xfer_command_release. 552 * 553 * Return: A valid @xfer on Success or error otherwise. 554 */ 555 static inline struct scmi_xfer * 556 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr) 557 { 558 int ret; 559 unsigned long flags; 560 struct scmi_xfer *xfer; 561 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 562 struct scmi_xfers_info *minfo = &info->tx_minfo; 563 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 564 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr); 565 566 /* Are we even expecting this? */ 567 spin_lock_irqsave(&minfo->xfer_lock, flags); 568 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id); 569 if (IS_ERR(xfer)) { 570 dev_err(cinfo->dev, 571 "Message for %d type %d is not expected!\n", 572 xfer_id, msg_type); 573 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 574 return xfer; 575 } 576 refcount_inc(&xfer->users); 577 spin_unlock_irqrestore(&minfo->xfer_lock, flags); 578 579 spin_lock_irqsave(&xfer->lock, flags); 580 ret = scmi_msg_response_validate(cinfo, msg_type, xfer); 581 /* 582 * If a pending xfer was found which was also in a congruent state with 583 * the received message, acquire exclusive access to it setting the busy 584 * flag. 585 * Spins only on the rare limit condition of concurrent reception of 586 * RESP and DRESP for the same xfer. 587 */ 588 if (!ret) { 589 spin_until_cond(scmi_xfer_acquired(xfer)); 590 scmi_xfer_state_update(xfer, msg_type); 591 } 592 spin_unlock_irqrestore(&xfer->lock, flags); 593 594 if (ret) { 595 dev_err(cinfo->dev, 596 "Invalid message type:%d for %d - HDR:0x%X state:%d\n", 597 msg_type, xfer_id, msg_hdr, xfer->state); 598 /* On error the refcount incremented above has to be dropped */ 599 __scmi_xfer_put(minfo, xfer); 600 xfer = ERR_PTR(-EINVAL); 601 } 602 603 return xfer; 604 } 605 606 static inline void scmi_xfer_command_release(struct scmi_info *info, 607 struct scmi_xfer *xfer) 608 { 609 atomic_set(&xfer->busy, SCMI_XFER_FREE); 610 __scmi_xfer_put(&info->tx_minfo, xfer); 611 } 612 613 static inline void scmi_clear_channel(struct scmi_info *info, 614 struct scmi_chan_info *cinfo) 615 { 616 if (info->desc->ops->clear_channel) 617 info->desc->ops->clear_channel(cinfo); 618 } 619 620 static inline bool is_polling_required(struct scmi_chan_info *cinfo, 621 struct scmi_info *info) 622 { 623 return cinfo->no_completion_irq || info->desc->force_polling; 624 } 625 626 static inline bool is_transport_polling_capable(struct scmi_info *info) 627 { 628 return info->desc->ops->poll_done || 629 info->desc->sync_cmds_completed_on_ret; 630 } 631 632 static inline bool is_polling_enabled(struct scmi_chan_info *cinfo, 633 struct scmi_info *info) 634 { 635 return is_polling_required(cinfo, info) && 636 is_transport_polling_capable(info); 637 } 638 639 static void scmi_handle_notification(struct scmi_chan_info *cinfo, 640 u32 msg_hdr, void *priv) 641 { 642 struct scmi_xfer *xfer; 643 struct device *dev = cinfo->dev; 644 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 645 struct scmi_xfers_info *minfo = &info->rx_minfo; 646 ktime_t ts; 647 648 ts = ktime_get_boottime(); 649 xfer = scmi_xfer_get(cinfo->handle, minfo, false); 650 if (IS_ERR(xfer)) { 651 dev_err(dev, "failed to get free message slot (%ld)\n", 652 PTR_ERR(xfer)); 653 scmi_clear_channel(info, cinfo); 654 return; 655 } 656 657 unpack_scmi_header(msg_hdr, &xfer->hdr); 658 if (priv) 659 /* Ensure order between xfer->priv store and following ops */ 660 smp_store_mb(xfer->priv, priv); 661 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size, 662 xfer); 663 scmi_notify(cinfo->handle, xfer->hdr.protocol_id, 664 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts); 665 666 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 667 xfer->hdr.protocol_id, xfer->hdr.seq, 668 MSG_TYPE_NOTIFICATION); 669 670 __scmi_xfer_put(minfo, xfer); 671 672 scmi_clear_channel(info, cinfo); 673 } 674 675 static void scmi_handle_response(struct scmi_chan_info *cinfo, 676 u32 msg_hdr, void *priv) 677 { 678 struct scmi_xfer *xfer; 679 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 680 681 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr); 682 if (IS_ERR(xfer)) { 683 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP) 684 scmi_clear_channel(info, cinfo); 685 return; 686 } 687 688 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */ 689 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) 690 xfer->rx.len = info->desc->max_msg_size; 691 692 if (priv) 693 /* Ensure order between xfer->priv store and following ops */ 694 smp_store_mb(xfer->priv, priv); 695 info->desc->ops->fetch_response(cinfo, xfer); 696 697 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id, 698 xfer->hdr.protocol_id, xfer->hdr.seq, 699 xfer->hdr.type); 700 701 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) { 702 scmi_clear_channel(info, cinfo); 703 complete(xfer->async_done); 704 } else { 705 complete(&xfer->done); 706 } 707 708 scmi_xfer_command_release(info, xfer); 709 } 710 711 /** 712 * scmi_rx_callback() - callback for receiving messages 713 * 714 * @cinfo: SCMI channel info 715 * @msg_hdr: Message header 716 * @priv: Transport specific private data. 717 * 718 * Processes one received message to appropriate transfer information and 719 * signals completion of the transfer. 720 * 721 * NOTE: This function will be invoked in IRQ context, hence should be 722 * as optimal as possible. 723 */ 724 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv) 725 { 726 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr); 727 728 switch (msg_type) { 729 case MSG_TYPE_NOTIFICATION: 730 scmi_handle_notification(cinfo, msg_hdr, priv); 731 break; 732 case MSG_TYPE_COMMAND: 733 case MSG_TYPE_DELAYED_RESP: 734 scmi_handle_response(cinfo, msg_hdr, priv); 735 break; 736 default: 737 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type); 738 break; 739 } 740 } 741 742 /** 743 * xfer_put() - Release a transmit message 744 * 745 * @ph: Pointer to SCMI protocol handle 746 * @xfer: message that was reserved by xfer_get_init 747 */ 748 static void xfer_put(const struct scmi_protocol_handle *ph, 749 struct scmi_xfer *xfer) 750 { 751 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 752 struct scmi_info *info = handle_to_scmi_info(pi->handle); 753 754 __scmi_xfer_put(&info->tx_minfo, xfer); 755 } 756 757 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo, 758 struct scmi_xfer *xfer, ktime_t stop) 759 { 760 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 761 762 /* 763 * Poll also on xfer->done so that polling can be forcibly terminated 764 * in case of out-of-order receptions of delayed responses 765 */ 766 return info->desc->ops->poll_done(cinfo, xfer) || 767 try_wait_for_completion(&xfer->done) || 768 ktime_after(ktime_get(), stop); 769 } 770 771 /** 772 * scmi_wait_for_message_response - An helper to group all the possible ways of 773 * waiting for a synchronous message response. 774 * 775 * @cinfo: SCMI channel info 776 * @xfer: Reference to the transfer being waited for. 777 * 778 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on 779 * configuration flags like xfer->hdr.poll_completion. 780 * 781 * Return: 0 on Success, error otherwise. 