xref: /openbmc/linux/drivers/firmware/arm_scmi/clock.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018 ARM Ltd.
6  */
7 
8 #include "common.h"
9 
10 enum scmi_clock_protocol_cmd {
11 	CLOCK_ATTRIBUTES = 0x3,
12 	CLOCK_DESCRIBE_RATES = 0x4,
13 	CLOCK_RATE_SET = 0x5,
14 	CLOCK_RATE_GET = 0x6,
15 	CLOCK_CONFIG_SET = 0x7,
16 };
17 
18 struct scmi_msg_resp_clock_protocol_attributes {
19 	__le16 num_clocks;
20 	u8 max_async_req;
21 	u8 reserved;
22 };
23 
24 struct scmi_msg_resp_clock_attributes {
25 	__le32 attributes;
26 #define	CLOCK_ENABLE	BIT(0)
27 	    u8 name[SCMI_MAX_STR_SIZE];
28 };
29 
30 struct scmi_clock_set_config {
31 	__le32 id;
32 	__le32 attributes;
33 };
34 
35 struct scmi_msg_clock_describe_rates {
36 	__le32 id;
37 	__le32 rate_index;
38 };
39 
40 struct scmi_msg_resp_clock_describe_rates {
41 	__le32 num_rates_flags;
42 #define NUM_RETURNED(x)		((x) & 0xfff)
43 #define RATE_DISCRETE(x)	!((x) & BIT(12))
44 #define NUM_REMAINING(x)	((x) >> 16)
45 	struct {
46 		__le32 value_low;
47 		__le32 value_high;
48 	} rate[0];
49 #define RATE_TO_U64(X)		\
50 ({				\
51 	typeof(X) x = (X);	\
52 	le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
53 })
54 };
55 
56 struct scmi_clock_set_rate {
57 	__le32 flags;
58 #define CLOCK_SET_ASYNC		BIT(0)
59 #define CLOCK_SET_IGNORE_RESP	BIT(1)
60 #define CLOCK_SET_ROUND_UP	BIT(2)
61 #define CLOCK_SET_ROUND_AUTO	BIT(3)
62 	__le32 id;
63 	__le32 value_low;
64 	__le32 value_high;
65 };
66 
67 struct clock_info {
68 	u32 version;
69 	int num_clocks;
70 	int max_async_req;
71 	atomic_t cur_async_req;
72 	struct scmi_clock_info *clk;
73 };
74 
75 static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
76 					      struct clock_info *ci)
77 {
78 	int ret;
79 	struct scmi_xfer *t;
80 	struct scmi_msg_resp_clock_protocol_attributes *attr;
81 
82 	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
83 				 SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
84 	if (ret)
85 		return ret;
86 
87 	attr = t->rx.buf;
88 
89 	ret = scmi_do_xfer(handle, t);
90 	if (!ret) {
91 		ci->num_clocks = le16_to_cpu(attr->num_clocks);
92 		ci->max_async_req = attr->max_async_req;
93 	}
94 
95 	scmi_xfer_put(handle, t);
96 	return ret;
97 }
98 
99 static int scmi_clock_attributes_get(const struct scmi_handle *handle,
100 				     u32 clk_id, struct scmi_clock_info *clk)
101 {
102 	int ret;
103 	struct scmi_xfer *t;
104 	struct scmi_msg_resp_clock_attributes *attr;
105 
106 	ret = scmi_xfer_get_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
107 				 sizeof(clk_id), sizeof(*attr), &t);
108 	if (ret)
109 		return ret;
110 
111 	put_unaligned_le32(clk_id, t->tx.buf);
112 	attr = t->rx.buf;
113 
114 	ret = scmi_do_xfer(handle, t);
115 	if (!ret)
116 		strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
117 	else
118 		clk->name[0] = '\0';
119 
120 	scmi_xfer_put(handle, t);
121 	return ret;
122 }
123 
124 static int
125 scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
126 			      struct scmi_clock_info *clk)
127 {
128 	u64 *rate;
129 	int ret, cnt;
130 	bool rate_discrete = false;
131 	u32 tot_rate_cnt = 0, rates_flag;
132 	u16 num_returned, num_remaining;
133 	struct scmi_xfer *t;
134 	struct scmi_msg_clock_describe_rates *clk_desc;
135 	struct scmi_msg_resp_clock_describe_rates *rlist;
136 
137 	ret = scmi_xfer_get_init(handle, CLOCK_DESCRIBE_RATES,
138 				 SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
139 	if (ret)
140 		return ret;
141 
142 	clk_desc = t->tx.buf;
143 	rlist = t->rx.buf;
144 
145 	do {
146 		clk_desc->id = cpu_to_le32(clk_id);
147 		/* Set the number of rates to be skipped/already read */
148 		clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
149 
150 		ret = scmi_do_xfer(handle, t);
151 		if (ret)
152 			goto err;
153 
154 		rates_flag = le32_to_cpu(rlist->num_rates_flags);
155 		num_remaining = NUM_REMAINING(rates_flag);
156 		rate_discrete = RATE_DISCRETE(rates_flag);
157 		num_returned = NUM_RETURNED(rates_flag);
158 
159 		if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
160 			dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
161 			break;
162 		}
163 
164 		if (!rate_discrete) {
165 			clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
166 			clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
167 			clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
168 			dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
169 				clk->range.min_rate, clk->range.max_rate,
170 				clk->range.step_size);
171 			break;
172 		}
173 
174 		rate = &clk->list.rates[tot_rate_cnt];
175 		for (cnt = 0; cnt < num_returned; cnt++, rate++) {
176 			*rate = RATE_TO_U64(rlist->rate[cnt]);
