1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7 
8 #include "common.h"
9 
10 enum scmi_clock_protocol_cmd {
11 	CLOCK_ATTRIBUTES = 0x3,
12 	CLOCK_DESCRIBE_RATES = 0x4,
13 	CLOCK_RATE_SET = 0x5,
14 	CLOCK_RATE_GET = 0x6,
15 	CLOCK_CONFIG_SET = 0x7,
16 };
17 
18 struct scmi_msg_resp_clock_protocol_attributes {
19 	__le16 num_clocks;
20 	u8 max_async_req;
21 	u8 reserved;
22 };
23 
24 struct scmi_msg_resp_clock_attributes {
25 	__le32 attributes;
26 #define	CLOCK_ENABLE	BIT(0)
27 	    u8 name[SCMI_MAX_STR_SIZE];
28 };
29 
30 struct scmi_clock_set_config {
31 	__le32 id;
32 	__le32 attributes;
33 };
34 
35 struct scmi_msg_clock_describe_rates {
36 	__le32 id;
37 	__le32 rate_index;
38 };
39 
40 struct scmi_msg_resp_clock_describe_rates {
41 	__le32 num_rates_flags;
42 #define NUM_RETURNED(x)		((x) & 0xfff)
43 #define RATE_DISCRETE(x)	!((x) & BIT(12))
44 #define NUM_REMAINING(x)	((x) >> 16)
45 	struct {
46 		__le32 value_low;
47 		__le32 value_high;
48 	} rate[0];
49 #define RATE_TO_U64(X)		\
50 ({				\
51 	typeof(X) x = (X);	\
52 	le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
53 })
54 };
55 
56 struct scmi_clock_set_rate {
57 	__le32 flags;
58 #define CLOCK_SET_ASYNC		BIT(0)
59 #define CLOCK_SET_IGNORE_RESP	BIT(1)
60 #define CLOCK_SET_ROUND_UP	BIT(2)
61 #define CLOCK_SET_ROUND_AUTO	BIT(3)
62 	__le32 id;
63 	__le32 value_low;
64 	__le32 value_high;
65 };
66 
67 struct clock_info {
68 	int num_clocks;
69 	int max_async_req;
70 	atomic_t cur_async_req;
71 	struct scmi_clock_info *clk;
72 };
73 
74 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
75 					      struct clock_info *ci)
76 {
77 	int ret;
78 	struct scmi_xfer *t;
79 	struct scmi_msg_resp_clock_protocol_attributes *attr;
80 
81 	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
82 				 SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
83 	if (ret)
84 		return ret;
85 
86 	attr = t->rx.buf;
87 
88 	ret = scmi_do_xfer(handle, t);
89 	if (!ret) {
90 		ci->num_clocks = le16_to_cpu(attr->num_clocks);
91 		ci->max_async_req = attr->max_async_req;
92 	}
93 
94 	scmi_xfer_put(handle, t);
95 	return ret;
96 }
97 
98 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
99 				     u32 clk_id, struct scmi_clock_info *clk)
100 {
101 	int ret;
102 	struct scmi_xfer *t;
103 	struct scmi_msg_resp_clock_attributes *attr;
104 
105 	ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
106 				 sizeof(clk_id), sizeof(*attr), &t);
107 	if (ret)
108 		return ret;
109 
110 	put_unaligned_le32(clk_id, t->tx.buf);
111 	attr = t->rx.buf;
112 
113 	ret = scmi_do_xfer(handle, t);
114 	if (!ret)
115 		strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
116 	else
117 		clk->name[0] = '\0';
118 
119 	scmi_xfer_put(handle, t);
120 	return ret;
121 }
122 
123 static int
124 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
125 			      struct scmi_clock_info *clk)
126 {
127 	u64 *rate;
128 	int ret, cnt;
129 	bool rate_discrete = false;
130 	u32 tot_rate_cnt = 0, rates_flag;
131 	u16 num_returned, num_remaining;
132 	struct scmi_xfer *t;
133 	struct scmi_msg_clock_describe_rates *clk_desc;
134 	struct scmi_msg_resp_clock_describe_rates *rlist;
135 
136 	ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
137 				 SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
138 	if (ret)
139 		return ret;
140 
141 	clk_desc = t->tx.buf;
142 	rlist = t->rx.buf;
143 
144 	do {
145 		clk_desc->id = cpu_to_le32(clk_id);
146 		/* Set the number of rates to be skipped/already read */
147 		clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
148 
149 		ret = scmi_do_xfer(handle, t);
150 		if (ret)
151 			goto err;
152 
153 		rates_flag = le32_to_cpu(rlist->num_rates_flags);
154 		num_remaining = NUM_REMAINING(rates_flag);
155 		rate_discrete = RATE_DISCRETE(rates_flag);
156 		num_returned = NUM_RETURNED(rates_flag);
157 
158 		if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
159 			dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
160 			break;
161 		}
162 
163 		if (!rate_discrete) {
164 			clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
165 			clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
166 			clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
167 			dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
168 				clk->range.min_rate, clk->range.max_rate,
169 				clk->range.step_size);
170 			break;
171 		}
172 
173 		rate = &clk->list.rates[tot_rate_cnt];
174 		for (cnt = 0; cnt < num_returned; cnt++, rate++) {
175 			*rate = RATE_TO_U64(rlist->rate[cnt]);
176 			dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
