1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7 
8 #include <linux/sort.h>
9 
10 #include "common.h"
11 
12 enum scmi_clock_protocol_cmd {
13 	CLOCK_ATTRIBUTES = 0x3,
14 	CLOCK_DESCRIBE_RATES = 0x4,
15 	CLOCK_RATE_SET = 0x5,
16 	CLOCK_RATE_GET = 0x6,
17 	CLOCK_CONFIG_SET = 0x7,
18 };
19 
20 struct scmi_msg_resp_clock_protocol_attributes {
21 	__le16 num_clocks;
22 	u8 max_async_req;
23 	u8 reserved;
24 };
25 
26 struct scmi_msg_resp_clock_attributes {
27 	__le32 attributes;
28 #define	CLOCK_ENABLE	BIT(0)
29 	    u8 name[SCMI_MAX_STR_SIZE];
30 };
31 
32 struct scmi_clock_set_config {
33 	__le32 id;
34 	__le32 attributes;
35 };
36 
37 struct scmi_msg_clock_describe_rates {
38 	__le32 id;
39 	__le32 rate_index;
40 };
41 
42 struct scmi_msg_resp_clock_describe_rates {
43 	__le32 num_rates_flags;
44 #define NUM_RETURNED(x)		((x) & 0xfff)
45 #define RATE_DISCRETE(x)	!((x) & BIT(12))
46 #define NUM_REMAINING(x)	((x) >> 16)
47 	struct {
48 		__le32 value_low;
49 		__le32 value_high;
50 	} rate[0];
51 #define RATE_TO_U64(X)		\
52 ({				\
53 	typeof(X) x = (X);	\
54 	le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
55 })
56 };
57 
58 struct scmi_clock_set_rate {
59 	__le32 flags;
60 #define CLOCK_SET_ASYNC		BIT(0)
61 #define CLOCK_SET_IGNORE_RESP	BIT(1)
62 #define CLOCK_SET_ROUND_UP	BIT(2)
63 #define CLOCK_SET_ROUND_AUTO	BIT(3)
64 	__le32 id;
65 	__le32 value_low;
66 	__le32 value_high;
67 };
68 
69 struct clock_info {
70 	u32 version;
71 	int num_clocks;
72 	int max_async_req;
73 	atomic_t cur_async_req;
74 	struct scmi_clock_info *clk;
75 };
76 
77 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
78 					      struct clock_info *ci)
79 {
80 	int ret;
81 	struct scmi_xfer *t;
82 	struct scmi_msg_resp_clock_protocol_attributes *attr;
83 
84 	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
85 				 SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
86 	if (ret)
87 		return ret;
88 
89 	attr = t->rx.buf;
90 
91 	ret = scmi_do_xfer(handle, t);
92 	if (!ret) {
93 		ci->num_clocks = le16_to_cpu(attr->num_clocks);
94 		ci->max_async_req = attr->max_async_req;
95 	}
96 
97 	scmi_xfer_put(handle, t);
98 	return ret;
99 }
100 
101 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
102 				     u32 clk_id, struct scmi_clock_info *clk)
103 {
104 	int ret;
105 	struct scmi_xfer *t;
106 	struct scmi_msg_resp_clock_attributes *attr;
107 
108 	ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
109 				 sizeof(clk_id), sizeof(*attr), &t);
110 	if (ret)
111 		return ret;
112 
113 	put_unaligned_le32(clk_id, t->tx.buf);
114 	attr = t->rx.buf;
115 
116 	ret = scmi_do_xfer(handle, t);
117 	if (!ret)
118 		strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
119 	else
120 		clk->name[0] = '\0';
121 
122 	scmi_xfer_put(handle, t);
123 	return ret;
124 }
125 
126 static int rate_cmp_func(const void *_r1, const void *_r2)
127 {
128 	const u64 *r1 = _r1, *r2 = _r2;
129 
130 	if (*r1 < *r2)
131 		return -1;
132 	else if (*r1 == *r2)
133 		return 0;
134 	else
135 		return 1;
136 }
137 
138 static int
139 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
140 			      struct scmi_clock_info *clk)
141 {
142 	u64 *rate = NULL;
143 	int ret, cnt;
144 	bool rate_discrete = false;
145 	u32 tot_rate_cnt = 0, rates_flag;
146 	u16 num_returned, num_remaining;
147 	struct scmi_xfer *t;
148 	struct scmi_msg_clock_describe_rates *clk_desc;
149 	struct scmi_msg_resp_clock_describe_rates *rlist;
150 
151 	ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
152 				 SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
153 	if (ret)
154 		return ret;
155 
156 	clk_desc = t->tx.buf;
157 	rlist = t->rx.buf;
158 
159 	do {
160 		clk_desc->id = cpu_to_le32(clk_id);
161 		/* Set the number of rates to be skipped/already read */
162 		clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
163 
164 		ret = scmi_do_xfer(handle, t);
165 		if (ret)
166 			goto err;
167 
168 		rates_flag = le32_to_cpu(rlist->num_rates_flags);
169 		num_remaining = NUM_REMAINING(rates_flag);
170 		rate_discrete = RATE_DISCRETE(rates_flag);
171 		num_returned = NUM_RETURNED(rates_flag);
172 
173 		if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
174 			dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
175 			break;
176 		}
177 
178 		if (!rate_discrete) {
179 			clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
180 			clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
181 			clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
182 			dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
183 				clk->range.min_rate, clk->range.max_rate,
184 				clk->range.step_size);
185 			break;
186 		}
187 
188 		rate = &clk->list.rates[tot_rate_cnt];
189 		for (cnt = 0; cnt < num_returned; cnt++, rate++) {