782 */ 783 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo, 784 struct scmi_xfer *xfer) 785 { 786 struct scmi_info *info = handle_to_scmi_info(cinfo->handle); 787 struct device *dev = info->dev; 788 int ret = 0, timeout_ms = info->desc->max_rx_timeout_ms; 789 790 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id, 791 xfer->hdr.protocol_id, xfer->hdr.seq, 792 timeout_ms, 793 xfer->hdr.poll_completion); 794 795 if (xfer->hdr.poll_completion) { 796 /* 797 * Real polling is needed only if transport has NOT declared 798 * itself to support synchronous commands replies. 799 */ 800 if (!info->desc->sync_cmds_completed_on_ret) { 801 /* 802 * Poll on xfer using transport provided .poll_done(); 803 * assumes no completion interrupt was available. 804 */ 805 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms); 806 807 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, 808 xfer, stop)); 809 if (ktime_after(ktime_get(), stop)) { 810 dev_err(dev, 811 "timed out in resp(caller: %pS) - polling\n", 812 (void *)_RET_IP_); 813 ret = -ETIMEDOUT; 814 } 815 } 816 817 if (!ret) { 818 unsigned long flags; 819 820 /* 821 * Do not fetch_response if an out-of-order delayed 822 * response is being processed. 823 */ 824 spin_lock_irqsave(&xfer->lock, flags); 825 if (xfer->state == SCMI_XFER_SENT_OK) { 826 info->desc->ops->fetch_response(cinfo, xfer); 827 xfer->state = SCMI_XFER_RESP_OK; 828 } 829 spin_unlock_irqrestore(&xfer->lock, flags); 830 } 831 } else { 832 /* And we wait for the response. */ 833 if (!wait_for_completion_timeout(&xfer->done, 834 msecs_to_jiffies(timeout_ms))) { 835 dev_err(dev, "timed out in resp(caller: %pS)\n", 836 (void *)_RET_IP_); 837 ret = -ETIMEDOUT; 838 } 839 } 840 841 return ret; 842 } 843 844 /** 845 * do_xfer() - Do one transfer 846 * 847 * @ph: Pointer to SCMI protocol handle 848 * @xfer: Transfer to initiate and wait for response 849 * 850 * Return: -ETIMEDOUT in case of no response, if transmit error, 851 * return corresponding error, else if all goes well, 852 * return 0. 853 */ 854 static int do_xfer(const struct scmi_protocol_handle *ph, 855 struct scmi_xfer *xfer) 856 { 857 int ret; 858 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 859 struct scmi_info *info = handle_to_scmi_info(pi->handle); 860 struct device *dev = info->dev; 861 struct scmi_chan_info *cinfo; 862 863 /* Check for polling request on custom command xfers at first */ 864 if (xfer->hdr.poll_completion && !is_transport_polling_capable(info)) { 865 dev_warn_once(dev, 866 "Polling mode is not supported by transport.\n"); 867 return -EINVAL; 868 } 869 870 cinfo = idr_find(&info->tx_idr, pi->proto->id); 871 if (unlikely(!cinfo)) 872 return -EINVAL; 873 874 /* True ONLY if also supported by transport. */ 875 if (is_polling_enabled(cinfo, info)) 876 xfer->hdr.poll_completion = true; 877 878 /* 879 * Initialise protocol id now from protocol handle to avoid it being 880 * overridden by mistake (or malice) by the protocol code mangling with 881 * the scmi_xfer structure prior to this. 882 */ 883 xfer->hdr.protocol_id = pi->proto->id; 884 reinit_completion(&xfer->done); 885 886 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id, 887 xfer->hdr.protocol_id, xfer->hdr.seq, 888 xfer->hdr.poll_completion); 889 890 xfer->state = SCMI_XFER_SENT_OK; 891 /* 892 * Even though spinlocking is not needed here since no race is possible 893 * on xfer->state due to the monotonically increasing tokens allocation, 894 * we must anyway ensure xfer->state initialization is not re-ordered 895 * after the .send_message() to be sure that on the RX path an early 896 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state. 897 */ 898 smp_mb(); 899 900 ret = info->desc->ops->send_message(cinfo, xfer); 901 if (ret < 0) { 902 dev_dbg(dev, "Failed to send message %d\n", ret); 903 return ret; 904 } 905 906 ret = scmi_wait_for_message_response(cinfo, xfer); 907 if (!ret && xfer->hdr.status) 908 ret = scmi_to_linux_errno(xfer->hdr.status); 909 910 if (info->desc->ops->mark_txdone) 911 info->desc->ops->mark_txdone(cinfo, ret, xfer); 912 913 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id, 914 xfer->hdr.protocol_id, xfer->hdr.seq, ret); 915 916 return ret; 917 } 918 919 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph, 920 struct scmi_xfer *xfer) 921 { 922 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 923 struct scmi_info *info = handle_to_scmi_info(pi->handle); 924 925 xfer->rx.len = info->desc->max_msg_size; 926 } 927 928 #define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC) 929 930 /** 931 * do_xfer_with_response() - Do one transfer and wait until the delayed 932 * response is received 933 * 934 * @ph: Pointer to SCMI protocol handle 935 * @xfer: Transfer to initiate and wait for response 936 * 937 * Using asynchronous commands in atomic/polling mode should be avoided since 938 * it could cause long busy-waiting here, so ignore polling for the delayed 939 * response and WARN if it was requested for this command transaction since 940 * upper layers should refrain from issuing such kind of requests. 941 * 942 * The only other option would have been to refrain from using any asynchronous 943 * command even if made available, when an atomic transport is detected, and 944 * instead forcibly use the synchronous version (thing that can be easily 945 * attained at the protocol layer), but this would also have led to longer 946 * stalls of the channel for synchronous commands and possibly timeouts. 947 * (in other words there is usually a good reason if a platform provides an 948 * asynchronous version of a command and we should prefer to use it...just not 949 * when using atomic/polling mode) 950 * 951 * Return: -ETIMEDOUT in case of no delayed response, if transmit error, 952 * return corresponding error, else if all goes well, return 0. 953 */ 954 static int do_xfer_with_response(const struct scmi_protocol_handle *ph, 955 struct scmi_xfer *xfer) 956 { 957 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT); 958 DECLARE_COMPLETION_ONSTACK(async_response); 959 960 xfer->async_done = &async_response; 961 962 /* 963 * Delayed responses should not be polled, so an async command should 964 * not have been used when requiring an atomic/poll context; WARN and 965 * perform instead a sleeping wait. 966 * (Note Async + IgnoreDelayedResponses are sent via do_xfer) 967 */ 968 WARN_ON_ONCE(xfer->hdr.poll_completion); 969 970 ret = do_xfer(ph, xfer); 971 if (!ret) { 972 if (!wait_for_completion_timeout(xfer->async_done, timeout)) { 973 dev_err(ph->dev, 974 "timed out in delayed resp(caller: %pS)\n", 975 (void *)_RET_IP_); 976 ret = -ETIMEDOUT; 977 } else if (xfer->hdr.status) { 978 ret = scmi_to_linux_errno(xfer->hdr.status); 979 } 980 } 981 982 xfer->async_done = NULL; 983 return ret; 984 } 985 986 /** 987 * xfer_get_init() - Allocate and initialise one message for transmit 988 * 989 * @ph: Pointer to SCMI protocol handle 990 * @msg_id: Message identifier 991 * @tx_size: transmit message size 992 * @rx_size: receive message size 993 * @p: pointer to the allocated and initialised message 994 * 995 * This function allocates the message using @scmi_xfer_get and 996 * initialise the header. 