177 			dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
178 		}
179 
180 		tot_rate_cnt += num_returned;
181 		/*
182 		 * check for both returned and remaining to avoid infinite
183 		 * loop due to buggy firmware
184 		 */
185 	} while (num_returned && num_remaining);
186 
187 	if (rate_discrete)
188 		clk->list.num_rates = tot_rate_cnt;
189 
190 	clk->rate_discrete = rate_discrete;
191 
192 err:
193 	scmi_xfer_put(handle, t);
194 	return ret;
195 }
196 
197 static int
198 scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
199 {
200 	int ret;
201 	struct scmi_xfer *t;
202 
203 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
204 				 sizeof(__le32), sizeof(u64), &t);
205 	if (ret)
206 		return ret;
207 
208 	put_unaligned_le32(clk_id, t->tx.buf);
209 
210 	ret = scmi_do_xfer(handle, t);
211 	if (!ret)
212 		*value = get_unaligned_le64(t->rx.buf);
213 
214 	scmi_xfer_put(handle, t);
215 	return ret;
216 }
217 
218 static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
219 			       u64 rate)
220 {
221 	int ret;
222 	u32 flags = 0;
223 	struct scmi_xfer *t;
224 	struct scmi_clock_set_rate *cfg;
225 	struct clock_info *ci = handle->clk_priv;
226 
227 	ret = scmi_xfer_get_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
228 				 sizeof(*cfg), 0, &t);
229 	if (ret)
230 		return ret;
231 
232 	if (ci->max_async_req &&
233 	    atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
234 		flags |= CLOCK_SET_ASYNC;
235 
236 	cfg = t->tx.buf;
237 	cfg->flags = cpu_to_le32(flags);
238 	cfg->id = cpu_to_le32(clk_id);
239 	cfg->value_low = cpu_to_le32(rate & 0xffffffff);
240 	cfg->value_high = cpu_to_le32(rate >> 32);
241 
242 	if (flags & CLOCK_SET_ASYNC)
243 		ret = scmi_do_xfer_with_response(handle, t);
244 	else
245 		ret = scmi_do_xfer(handle, t);
246 
247 	if (ci->max_async_req)
248 		atomic_dec(&ci->cur_async_req);
249 
250 	scmi_xfer_put(handle, t);
251 	return ret;
252 }
253 
254 static int
255 scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
256 {
257 	int ret;
258 	struct scmi_xfer *t;
259 	struct scmi_clock_set_config *cfg;
260 
261 	ret = scmi_xfer_get_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
262 				 sizeof(*cfg), 0, &t);
263 	if (ret)
264 		return ret;
265 
266 	cfg = t->tx.buf;
267 	cfg->id = cpu_to_le32(clk_id);
268 	cfg->attributes = cpu_to_le32(config);
269 
270 	ret = scmi_do_xfer(handle, t);
271 
272 	scmi_xfer_put(handle, t);
273 	return ret;
274 }
275 
276 static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
277 {
278 	return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
279 }
280 
281 static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
282 {
283 	return scmi_clock_config_set(handle, clk_id, 0);
284 }
285 
286 static int scmi_clock_count_get(const struct scmi_handle *handle)
287 {
288 	struct clock_info *ci = handle->clk_priv;
289 
290 	return ci->num_clocks;
291 }
292 
293 static const struct scmi_clock_info *
294 scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
295 {
296 	struct clock_info *ci = handle->clk_priv;
297 	struct scmi_clock_info *clk = ci->clk + clk_id;
298 
299 	if (!clk->name[0])
300 		return NULL;
301 
302 	return clk;
303 }
304 
305 static struct scmi_clk_ops clk_ops = {
306 	.count_get = scmi_clock_count_get,
307 	.info_get = scmi_clock_info_get,
308 	.rate_get = scmi_clock_rate_get,
309 	.rate_set = scmi_clock_rate_set,
310 	.enable = scmi_clock_enable,
311 	.disable = scmi_clock_disable,
312 };
313 
314 static int scmi_clock_protocol_init(struct scmi_handle *handle)
315 {
316 	u32 version;
317 	int clkid, ret;
318 	struct clock_info *cinfo;
319 
320 	scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
321 
322 	dev_dbg(handle->dev, "Clock Version %d.%d\n",
323 		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
324 
325 	cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
326 	if (!cinfo)
327 		return -ENOMEM;
328 
329 	scmi_clock_protocol_attributes_get(handle, cinfo);
330 
331 	cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
332 				  sizeof(*cinfo->clk), GFP_KERNEL);
333 	if (!cinfo->clk)
334 		return -ENOMEM;
335 
336 	for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
337 		struct scmi_clock_info *clk = cinfo->clk + clkid;
338 
339 		ret = scmi_clock_attributes_get(handle, clkid, clk);
340 		if (!ret)
341 			scmi_clock_describe_rates_get(handle, clkid, clk);
342 	}
343 
344 	cinfo->version = version;
345 	handle->clk_ops = &clk_ops;
346 	handle->clk_priv = cinfo;
347 
348 	return 0;
349 }
350 
351 static int __init scmi_clock_init(void)
352 {
353 	return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
354 				      &scmi_clock_protocol_init);
355 }
356 subsys_initcall(scmi_clock_init);
357