xref: /openbmc/linux/drivers/firmware/arm_scmi/clock.c (revision e533cda12d8f0e7936354bafdc85c81741f805d2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7 
8 #include <linux/sort.h>
9 
10 #include "common.h"
11 
12 enum scmi_clock_protocol_cmd {
13 	CLOCK_ATTRIBUTES = 0x3,
14 	CLOCK_DESCRIBE_RATES = 0x4,
15 	CLOCK_RATE_SET = 0x5,
16 	CLOCK_RATE_GET = 0x6,
17 	CLOCK_CONFIG_SET = 0x7,
18 };
19 
20 struct scmi_msg_resp_clock_protocol_attributes {
21 	__le16 num_clocks;
22 	u8 max_async_req;
23 	u8 reserved;
24 };
25 
26 struct scmi_msg_resp_clock_attributes {
27 	__le32 attributes;
28 #define	CLOCK_ENABLE	BIT(0)
29 	    u8 name[SCMI_MAX_STR_SIZE];
30 };
31 
32 struct scmi_clock_set_config {
33 	__le32 id;
34 	__le32 attributes;
35 };
36 
37 struct scmi_msg_clock_describe_rates {
38 	__le32 id;
39 	__le32 rate_index;
40 };
41 
42 struct scmi_msg_resp_clock_describe_rates {
43 	__le32 num_rates_flags;
44 #define NUM_RETURNED(x)		((x) & 0xfff)
45 #define RATE_DISCRETE(x)	!((x) & BIT(12))
46 #define NUM_REMAINING(x)	((x) >> 16)
47 	struct {
48 		__le32 value_low;
49 		__le32 value_high;
50 	} rate[0];
51 #define RATE_TO_U64(X)		\
52 ({				\
53 	typeof(X) x = (X);	\
54 	le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
55 })
56 };
57 
58 struct scmi_clock_set_rate {
59 	__le32 flags;
60 #define CLOCK_SET_ASYNC		BIT(0)
61 #define CLOCK_SET_IGNORE_RESP	BIT(1)
62 #define CLOCK_SET_ROUND_UP	BIT(2)
63 #define CLOCK_SET_ROUND_AUTO	BIT(3)
64 	__le32 id;
65 	__le32 value_low;
66 	__le32 value_high;
67 };
68 
69 struct clock_info {
70 	u32 version;
71 	int num_clocks;
72 	int max_async_req;
73 	atomic_t cur_async_req;
74 	struct scmi_clock_info *clk;
75 };
76 
77 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
78 					      struct clock_info *ci)
79 {
80 	int ret;
81 	struct scmi_xfer *t;
82 	struct scmi_msg_resp_clock_protocol_attributes *attr;
83 
84 	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
85 				 SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
86 	if (ret)
87 		return ret;
88 
89 	attr = t->rx.buf;
90 
91 	ret = scmi_do_xfer(handle, t);
92 	if (!ret) {
93 		ci->num_clocks = le16_to_cpu(attr->num_clocks);
94 		ci->max_async_req = attr->max_async_req;
95 	}
96 
97 	scmi_xfer_put(handle, t);
98 	return ret;
99 }
100 
101 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
102 				     u32 clk_id, struct scmi_clock_info *clk)
103 {
104 	int ret;
105 	struct scmi_xfer *t;
106 	struct scmi_msg_resp_clock_attributes *attr;
107 
108 	ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
109 				 sizeof(clk_id), sizeof(*attr), &t);
110 	if (ret)
111 		return ret;
112 
113 	put_unaligned_le32(clk_id, t->tx.buf);
114 	attr = t->rx.buf;
115 
116 	ret = scmi_do_xfer(handle, t);
117 	if (!ret)
118 		strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
119 	else
120 		clk->name[0] = '\0';
121 
122 	scmi_xfer_put(handle, t);
123 	return ret;
124 }
125 
126 static int rate_cmp_func(const void *_r1, const void *_r2)
127 {
128 	const u64 *r1 = _r1, *r2 = _r2;
129 
130 	if (*r1 < *r2)
131 		return -1;
132 	else if (*r1 == *r2)
133 		return 0;
134 	else
135 		return 1;
136 }
137 
138 static int
139 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
140 			      struct scmi_clock_info *clk)
141 {
142 	u64 *rate = NULL;
143 	int ret, cnt;
144 	bool rate_discrete = false;
145 	u32 tot_rate_cnt = 0, rates_flag;
146 	u16 num_returned, num_remaining;
147 	struct scmi_xfer *t;
148 	struct scmi_msg_clock_describe_rates *clk_desc;
149 	struct scmi_msg_resp_clock_describe_rates *rlist;
150 
151 	ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
152 				 SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
153 	if (ret)
154 		return ret;
155 
156 	clk_desc = t->tx.buf;
157 	rlist = t->rx.buf;
158 
159 	do {
160 		clk_desc->id = cpu_to_le32(clk_id);
161 		/* Set the number of rates to be skipped/already read */
162 		clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
163 
164 		ret = scmi_do_xfer(handle, t);
165 		if (ret)
166 			goto err;
167 
168 		rates_flag = le32_to_cpu(rlist->num_rates_flags);
169 		num_remaining = NUM_REMAINING(rates_flag);
170 		rate_discrete = RATE_DISCRETE(rates_flag);
171 		num_returned = NUM_RETURNED(rates_flag);
172 
173 		if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
174 			dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
175 			break;
176 		}
177 
178 		if (!rate_discrete) {
179 			clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
180 			clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
181 			clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
182 			dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
183 				clk->range.min_rate, clk->range.max_rate,
184 				clk->range.step_size);
185 			break;
186 		}