997 * 998 * Return: 0 if all went fine with @p pointing to message, else 999 * corresponding error. 1000 */ 1001 static int xfer_get_init(const struct scmi_protocol_handle *ph, 1002 u8 msg_id, size_t tx_size, size_t rx_size, 1003 struct scmi_xfer **p) 1004 { 1005 int ret; 1006 struct scmi_xfer *xfer; 1007 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1008 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1009 struct scmi_xfers_info *minfo = &info->tx_minfo; 1010 struct device *dev = info->dev; 1011 1012 /* Ensure we have sane transfer sizes */ 1013 if (rx_size > info->desc->max_msg_size || 1014 tx_size > info->desc->max_msg_size) 1015 return -ERANGE; 1016 1017 xfer = scmi_xfer_get(pi->handle, minfo, true); 1018 if (IS_ERR(xfer)) { 1019 ret = PTR_ERR(xfer); 1020 dev_err(dev, "failed to get free message slot(%d)\n", ret); 1021 return ret; 1022 } 1023 1024 xfer->tx.len = tx_size; 1025 xfer->rx.len = rx_size ? : info->desc->max_msg_size; 1026 xfer->hdr.type = MSG_TYPE_COMMAND; 1027 xfer->hdr.id = msg_id; 1028 xfer->hdr.poll_completion = false; 1029 1030 *p = xfer; 1031 1032 return 0; 1033 } 1034 1035 /** 1036 * version_get() - command to get the revision of the SCMI entity 1037 * 1038 * @ph: Pointer to SCMI protocol handle 1039 * @version: Holds returned version of protocol. 1040 * 1041 * Updates the SCMI information in the internal data structure. 1042 * 1043 * Return: 0 if all went fine, else return appropriate error. 1044 */ 1045 static int version_get(const struct scmi_protocol_handle *ph, u32 *version) 1046 { 1047 int ret; 1048 __le32 *rev_info; 1049 struct scmi_xfer *t; 1050 1051 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t); 1052 if (ret) 1053 return ret; 1054 1055 ret = do_xfer(ph, t); 1056 if (!ret) { 1057 rev_info = t->rx.buf; 1058 *version = le32_to_cpu(*rev_info); 1059 } 1060 1061 xfer_put(ph, t); 1062 return ret; 1063 } 1064 1065 /** 1066 * scmi_set_protocol_priv - Set protocol specific data at init time 1067 * 1068 * @ph: A reference to the protocol handle. 1069 * @priv: The private data to set. 1070 * 1071 * Return: 0 on Success 1072 */ 1073 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph, 1074 void *priv) 1075 { 1076 struct scmi_protocol_instance *pi = ph_to_pi(ph); 1077 1078 pi->priv = priv; 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * scmi_get_protocol_priv - Set protocol specific data at init time 1085 * 1086 * @ph: A reference to the protocol handle. 1087 * 1088 * Return: Protocol private data if any was set. 1089 */ 1090 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph) 1091 { 1092 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1093 1094 return pi->priv; 1095 } 1096 1097 static const struct scmi_xfer_ops xfer_ops = { 1098 .version_get = version_get, 1099 .xfer_get_init = xfer_get_init, 1100 .reset_rx_to_maxsz = reset_rx_to_maxsz, 1101 .do_xfer = do_xfer, 1102 .do_xfer_with_response = do_xfer_with_response, 1103 .xfer_put = xfer_put, 1104 }; 1105 1106 struct scmi_msg_resp_domain_name_get { 1107 __le32 flags; 1108 u8 name[SCMI_MAX_STR_SIZE]; 1109 }; 1110 1111 /** 1112 * scmi_common_extended_name_get - Common helper to get extended resources name 1113 * @ph: A protocol handle reference. 1114 * @cmd_id: The specific command ID to use. 1115 * @res_id: The specific resource ID to use. 1116 * @name: A pointer to the preallocated area where the retrieved name will be 1117 * stored as a NULL terminated string. 1118 * @len: The len in bytes of the @name char array. 1119 * 1120 * Return: 0 on Succcess 1121 */ 1122 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph, 1123 u8 cmd_id, u32 res_id, char *name, 1124 size_t len) 1125 { 1126 int ret; 1127 struct scmi_xfer *t; 1128 struct scmi_msg_resp_domain_name_get *resp; 1129 1130 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id), 1131 sizeof(*resp), &t); 1132 if (ret) 1133 goto out; 1134 1135 put_unaligned_le32(res_id, t->tx.buf); 1136 resp = t->rx.buf; 1137 1138 ret = ph->xops->do_xfer(ph, t); 1139 if (!ret) 1140 strscpy(name, resp->name, len); 1141 1142 ph->xops->xfer_put(ph, t); 1143 out: 1144 if (ret) 1145 dev_warn(ph->dev, 1146 "Failed to get extended name - id:%u (ret:%d). Using %s\n", 1147 res_id, ret, name); 1148 return ret; 1149 } 1150 1151 /** 1152 * struct scmi_iterator - Iterator descriptor 1153 * @msg: A reference to the message TX buffer; filled by @prepare_message with 1154 * a proper custom command payload for each multi-part command request. 1155 * @resp: A reference to the response RX buffer; used by @update_state and 1156 * @process_response to parse the multi-part replies. 1157 * @t: A reference to the underlying xfer initialized and used transparently by 1158 * the iterator internal routines. 1159 * @ph: A reference to the associated protocol handle to be used. 1160 * @ops: A reference to the custom provided iterator operations. 1161 * @state: The current iterator state; used and updated in turn by the iterators 1162 * internal routines and by the caller-provided @scmi_iterator_ops. 1163 * @priv: A reference to optional private data as provided by the caller and 1164 * passed back to the @@scmi_iterator_ops. 1165 */ 1166 struct scmi_iterator { 1167 void *msg; 1168 void *resp; 1169 struct scmi_xfer *t; 1170 const struct scmi_protocol_handle *ph; 1171 struct scmi_iterator_ops *ops; 1172 struct scmi_iterator_state state; 1173 void *priv; 1174 }; 1175 1176 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph, 1177 struct scmi_iterator_ops *ops, 1178 unsigned int max_resources, u8 msg_id, 1179 size_t tx_size, void *priv) 1180 { 1181 int ret; 1182 struct scmi_iterator *i; 1183 1184 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL); 1185 if (!i) 1186 return ERR_PTR(-ENOMEM); 1187 1188 i->ph = ph; 1189 i->ops = ops; 1190 i->priv = priv; 1191 1192 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t); 1193 if (ret) { 1194 devm_kfree(ph->dev, i); 1195 return ERR_PTR(ret); 1196 } 1197 1198 i->state.max_resources = max_resources; 1199 i->msg = i->t->tx.buf; 1200 i->resp = i->t->rx.buf; 1201 1202 return i; 1203 } 1204 1205 static int scmi_iterator_run(void *iter) 1206 { 1207 int ret = -EINVAL; 1208 struct scmi_iterator_ops *iops; 1209 const struct scmi_protocol_handle *ph; 1210 struct scmi_iterator_state *st; 1211 struct scmi_iterator *i = iter; 1212 1213 if (!i || !i->ops || !i->ph) 1214 return ret; 1215 1216 iops = i->ops; 1217 ph = i->ph; 1218 st = &i->state; 1219 1220 do { 1221 iops->prepare_message(i->msg, st->desc_index, i->priv); 1222 ret = ph->xops->do_xfer(ph, i->t); 1223 if (ret) 1224 break; 1225 1226 ret = iops->update_state(st, i->resp, i->priv); 1227 if (ret) 1228 break; 1229 1230 if (st->num_returned > st->max_resources - st->desc_index) { 1231 dev_err(ph->dev, 1232 "No. of resources can't exceed %d\n", 1233 st->max_resources); 1234 ret = -EINVAL; 1235 break; 1236 } 1237 1238 for (st->loop_idx = 0; st->loop_idx < st->num_returned; 1239 st->loop_idx++) { 1240 ret = iops->process_response(ph, i->resp, st, i->priv); 1241 if (ret) 1242 goto out; 1243 } 1244 1245 st->desc_index += st->num_returned; 1246 ph->xops->reset_rx_to_maxsz(ph, i->t); 1247 /* 1248 * check for both returned and remaining to avoid infinite 1249 * loop due to buggy firmware 1250 */ 1251 } while (st->num_returned && st->num_remaining); 1252 1253 out: 1254 /* Finalize and destroy iterator */ 1255 ph->xops->xfer_put(ph, i->t); 1256 devm_kfree(ph->dev, i); 1257 1258 return ret; 1259 } 1260 1261 static const struct scmi_proto_helpers_ops helpers_ops = { 1262 .extended_name_get = scmi_common_extended_name_get, 1263 .iter_response_init = scmi_iterator_init, 1264 .iter_response_run = scmi_iterator_run, 1265 }; 1266 1267 /** 1268 * scmi_revision_area_get - Retrieve version memory area. 1269 * 1270 * @ph: A reference to the protocol handle. 