190 			*rate = RATE_TO_U64(rlist->rate[cnt]);
191 			dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
192 		}
193 
194 		tot_rate_cnt += num_returned;
195 
196 		scmi_reset_rx_to_maxsz(handle, t);
197 		/*
198 		 * check for both returned and remaining to avoid infinite
199 		 * loop due to buggy firmware
200 		 */
201 	} while (num_returned && num_remaining);
202 
203 	if (rate_discrete && rate) {
204 		clk->list.num_rates = tot_rate_cnt;
205 		sort(rate, tot_rate_cnt, sizeof(*rate), rate_cmp_func, NULL);
206 	}
207 
208 	clk->rate_discrete = rate_discrete;
209 
210 err:
211 	scmi_xfer_put(handle, t);
212 	return ret;
213 }
214 
215 static int
216 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
217 {
218 	int ret;
219 	struct scmi_xfer *t;
220 
221 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
222 				 sizeof(__le32), sizeof(u64), &t);
223 	if (ret)
224 		return ret;
225 
226 	put_unaligned_le32(clk_id, t->tx.buf);
227 
228 	ret = scmi_do_xfer(handle, t);
229 	if (!ret)
230 		*value = get_unaligned_le64(t->rx.buf);
231 
232 	scmi_xfer_put(handle, t);
233 	return ret;
234 }
235 
236 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
237 			       u64 rate)
238 {
239 	int ret;
240 	u32 flags = 0;
241 	struct scmi_xfer *t;
242 	struct scmi_clock_set_rate *cfg;
243 	struct clock_info *ci = handle->clk_priv;
244 
245 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
246 				 sizeof(*cfg), 0, &t);
247 	if (ret)
248 		return ret;
249 
250 	if (ci->max_async_req &&
251 	    atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
252 		flags |= CLOCK_SET_ASYNC;
253 
254 	cfg = t->tx.buf;
255 	cfg->flags = cpu_to_le32(flags);
256 	cfg->id = cpu_to_le32(clk_id);
257 	cfg->value_low = cpu_to_le32(rate & 0xffffffff);
258 	cfg->value_high = cpu_to_le32(rate >> 32);
259 
260 	if (flags & CLOCK_SET_ASYNC)
261 		ret = scmi_do_xfer_with_response(handle, t);
262 	else
263 		ret = scmi_do_xfer(handle, t);
264 
265 	if (ci->max_async_req)
266 		atomic_dec(&ci->cur_async_req);
267 
268 	scmi_xfer_put(handle, t);
269 	return ret;
270 }
271 
272 static int
273 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
274 {
275 	int ret;
276 	struct scmi_xfer *t;
277 	struct scmi_clock_set_config *cfg;
278 
279 	ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
280 				 sizeof(*cfg), 0, &t);
281 	if (ret)
282 		return ret;
283 
284 	cfg = t->tx.buf;
285 	cfg->id = cpu_to_le32(clk_id);
286 	cfg->attributes = cpu_to_le32(config);
287 
288 	ret = scmi_do_xfer(handle, t);
289 
290 	scmi_xfer_put(handle, t);
291 	return ret;
292 }
293 
294 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
295 {
296 	return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
297 }
298 
299 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
300 {
301 	return scmi_clock_config_set(handle, clk_id, 0);
302 }
303 
304 static int scmi_clock_count_get(const struct scmi_handle *handle)
305 {
306 	struct clock_info *ci = handle->clk_priv;
307 
308 	return ci->num_clocks;
309 }
310 
311 static const struct scmi_clock_info *
312 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
313 {
314 	struct clock_info *ci = handle->clk_priv;
315 	struct scmi_clock_info *clk = ci->clk + clk_id;
316 
317 	if (!clk->name[0])
318 		return NULL;
319 
320 	return clk;
321 }
322 
323 static const struct scmi_clk_ops clk_ops = {
324 	.count_get = scmi_clock_count_get,
325 	.info_get = scmi_clock_info_get,
326 	.rate_get = scmi_clock_rate_get,
327 	.rate_set = scmi_clock_rate_set,
328 	.enable = scmi_clock_enable,
329 	.disable = scmi_clock_disable,
330 };
331 
332 static int scmi_clock_protocol_init(struct scmi_handle *handle)
333 {
334 	u32 version;
335 	int clkid, ret;
336 	struct clock_info *cinfo;
337 
338 	scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
339 
340 	dev_dbg(handle->dev, "Clock Version %d.%d\n",
341 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
342 
343 	cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
344 	if (!cinfo)
345 		return -ENOMEM;
346 
347 	scmi_clock_protocol_attributes_get(handle, cinfo);
348 
349 	cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
350 				  sizeof(*cinfo->clk), GFP_KERNEL);
351 	if (!cinfo->clk)
352 		return -ENOMEM;
353 
354 	for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
355 		struct scmi_clock_info *clk = cinfo->clk + clkid;
356 
357 		ret = scmi_clock_attributes_get(handle, clkid, clk);
358 		if (!ret)
359 			scmi_clock_describe_rates_get(handle, clkid, clk);
360 	}
361 
362 	cinfo->version = version;
363 	handle->clk_ops = &clk_ops;
364 	handle->clk_priv = cinfo;
365 
366 	return 0;
367 }
368 
369 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(SCMI_PROTOCOL_CLOCK, clock)
370