187 
188 		rate = &clk->list.rates[tot_rate_cnt];
189 		for (cnt = 0; cnt < num_returned; cnt++, rate++) {
190 			*rate = RATE_TO_U64(rlist->rate[cnt]);
191 			dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
192 		}
193 
194 		tot_rate_cnt += num_returned;
195 		/*
196 		 * check for both returned and remaining to avoid infinite
197 		 * loop due to buggy firmware
198 		 */
199 	} while (num_returned && num_remaining);
200 
201 	if (rate_discrete && rate) {
202 		clk->list.num_rates = tot_rate_cnt;
203 		sort(rate, tot_rate_cnt, sizeof(*rate), rate_cmp_func, NULL);
204 	}
205 
206 	clk->rate_discrete = rate_discrete;
207 
208 err:
209 	scmi_xfer_put(handle, t);
210 	return ret;
211 }
212 
213 static int
214 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
215 {
216 	int ret;
217 	struct scmi_xfer *t;
218 
219 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
220 				 sizeof(__le32), sizeof(u64), &t);
221 	if (ret)
222 		return ret;
223 
224 	put_unaligned_le32(clk_id, t->tx.buf);
225 
226 	ret = scmi_do_xfer(handle, t);
227 	if (!ret)
228 		*value = get_unaligned_le64(t->rx.buf);
229 
230 	scmi_xfer_put(handle, t);
231 	return ret;
232 }
233 
234 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
235 			       u64 rate)
236 {
237 	int ret;
238 	u32 flags = 0;
239 	struct scmi_xfer *t;
240 	struct scmi_clock_set_rate *cfg;
241 	struct clock_info *ci = handle->clk_priv;
242 
243 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
244 				 sizeof(*cfg), 0, &t);
245 	if (ret)
246 		return ret;
247 
248 	if (ci->max_async_req &&
249 	    atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
250 		flags |= CLOCK_SET_ASYNC;
251 
252 	cfg = t->tx.buf;
253 	cfg->flags = cpu_to_le32(flags);
254 	cfg->id = cpu_to_le32(clk_id);
255 	cfg->value_low = cpu_to_le32(rate & 0xffffffff);
256 	cfg->value_high = cpu_to_le32(rate >> 32);
257 
258 	if (flags & CLOCK_SET_ASYNC)
259 		ret = scmi_do_xfer_with_response(handle, t);
260 	else
261 		ret = scmi_do_xfer(handle, t);
262 
263 	if (ci->max_async_req)
264 		atomic_dec(&ci->cur_async_req);
265 
266 	scmi_xfer_put(handle, t);
267 	return ret;
268 }
269 
270 static int
271 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
272 {
273 	int ret;
274 	struct scmi_xfer *t;
275 	struct scmi_clock_set_config *cfg;
276 
277 	ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
278 				 sizeof(*cfg), 0, &t);
279 	if (ret)
280 		return ret;
281 
282 	cfg = t->tx.buf;
283 	cfg->id = cpu_to_le32(clk_id);
284 	cfg->attributes = cpu_to_le32(config);
285 
286 	ret = scmi_do_xfer(handle, t);
287 
288 	scmi_xfer_put(handle, t);
289 	return ret;
290 }
291 
292 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
293 {
294 	return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
295 }
296 
297 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
298 {
299 	return scmi_clock_config_set(handle, clk_id, 0);
300 }
301 
302 static int scmi_clock_count_get(const struct scmi_handle *handle)
303 {
304 	struct clock_info *ci = handle->clk_priv;
305 
306 	return ci->num_clocks;
307 }
308 
309 static const struct scmi_clock_info *
310 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
311 {
312 	struct clock_info *ci = handle->clk_priv;
313 	struct scmi_clock_info *clk = ci->clk + clk_id;
314 
315 	if (!clk->name[0])
316 		return NULL;
317 
318 	return clk;
319 }
320 
321 static const struct scmi_clk_ops clk_ops = {
322 	.count_get = scmi_clock_count_get,
323 	.info_get = scmi_clock_info_get,
324 	.rate_get = scmi_clock_rate_get,
325 	.rate_set = scmi_clock_rate_set,
326 	.enable = scmi_clock_enable,
327 	.disable = scmi_clock_disable,
328 };
329 
330 static int scmi_clock_protocol_init(struct scmi_handle *handle)
331 {
332 	u32 version;
333 	int clkid, ret;
334 	struct clock_info *cinfo;
335 
336 	scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
337 
338 	dev_dbg(handle->dev, "Clock Version %d.%d\n",
339 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
340 
341 	cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
342 	if (!cinfo)
343 		return -ENOMEM;
344 
345 	scmi_clock_protocol_attributes_get(handle, cinfo);
346 
347 	cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
348 				  sizeof(*cinfo->clk), GFP_KERNEL);
349 	if (!cinfo->clk)
350 		return -ENOMEM;
351 
352 	for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
353 		struct scmi_clock_info *clk = cinfo->clk + clkid;
354 
355 		ret = scmi_clock_attributes_get(handle, clkid, clk);
356 		if (!ret)
357 			scmi_clock_describe_rates_get(handle, clkid, clk);
358 	}
359 
360 	cinfo->version = version;
361 	handle->clk_ops = &clk_ops;
362 	handle->clk_priv = cinfo;
363 
364 	return 0;
365 }
366 
367 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_CLOCK, clock)
368