1271 * 1272 * A helper to grab the version memory area reference during SCMI Base protocol 1273 * initialization. 1274 * 1275 * Return: A reference to the version memory area associated to the SCMI 1276 * instance underlying this protocol handle. 1277 */ 1278 struct scmi_revision_info * 1279 scmi_revision_area_get(const struct scmi_protocol_handle *ph) 1280 { 1281 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1282 1283 return pi->handle->version; 1284 } 1285 1286 /** 1287 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol 1288 * instance descriptor. 1289 * @info: The reference to the related SCMI instance. 1290 * @proto: The protocol descriptor. 1291 * 1292 * Allocate a new protocol instance descriptor, using the provided @proto 1293 * description, against the specified SCMI instance @info, and initialize it; 1294 * all resources management is handled via a dedicated per-protocol devres 1295 * group. 1296 * 1297 * Context: Assumes to be called with @protocols_mtx already acquired. 1298 * Return: A reference to a freshly allocated and initialized protocol instance 1299 * or ERR_PTR on failure. On failure the @proto reference is at first 1300 * put using @scmi_protocol_put() before releasing all the devres group. 1301 */ 1302 static struct scmi_protocol_instance * 1303 scmi_alloc_init_protocol_instance(struct scmi_info *info, 1304 const struct scmi_protocol *proto) 1305 { 1306 int ret = -ENOMEM; 1307 void *gid; 1308 struct scmi_protocol_instance *pi; 1309 const struct scmi_handle *handle = &info->handle; 1310 1311 /* Protocol specific devres group */ 1312 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL); 1313 if (!gid) { 1314 scmi_protocol_put(proto->id); 1315 goto out; 1316 } 1317 1318 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL); 1319 if (!pi) 1320 goto clean; 1321 1322 pi->gid = gid; 1323 pi->proto = proto; 1324 pi->handle = handle; 1325 pi->ph.dev = handle->dev; 1326 pi->ph.xops = &xfer_ops; 1327 pi->ph.hops = &helpers_ops; 1328 pi->ph.set_priv = scmi_set_protocol_priv; 1329 pi->ph.get_priv = scmi_get_protocol_priv; 1330 refcount_set(&pi->users, 1); 1331 /* proto->init is assured NON NULL by scmi_protocol_register */ 1332 ret = pi->proto->instance_init(&pi->ph); 1333 if (ret) 1334 goto clean; 1335 1336 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1, 1337 GFP_KERNEL); 1338 if (ret != proto->id) 1339 goto clean; 1340 1341 /* 1342 * Warn but ignore events registration errors since we do not want 1343 * to skip whole protocols if their notifications are messed up. 1344 */ 1345 if (pi->proto->events) { 1346 ret = scmi_register_protocol_events(handle, pi->proto->id, 1347 &pi->ph, 1348 pi->proto->events); 1349 if (ret) 1350 dev_warn(handle->dev, 1351 "Protocol:%X - Events Registration Failed - err:%d\n", 1352 pi->proto->id, ret); 1353 } 1354 1355 devres_close_group(handle->dev, pi->gid); 1356 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id); 1357 1358 return pi; 1359 1360 clean: 1361 /* Take care to put the protocol module's owner before releasing all */ 1362 scmi_protocol_put(proto->id); 1363 devres_release_group(handle->dev, gid); 1364 out: 1365 return ERR_PTR(ret); 1366 } 1367 1368 /** 1369 * scmi_get_protocol_instance - Protocol initialization helper. 1370 * @handle: A reference to the SCMI platform instance. 1371 * @protocol_id: The protocol being requested. 1372 * 1373 * In case the required protocol has never been requested before for this 1374 * instance, allocate and initialize all the needed structures while handling 1375 * resource allocation with a dedicated per-protocol devres subgroup. 1376 * 1377 * Return: A reference to an initialized protocol instance or error on failure: 1378 * in particular returns -EPROBE_DEFER when the desired protocol could 1379 * NOT be found. 1380 */ 1381 static struct scmi_protocol_instance * __must_check 1382 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id) 1383 { 1384 struct scmi_protocol_instance *pi; 1385 struct scmi_info *info = handle_to_scmi_info(handle); 1386 1387 mutex_lock(&info->protocols_mtx); 1388 pi = idr_find(&info->protocols, protocol_id); 1389 1390 if (pi) { 1391 refcount_inc(&pi->users); 1392 } else { 1393 const struct scmi_protocol *proto; 1394 1395 /* Fails if protocol not registered on bus */ 1396 proto = scmi_protocol_get(protocol_id); 1397 if (proto) 1398 pi = scmi_alloc_init_protocol_instance(info, proto); 1399 else 1400 pi = ERR_PTR(-EPROBE_DEFER); 1401 } 1402 mutex_unlock(&info->protocols_mtx); 1403 1404 return pi; 1405 } 1406 1407 /** 1408 * scmi_protocol_acquire - Protocol acquire 1409 * @handle: A reference to the SCMI platform instance. 1410 * @protocol_id: The protocol being requested. 1411 * 1412 * Register a new user for the requested protocol on the specified SCMI 1413 * platform instance, possibly triggering its initialization on first user. 1414 * 1415 * Return: 0 if protocol was acquired successfully. 1416 */ 1417 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id) 1418 { 1419 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id)); 1420 } 1421 1422 /** 1423 * scmi_protocol_release - Protocol de-initialization helper. 1424 * @handle: A reference to the SCMI platform instance. 1425 * @protocol_id: The protocol being requested. 1426 * 1427 * Remove one user for the specified protocol and triggers de-initialization 1428 * and resources de-allocation once the last user has gone. 1429 */ 1430 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id) 1431 { 1432 struct scmi_info *info = handle_to_scmi_info(handle); 1433 struct scmi_protocol_instance *pi; 1434 1435 mutex_lock(&info->protocols_mtx); 1436 pi = idr_find(&info->protocols, protocol_id); 1437 if (WARN_ON(!pi)) 1438 goto out; 1439 1440 if (refcount_dec_and_test(&pi->users)) { 1441 void *gid = pi->gid; 1442 1443 if (pi->proto->events) 1444 scmi_deregister_protocol_events(handle, protocol_id); 1445 1446 if (pi->proto->instance_deinit) 1447 pi->proto->instance_deinit(&pi->ph); 1448 1449 idr_remove(&info->protocols, protocol_id); 1450 1451 scmi_protocol_put(protocol_id); 1452 1453 devres_release_group(handle->dev, gid); 1454 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n", 1455 protocol_id); 1456 } 1457 1458 out: 1459 mutex_unlock(&info->protocols_mtx); 1460 } 1461 1462 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph, 1463 u8 *prot_imp) 1464 { 1465 const struct scmi_protocol_instance *pi = ph_to_pi(ph); 1466 struct scmi_info *info = handle_to_scmi_info(pi->handle); 1467 1468 info->protocols_imp = prot_imp; 1469 } 1470 1471 static bool 1472 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id) 1473 { 1474 int i; 1475 struct scmi_info *info = handle_to_scmi_info(handle); 1476 struct scmi_revision_info *rev = handle->version; 1477 1478 if (!info->protocols_imp) 1479 return false; 1480 1481 for (i = 0; i < rev->num_protocols; i++) 1482 if (info->protocols_imp[i] == prot_id) 1483 return true; 1484 return false; 1485 } 1486 1487 struct scmi_protocol_devres { 1488 const struct scmi_handle *handle; 1489 u8 protocol_id; 1490 }; 1491 1492 static void scmi_devm_release_protocol(struct device *dev, void *res) 1493 { 1494 struct scmi_protocol_devres *dres = res; 1495 1496 scmi_protocol_release(dres->handle, dres->protocol_id); 1497 } 1498 1499 /** 1500 * scmi_devm_protocol_get - Devres managed get protocol operations and handle 1501 * @sdev: A reference to an scmi_device whose embedded struct device is to 1502 * be used for devres accounting. 