177 		}
178 
179 		tot_rate_cnt += num_returned;
180 		/*
181 		 * check for both returned and remaining to avoid infinite
182 		 * loop due to buggy firmware
183 		 */
184 	} while (num_returned && num_remaining);
185 
186 	if (rate_discrete)
187 		clk->list.num_rates = tot_rate_cnt;
188 
189 	clk->rate_discrete = rate_discrete;
190 
191 err:
192 	scmi_xfer_put(handle, t);
193 	return ret;
194 }
195 
196 static int
197 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
198 {
199 	int ret;
200 	struct scmi_xfer *t;
201 
202 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
203 				 sizeof(__le32), sizeof(u64), &t);
204 	if (ret)
205 		return ret;
206 
207 	put_unaligned_le32(clk_id, t->tx.buf);
208 
209 	ret = scmi_do_xfer(handle, t);
210 	if (!ret)
211 		*value = get_unaligned_le64(t->rx.buf);
212 
213 	scmi_xfer_put(handle, t);
214 	return ret;
215 }
216 
217 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
218 			       u64 rate)
219 {
220 	int ret;
221 	u32 flags = 0;
222 	struct scmi_xfer *t;
223 	struct scmi_clock_set_rate *cfg;
224 	struct clock_info *ci = handle->clk_priv;
225 
226 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
227 				 sizeof(*cfg), 0, &t);
228 	if (ret)
229 		return ret;
230 
231 	if (ci->max_async_req &&
232 	    atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
233 		flags |= CLOCK_SET_ASYNC;
234 
235 	cfg = t->tx.buf;
236 	cfg->flags = cpu_to_le32(flags);
237 	cfg->id = cpu_to_le32(clk_id);
238 	cfg->value_low = cpu_to_le32(rate & 0xffffffff);
239 	cfg->value_high = cpu_to_le32(rate >> 32);
240 
241 	if (flags & CLOCK_SET_ASYNC)
242 		ret = scmi_do_xfer_with_response(handle, t);
243 	else
244 		ret = scmi_do_xfer(handle, t);
245 
246 	if (ci->max_async_req)
247 		atomic_dec(&ci->cur_async_req);
248 
249 	scmi_xfer_put(handle, t);
250 	return ret;
251 }
252 
253 static int
254 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
255 {
256 	int ret;
257 	struct scmi_xfer *t;
258 	struct scmi_clock_set_config *cfg;
259 
260 	ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
261 				 sizeof(*cfg), 0, &t);
262 	if (ret)
263 		return ret;
264 
265 	cfg = t->tx.buf;
266 	cfg->id = cpu_to_le32(clk_id);
267 	cfg->attributes = cpu_to_le32(config);
268 
269 	ret = scmi_do_xfer(handle, t);
270 
271 	scmi_xfer_put(handle, t);
272 	return ret;
273 }
274 
275 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
276 {
277 	return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
278 }
279 
280 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
281 {
282 	return scmi_clock_config_set(handle, clk_id, 0);
283 }
284 
285 static int scmi_clock_count_get(const struct scmi_handle *handle)
286 {
287 	struct clock_info *ci = handle->clk_priv;
288 
289 	return ci->num_clocks;
290 }
291 
292 static const struct scmi_clock_info *
293 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
294 {
295 	struct clock_info *ci = handle->clk_priv;
296 	struct scmi_clock_info *clk = ci->clk + clk_id;
297 
298 	if (!clk->name[0])
299 		return NULL;
300 
301 	return clk;
302 }
303 
304 static struct scmi_clk_ops clk_ops = {
305 	.count_get = scmi_clock_count_get,
306 	.info_get = scmi_clock_info_get,
307 	.rate_get = scmi_clock_rate_get,
308 	.rate_set = scmi_clock_rate_set,
309 	.enable = scmi_clock_enable,
310 	.disable = scmi_clock_disable,
311 };
312 
313 static int scmi_clock_protocol_init(struct scmi_handle *handle)
314 {
315 	u32 version;
316 	int clkid, ret;
317 	struct clock_info *cinfo;
318 
319 	scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
320 
321 	dev_dbg(handle->dev, "Clock Version %d.%d\n",
322 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
323 
324 	cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
325 	if (!cinfo)
326 		return -ENOMEM;
327 
328 	scmi_clock_protocol_attributes_get(handle, cinfo);
329 
330 	cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
331 				  sizeof(*cinfo->clk), GFP_KERNEL);
332 	if (!cinfo->clk)
333 		return -ENOMEM;
334 
335 	for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
336 		struct scmi_clock_info *clk = cinfo->clk + clkid;
337 
338 		ret = scmi_clock_attributes_get(handle, clkid, clk);
339 		if (!ret)
340 			scmi_clock_describe_rates_get(handle, clkid, clk);
341 	}
342 
343 	handle->clk_ops = &clk_ops;
344 	handle->clk_priv = cinfo;
345 
346 	return 0;
347 }
348 
349 static int __init scmi_clock_init(void)
350 {
351 	return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
352 				      &scmi_clock_protocol_init);
353 }
354 subsys_initcall(scmi_clock_init);
355