1503 * @protocol_id: The protocol being requested. 1504 * @ph: A pointer reference used to pass back the associated protocol handle. 1505 * 1506 * Get hold of a protocol accounting for its usage, eventually triggering its 1507 * initialization, and returning the protocol specific operations and related 1508 * protocol handle which will be used as first argument in most of the 1509 * protocols operations methods. 1510 * Being a devres based managed method, protocol hold will be automatically 1511 * released, and possibly de-initialized on last user, once the SCMI driver 1512 * owning the scmi_device is unbound from it. 1513 * 1514 * Return: A reference to the requested protocol operations or error. 1515 * Must be checked for errors by caller. 1516 */ 1517 static const void __must_check * 1518 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id, 1519 struct scmi_protocol_handle **ph) 1520 { 1521 struct scmi_protocol_instance *pi; 1522 struct scmi_protocol_devres *dres; 1523 struct scmi_handle *handle = sdev->handle; 1524 1525 if (!ph) 1526 return ERR_PTR(-EINVAL); 1527 1528 dres = devres_alloc(scmi_devm_release_protocol, 1529 sizeof(*dres), GFP_KERNEL); 1530 if (!dres) 1531 return ERR_PTR(-ENOMEM); 1532 1533 pi = scmi_get_protocol_instance(handle, protocol_id); 1534 if (IS_ERR(pi)) { 1535 devres_free(dres); 1536 return pi; 1537 } 1538 1539 dres->handle = handle; 1540 dres->protocol_id = protocol_id; 1541 devres_add(&sdev->dev, dres); 1542 1543 *ph = &pi->ph; 1544 1545 return pi->proto->ops; 1546 } 1547 1548 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data) 1549 { 1550 struct scmi_protocol_devres *dres = res; 1551 1552 if (WARN_ON(!dres || !data)) 1553 return 0; 1554 1555 return dres->protocol_id == *((u8 *)data); 1556 } 1557 1558 /** 1559 * scmi_devm_protocol_put - Devres managed put protocol operations and handle 1560 * @sdev: A reference to an scmi_device whose embedded struct device is to 1561 * be used for devres accounting. 1562 * @protocol_id: The protocol being requested. 1563 * 1564 * Explicitly release a protocol hold previously obtained calling the above 1565 * @scmi_devm_protocol_get. 1566 */ 1567 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id) 1568 { 1569 int ret; 1570 1571 ret = devres_release(&sdev->dev, scmi_devm_release_protocol, 1572 scmi_devm_protocol_match, &protocol_id); 1573 WARN_ON(ret); 1574 } 1575 1576 /** 1577 * scmi_is_transport_atomic - Method to check if underlying transport for an 1578 * SCMI instance is configured as atomic. 1579 * 1580 * @handle: A reference to the SCMI platform instance. 1581 * @atomic_threshold: An optional return value for the system wide currently 1582 * configured threshold for atomic operations. 1583 * 1584 * Return: True if transport is configured as atomic 1585 */ 1586 static bool scmi_is_transport_atomic(const struct scmi_handle *handle, 1587 unsigned int *atomic_threshold) 1588 { 1589 bool ret; 1590 struct scmi_info *info = handle_to_scmi_info(handle); 1591 1592 ret = info->desc->atomic_enabled && is_transport_polling_capable(info); 1593 if (ret && atomic_threshold) 1594 *atomic_threshold = info->atomic_threshold; 1595 1596 return ret; 1597 } 1598 1599 static inline 1600 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info) 1601 { 1602 info->users++; 1603 return &info->handle; 1604 } 1605 1606 /** 1607 * scmi_handle_get() - Get the SCMI handle for a device 1608 * 1609 * @dev: pointer to device for which we want SCMI handle 1610 * 1611 * NOTE: The function does not track individual clients of the framework 1612 * and is expected to be maintained by caller of SCMI protocol library. 1613 * scmi_handle_put must be balanced with successful scmi_handle_get 1614 * 1615 * Return: pointer to handle if successful, NULL on error 1616 */ 1617 struct scmi_handle *scmi_handle_get(struct device *dev) 1618 { 1619 struct list_head *p; 1620 struct scmi_info *info; 1621 struct scmi_handle *handle = NULL; 1622 1623 mutex_lock(&scmi_list_mutex); 1624 list_for_each(p, &scmi_list) { 1625 info = list_entry(p, struct scmi_info, node); 1626 if (dev->parent == info->dev) { 1627 handle = scmi_handle_get_from_info_unlocked(info); 1628 break; 1629 } 1630 } 1631 mutex_unlock(&scmi_list_mutex); 1632 1633 return handle; 1634 } 1635 1636 /** 1637 * scmi_handle_put() - Release the handle acquired by scmi_handle_get 1638 * 1639 * @handle: handle acquired by scmi_handle_get 1640 * 1641 * NOTE: The function does not track individual clients of the framework 1642 * and is expected to be maintained by caller of SCMI protocol library. 1643 * scmi_handle_put must be balanced with successful scmi_handle_get 1644 * 1645 * Return: 0 is successfully released 1646 * if null was passed, it returns -EINVAL; 1647 */ 1648 int scmi_handle_put(const struct scmi_handle *handle) 1649 { 1650 struct scmi_info *info; 1651 1652 if (!handle) 1653 return -EINVAL; 1654 1655 info = handle_to_scmi_info(handle); 1656 mutex_lock(&scmi_list_mutex); 1657 if (!WARN_ON(!info->users)) 1658 info->users--; 1659 mutex_unlock(&scmi_list_mutex); 1660 1661 return 0; 1662 } 1663 1664 static int __scmi_xfer_info_init(struct scmi_info *sinfo, 1665 struct scmi_xfers_info *info) 1666 { 1667 int i; 1668 struct scmi_xfer *xfer; 1669 struct device *dev = sinfo->dev; 1670 const struct scmi_desc *desc = sinfo->desc; 1671 1672 /* Pre-allocated messages, no more than what hdr.seq can support */ 1673 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) { 1674 dev_err(dev, 1675 "Invalid maximum messages %d, not in range [1 - %lu]\n", 1676 info->max_msg, MSG_TOKEN_MAX); 1677 return -EINVAL; 1678 } 1679 1680 hash_init(info->pending_xfers); 1681 1682 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */ 1683 info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX), 1684 sizeof(long), GFP_KERNEL); 1685 if (!info->xfer_alloc_table) 1686 return -ENOMEM; 1687 1688 /* 1689 * Preallocate a number of xfers equal to max inflight messages, 1690 * pre-initialize the buffer pointer to pre-allocated buffers and 1691 * attach all of them to the free list 1692 */ 1693 INIT_HLIST_HEAD(&info->free_xfers); 1694 for (i = 0; i < info->max_msg; i++) { 1695 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL); 1696 if (!xfer) 1697 return -ENOMEM; 1698 1699 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size, 1700 GFP_KERNEL); 1701 if (!xfer->rx.buf) 1702 return -ENOMEM; 1703 1704 xfer->tx.buf = xfer->rx.buf; 1705 init_completion(&xfer->done); 1706 spin_lock_init(&xfer->lock); 1707 1708 /* Add initialized xfer to the free list */ 1709 hlist_add_head(&xfer->node, &info->free_xfers); 1710 } 1711 1712 spin_lock_init(&info->xfer_lock); 1713 1714 return 0; 1715 } 1716 1717 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo) 1718 { 1719 const struct scmi_desc *desc = sinfo->desc; 1720 1721 if (!desc->ops->get_max_msg) { 1722 sinfo->tx_minfo.max_msg = desc->max_msg; 1723 sinfo->rx_minfo.max_msg = desc->max_msg; 1724 } else { 1725 struct scmi_chan_info *base_cinfo; 1726 1727 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE); 1728 if (!base_cinfo) 1729 return -EINVAL; 1730 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo); 1731 1732 /* RX channel is optional so can be skipped */ 1733 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE); 1734 if (base_cinfo) 1735 sinfo->rx_minfo.max_msg = 1736 desc->ops->get_max_msg(base_cinfo); 1737 } 1738 1739 return 0; 1740 } 1741 1742 static int scmi_xfer_info_init(struct scmi_info *sinfo) 1743 { 1744 int ret; 1745 1746 ret = scmi_channels_max_msg_configure(sinfo); 1747 if (ret) 1748 return ret; 1749 1750 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo); 1751 if (!ret && idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE)) 1752 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo); 1753 1754 return ret; 1755 } 1756 1757 static int scmi_chan_setup(struct scmi_info *info, struct device *dev, 1758 int prot_id, bool tx) 1759 { 1760 int ret, idx; 1761 struct scmi_chan_info *cinfo; 1762 struct idr *idr; 1763 1764 /* Transmit channel is first entry i.e. index 0 */ 1765 idx = tx ? 0 : 1; 1766 idr = tx ? &info->tx_idr : &info->rx_idr; 1767 1768 /* check if already allocated, used for multiple device per protocol */ 1769 cinfo = idr_find(idr, prot_id); 1770 if (cinfo) 1771 return 0; 1772 1773 if (!info->desc->ops->chan_available(dev, idx)) { 1774 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE); 1775 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */ 1776 return -EINVAL; 1777 goto idr_alloc; 1778 } 1779 1780 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL); 1781 if (!cinfo) 1782 return -ENOMEM; 1783 1784 cinfo->dev = dev; 1785 1786 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx); 1787 if (ret) 1788 return ret; 1789 1790 if (tx && is_polling_required(cinfo, info)) { 1791 if (is_transport_polling_capable(info)) 1792 dev_info(dev, 1793 "Enabled polling mode TX channel - prot_id:%d\n", 1794 prot_id); 1795 else 1796 dev_warn(dev, 1797 "Polling mode NOT supported by transport.\n"); 1798 } 1799 1800 idr_alloc: 1801 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL); 1802 if (ret != prot_id) { 1803 dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret); 1804 return ret; 1805 } 1806 1807 cinfo->handle = &info->handle; 1808 return 0; 1809 } 1810 1811 static inline int 1812 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id) 1813 { 1814 int ret = scmi_chan_setup(info, dev, prot_id, true); 1815 1816 if (!ret) /* Rx is optional, hence no error check */ 1817 scmi_chan_setup(info, dev, prot_id, false); 1818 1819 return ret; 1820 } 1821 1822 /** 1823 * scmi_get_protocol_device - Helper to get/create an SCMI device. 1824 * 1825 * @np: A device node representing a valid active protocols for the referred 1826 * SCMI instance. 1827 * @info: The referred SCMI instance for which we are getting/creating this 1828 * device. 1829 * @prot_id: The protocol ID. 1830 * @name: The device name. 1831 * 1832 * Referring to the specific SCMI instance identified by @info, this helper 1833 * takes care to return a properly initialized device matching the requested 1834 * @proto_id and @name: if device was still not existent it is created as a 1835 * child of the specified SCMI instance @info and its transport properly 1836 * initialized as usual. 1837 * 1838 * Return: A properly initialized scmi device, NULL otherwise. 1839 */ 1840 static inline struct scmi_device * 1841 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info, 1842 int prot_id, const char *name) 1843 { 1844 struct scmi_device *sdev; 1845 1846 /* Already created for this parent SCMI instance ? */ 1847 sdev = scmi_child_dev_find(info->dev, prot_id, name); 1848 if (sdev) 1849 return sdev; 1850 1851 pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id); 1852 1853 sdev = scmi_device_create(np, info->dev, prot_id, name); 1854 if (!sdev) { 1855 dev_err(info->dev, "failed to create %d protocol device\n", 1856 prot_id); 1857 return NULL; 1858 } 1859 1860 if (scmi_txrx_setup(info, &sdev->dev, prot_id)) { 1861 dev_err(&sdev->dev, "failed to setup transport\n"); 1862 scmi_device_destroy(sdev); 1863 return NULL; 1864 } 1865 1866 return sdev; 1867 } 1868 1869 static inline void 1870 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info, 1871 int prot_id, const char *name) 1872 { 1873 struct scmi_device *sdev; 1874 1875 sdev = scmi_get_protocol_device(np, info, prot_id, name); 1876 if (!sdev) 1877 return; 1878 1879 /* setup handle now as the transport is ready */ 1880 scmi_set_handle(sdev); 1881 } 1882 1883 /** 1884 * scmi_create_protocol_devices - Create devices for all pending requests for 1885 * this SCMI instance. 1886 * 1887 * @np: The device node describing the protocol 1888 * @info: The SCMI instance descriptor 1889 * @prot_id: The protocol ID 1890 * 1891 * All devices previously requested for this instance (if any) are found and 1892 * created by scanning the proper @&scmi_requested_devices entry. 1893 */ 1894 static void scmi_create_protocol_devices(struct device_node *np, 1895 struct scmi_info *info, int prot_id) 1896 { 1897 struct list_head *phead; 1898 1899 mutex_lock(&scmi_requested_devices_mtx); 1900 phead = idr_find(&scmi_requested_devices, prot_id); 1901 if (phead) { 1902 struct scmi_requested_dev *rdev; 1903 1904 list_for_each_entry(rdev, phead, node) 1905 scmi_create_protocol_device(np, info, prot_id, 1906 rdev->id_table->name); 1907 } 1908 mutex_unlock(&scmi_requested_devices_mtx); 1909 } 1910 1911 /** 1912 * scmi_protocol_device_request - Helper to request a device 1913 * 1914 * @id_table: A protocol/name pair descriptor for the device to be created. 1915 * 1916 * This helper let an SCMI driver request specific devices identified by the 1917 * @id_table to be created for each active SCMI instance. 1918 * 1919 * The requested device name MUST NOT be already existent for any protocol; 1920 * at first the freshly requested @id_table is annotated in the IDR table 1921 * @scmi_requested_devices, then a matching device is created for each already 1922 * active SCMI instance. (if any) 1923 * 1924 * This way the requested device is created straight-away for all the already 1925 * initialized(probed) SCMI instances (handles) and it remains also annotated 1926 * as pending creation if the requesting SCMI driver was loaded before some 1927 * SCMI instance and related transports were available: when such late instance 1928 * is probed, its probe will take care to scan the list of pending requested 1929 * devices and create those on its own (see @scmi_create_protocol_devices and 1930 * its enclosing loop) 1931 * 1932 * Return: 0 on Success 1933 */ 1934 int scmi_protocol_device_request(const struct scmi_device_id *id_table) 1935 { 1936 int ret = 0; 1937 unsigned int id = 0; 1938 struct list_head *head, *phead = NULL; 1939 struct scmi_requested_dev *rdev; 1940 struct scmi_info *info; 1941 1942 pr_debug("Requesting SCMI device (%s) for protocol %x\n", 1943 id_table->name, id_table->protocol_id); 1944 1945 /* 1946 * Search for the matching protocol rdev list and then search 1947 * of any existent equally named device...fails if any duplicate found. 1948 */ 1949 mutex_lock(&scmi_requested_devices_mtx); 1950 idr_for_each_entry(&scmi_requested_devices, head, id) { 1951 if (!phead) { 1952 /* A list found registered in the IDR is never empty */ 1953 rdev = list_first_entry(head, struct scmi_requested_dev, 1954 node); 1955 if (rdev->id_table->protocol_id == 1956 id_table->protocol_id) 1957 phead = head; 1958 } 1959 list_for_each_entry(rdev, head, node) { 1960 if (!strcmp(rdev->id_table->name, id_table->name)) { 1961 pr_err("Ignoring duplicate request [%d] %s\n", 1962 rdev->id_table->protocol_id, 1963 rdev->id_table->name); 1964 ret = -EINVAL; 1965 goto out; 1966 } 1967 } 1968 } 1969 1970 /* 1971 * No duplicate found for requested id_table, so let's create a new 1972 * requested device entry for this new valid request. 1973 */ 1974 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); 1975 if (!rdev) { 1976 ret = -ENOMEM; 1977 goto out; 1978 } 1979 rdev->id_table = id_table; 1980 1981 /* 1982 * Append the new requested device table descriptor to the head of the 1983 * related protocol list, eventually creating such head if not already 1984 * there. 1985 */ 1986 if (!phead) { 1987 phead = kzalloc(sizeof(*phead), GFP_KERNEL); 1988 if (!phead) { 1989 kfree(rdev); 1990 ret = -ENOMEM; 1991 goto out; 1992 } 1993 INIT_LIST_HEAD(phead); 1994 1995 ret = idr_alloc(&scmi_requested_devices, (void *)phead, 1996 id_table->protocol_id, 1997 id_table->protocol_id + 1, GFP_KERNEL); 1998 if (ret != id_table->protocol_id) { 1999 pr_err("Failed to save SCMI device - ret:%d\n", ret); 2000 kfree(rdev); 2001 kfree(phead); 2002 ret = -EINVAL; 2003 goto out; 2004 } 2005 ret = 0; 2006 } 2007 list_add(&rdev->node, phead); 2008 2009 /* 2010 * Now effectively create and initialize the requested device for every 2011 * already initialized SCMI instance which has registered the requested 2012 * protocol as a valid active one: i.e. defined in DT and supported by 2013 * current platform FW. 2014 */ 2015 mutex_lock(&scmi_list_mutex); 2016 list_for_each_entry(info, &scmi_list, node) { 2017 struct device_node *child; 2018 2019 child = idr_find(&info->active_protocols, 2020 id_table->protocol_id); 2021 if (child) { 2022 struct scmi_device *sdev; 2023 2024 sdev = scmi_get_protocol_device(child, info, 2025 id_table->protocol_id, 2026 id_table->name); 2027 /* Set handle if not already set: device existed */ 2028 if (sdev && !sdev->handle) 2029 sdev->handle = 2030 scmi_handle_get_from_info_unlocked(info); 2031 } else { 2032 dev_err(info->dev, 2033 "Failed. SCMI protocol %d not active.\n", 2034 id_table->protocol_id); 2035 } 2036 } 2037 mutex_unlock(&scmi_list_mutex); 2038 2039 out: 2040 mutex_unlock(&scmi_requested_devices_mtx); 2041 2042 return ret; 2043 } 2044 2045 /** 2046 * scmi_protocol_device_unrequest - Helper to unrequest a device 2047 * 2048 * @id_table: A protocol/name pair descriptor for the device to be unrequested. 2049 * 2050 * An helper to let an SCMI driver release its request about devices; note that 2051 * devices are created and initialized once the first SCMI driver request them 2052 * but they destroyed only on SCMI core unloading/unbinding. 2053 * 2054 * The current SCMI transport layer uses such devices as internal references and 2055 * as such they could be shared as same transport between multiple drivers so 2056 * that cannot be safely destroyed till the whole SCMI stack is removed. 2057 * (unless adding further burden of refcounting.) 2058 */ 2059 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table) 2060 { 2061 struct list_head *phead; 2062 2063 pr_debug("Unrequesting SCMI device (%s) for protocol %x\n", 2064 id_table->name, id_table->protocol_id); 2065 2066 mutex_lock(&scmi_requested_devices_mtx); 2067 phead = idr_find(&scmi_requested_devices, id_table->protocol_id); 2068 if (phead) { 2069 struct scmi_requested_dev *victim, *tmp; 2070 2071 list_for_each_entry_safe(victim, tmp, phead, node) { 2072 if (!strcmp(victim->id_table->name, id_table->name)) { 2073 list_del(&victim->node); 2074 kfree(victim); 2075 break; 2076 } 2077 } 2078 2079 if (list_empty(phead)) { 2080 idr_remove(&scmi_requested_devices, 2081 id_table->protocol_id); 2082 kfree(phead); 2083 } 2084 } 2085 mutex_unlock(&scmi_requested_devices_mtx); 2086 } 2087 2088 static int scmi_cleanup_txrx_channels(struct scmi_info *info) 2089 { 2090 int ret; 2091 struct idr *idr = &info->tx_idr; 2092 2093 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2094 idr_destroy(&info->tx_idr); 2095 2096 idr = &info->rx_idr; 2097 ret = idr_for_each(idr, info->desc->ops->chan_free, idr); 2098 idr_destroy(&info->rx_idr); 2099 2100 return ret; 2101 } 2102 2103 static int scmi_probe(struct platform_device *pdev) 2104 { 2105 int ret; 2106 struct scmi_handle *handle; 2107 const struct scmi_desc *desc; 2108 struct scmi_info *info; 2109 struct device *dev = &pdev->dev; 2110 struct device_node *child, *np = dev->of_node; 2111 2112 desc = of_device_get_match_data(dev); 2113 if (!desc) 2114 return -EINVAL; 2115 2116 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL); 2117 if (!info) 2118 return -ENOMEM; 2119 2120 info->dev = dev; 2121 info->desc = desc; 2122 INIT_LIST_HEAD(&info->node); 2123 idr_init(&info->protocols); 2124 mutex_init(&info->protocols_mtx); 2125 idr_init(&info->active_protocols); 2126 2127 platform_set_drvdata(pdev, info); 2128 idr_init(&info->tx_idr); 2129 idr_init(&info->rx_idr); 2130 2131 handle = &info->handle; 2132 handle->dev = info->dev; 2133 handle->version = &info->version; 2134 handle->devm_protocol_get = scmi_devm_protocol_get; 2135 handle->devm_protocol_put = scmi_devm_protocol_put; 2136 2137 /* System wide atomic threshold for atomic ops .. if any */ 2138 if (!of_property_read_u32(np, "atomic-threshold-us", 2139 &info->atomic_threshold)) 2140 dev_info(dev, 2141 "SCMI System wide atomic threshold set to %d us\n", 2142 info->atomic_threshold); 2143 handle->is_transport_atomic = scmi_is_transport_atomic; 2144 2145 if (desc->ops->link_supplier) { 2146 ret = desc->ops->link_supplier(dev); 2147 if (ret) 2148 return ret; 2149 } 2150 2151 ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE); 2152 if (ret) 2153 return ret; 2154 2155 ret = scmi_xfer_info_init(info); 2156 if (ret) 2157 goto clear_txrx_setup; 2158 2159 if (scmi_notification_init(handle)) 2160 dev_err(dev, "SCMI Notifications NOT available.\n"); 2161 2162 if (info->desc->atomic_enabled && !is_transport_polling_capable(info)) 2163 dev_err(dev, 2164 "Transport is not polling capable. Atomic mode not supported.\n"); 2165 2166 /* 2167 * Trigger SCMI Base protocol initialization. 2168 * It's mandatory and won't be ever released/deinit until the 2169 * SCMI stack is shutdown/unloaded as a whole. 2170 */ 2171 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE); 2172 if (ret) { 2173 dev_err(dev, "unable to communicate with SCMI\n"); 2174 goto notification_exit; 2175 } 2176 2177 mutex_lock(&scmi_list_mutex); 2178 list_add_tail(&info->node, &scmi_list); 2179 mutex_unlock(&scmi_list_mutex); 2180 2181 for_each_available_child_of_node(np, child) { 2182 u32 prot_id; 2183 2184 if (of_property_read_u32(child, "reg", &prot_id)) 2185 continue; 2186 2187 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id)) 2188 dev_err(dev, "Out of range protocol %d\n", prot_id); 2189 2190 if (!scmi_is_protocol_implemented(handle, prot_id)) { 2191 dev_err(dev, "SCMI protocol %d not implemented\n", 2192 prot_id); 2193 continue; 2194 } 2195 2196 /* 2197 * Save this valid DT protocol descriptor amongst 2198 * @active_protocols for this SCMI instance/ 2199 */ 2200 ret = idr_alloc(&info->active_protocols, child, 2201 prot_id, prot_id + 1, GFP_KERNEL); 2202 if (ret != prot_id) { 2203 dev_err(dev, "SCMI protocol %d already activated. Skip\n", 2204 prot_id); 2205 continue; 2206 } 2207 2208 of_node_get(child); 2209 scmi_create_protocol_devices(child, info, prot_id); 2210 } 2211 2212 return 0; 2213 2214 notification_exit: 2215 scmi_notification_exit(&info->handle); 2216 clear_txrx_setup: 2217 scmi_cleanup_txrx_channels(info); 2218 return ret; 2219 } 2220 2221 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id) 2222 { 2223 idr_remove(idr, id); 2224 } 2225 2226 static int scmi_remove(struct platform_device *pdev) 2227 { 2228 int ret = 0, id; 2229 struct scmi_info *info = platform_get_drvdata(pdev); 2230 struct device_node *child; 2231 2232 mutex_lock(&scmi_list_mutex); 2233 if (info->users) 2234 ret = -EBUSY; 2235 else 2236 list_del(&info->node); 2237 mutex_unlock(&scmi_list_mutex); 2238 2239 if (ret) 2240 return ret; 2241 2242 scmi_notification_exit(&info->handle); 2243 2244 mutex_lock(&info->protocols_mtx); 2245 idr_destroy(&info->protocols); 2246 mutex_unlock(&info->protocols_mtx); 2247 2248 idr_for_each_entry(&info->active_protocols, child, id) 2249 of_node_put(child); 2250 idr_destroy(&info->active_protocols); 2251 2252 /* Safe to free channels since no more users */ 2253 return scmi_cleanup_txrx_channels(info); 2254 } 2255 2256 static ssize_t protocol_version_show(struct device *dev, 2257 struct device_attribute *attr, char *buf) 2258 { 2259 struct scmi_info *info = dev_get_drvdata(dev); 2260 2261 return sprintf(buf, "%u.%u\n", info->version.major_ver, 2262 info->version.minor_ver); 2263 } 2264 static DEVICE_ATTR_RO(protocol_version); 2265 2266 static ssize_t firmware_version_show(struct device *dev, 2267 struct device_attribute *attr, char *buf) 2268 { 2269 struct scmi_info *info = dev_get_drvdata(dev); 2270 2271 return sprintf(buf, "0x%x\n", info->version.impl_ver); 2272 } 2273 static DEVICE_ATTR_RO(firmware_version); 2274 2275 static ssize_t vendor_id_show(struct device *dev, 2276 struct device_attribute *attr, char *buf) 2277 { 2278 struct scmi_info *info = dev_get_drvdata(dev); 2279 2280 return sprintf(buf, "%s\n", info->version.vendor_id); 2281 } 2282 static DEVICE_ATTR_RO(vendor_id); 2283 2284 static ssize_t sub_vendor_id_show(struct device *dev, 2285 struct device_attribute *attr, char *buf) 2286 { 2287 struct scmi_info *info = dev_get_drvdata(dev); 2288 2289 return sprintf(buf, "%s\n", info->version.sub_vendor_id); 2290 } 2291 static DEVICE_ATTR_RO(sub_vendor_id); 2292 2293 static struct attribute *versions_attrs[] = { 2294 &dev_attr_firmware_version.attr, 2295 &dev_attr_protocol_version.attr, 2296 &dev_attr_vendor_id.attr, 2297 &dev_attr_sub_vendor_id.attr, 2298 NULL, 2299 }; 2300 ATTRIBUTE_GROUPS(versions); 2301 2302 /* Each compatible listed below must have descriptor associated with it */ 2303 static const struct of_device_id scmi_of_match[] = { 2304 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX 2305 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc }, 2306 #endif 2307 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE 2308 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc }, 2309 #endif 2310 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC 2311 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc}, 2312 #endif 2313 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO 2314 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc}, 2315 #endif 2316 { /* Sentinel */ }, 2317 }; 2318 2319 MODULE_DEVICE_TABLE(of, scmi_of_match); 2320 2321 static struct platform_driver scmi_driver = { 2322 .driver = { 2323 .name = "arm-scmi", 2324 .of_match_table = scmi_of_match, 2325 .dev_groups = versions_groups, 2326 }, 2327 .probe = scmi_probe, 2328 .remove = scmi_remove, 2329 }; 2330 2331 /** 2332 * __scmi_transports_setup - Common helper to call transport-specific 2333 * .init/.exit code if provided. 2334 * 2335 * @init: A flag to distinguish between init and exit. 2336 * 2337 * Note that, if provided, we invoke .init/.exit functions for all the 2338 * transports currently compiled in. 2339 * 2340 * Return: 0 on Success. 2341 */ 2342 static inline int __scmi_transports_setup(bool init) 2343 { 2344 int ret = 0; 2345 const struct of_device_id *trans; 2346 2347 for (trans = scmi_of_match; trans->data; trans++) { 2348 const struct scmi_desc *tdesc = trans->data; 2349 2350 if ((init && !tdesc->transport_init) || 2351 (!init && !tdesc->transport_exit)) 2352 continue; 2353 2354 if (init) 2355 ret = tdesc->transport_init(); 2356 else 2357 tdesc->transport_exit(); 2358 2359 if (ret) { 2360 pr_err("SCMI transport %s FAILED initialization!\n", 2361 trans->compatible); 2362 break; 2363 } 2364 } 2365 2366 return ret; 2367 } 2368 2369 static int __init scmi_transports_init(void) 2370 { 2371 return __scmi_transports_setup(true); 2372 } 2373 2374 static void __exit scmi_transports_exit(void) 2375 { 2376 __scmi_transports_setup(false); 2377 } 2378 2379 static int __init scmi_driver_init(void) 2380 { 2381 int ret; 2382 2383 /* Bail out if no SCMI transport was configured */ 2384 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT))) 2385 return -EINVAL; 2386 2387 scmi_bus_init(); 2388 2389 /* Initialize any compiled-in transport which provided an init/exit */ 2390 ret = scmi_transports_init(); 2391 if (ret) 2392 return ret; 2393 2394 scmi_base_register(); 2395 2396 scmi_clock_register(); 2397 scmi_perf_register(); 2398 scmi_power_register(); 2399 scmi_reset_register(); 2400 scmi_sensors_register(); 2401 scmi_voltage_register(); 2402 scmi_system_register(); 2403 2404 return platform_driver_register(&scmi_driver); 2405 } 2406 subsys_initcall(scmi_driver_init); 2407 2408 static void __exit scmi_driver_exit(void) 2409 { 2410 scmi_base_unregister(); 2411 2412 scmi_clock_unregister(); 2413 scmi_perf_unregister(); 2414 scmi_power_unregister(); 2415 scmi_reset_unregister(); 2416 scmi_sensors_unregister(); 2417 scmi_voltage_unregister(); 2418 scmi_system_unregister(); 2419 2420 scmi_bus_exit(); 2421 2422 scmi_transports_exit(); 2423 2424 platform_driver_unregister(&scmi_driver); 2425 } 2426 module_exit(scmi_driver_exit); 2427 2428 MODULE_ALIAS("platform:arm-scmi"); 2429 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 2430 MODULE_DESCRIPTION("ARM SCMI protocol driver"); 2431 MODULE_LICENSE("GPL v2"); 2432