1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Arm Firmware Framework for ARMv8-A(FFA) interface driver 4 * 5 * The Arm FFA specification[1] describes a software architecture to 6 * leverages the virtualization extension to isolate software images 7 * provided by an ecosystem of vendors from each other and describes 8 * interfaces that standardize communication between the various software 9 * images including communication between images in the Secure world and 10 * Normal world. Any Hypervisor could use the FFA interfaces to enable 11 * communication between VMs it manages. 12 * 13 * The Hypervisor a.k.a Partition managers in FFA terminology can assign 14 * system resources(Memory regions, Devices, CPU cycles) to the partitions 15 * and manage isolation amongst them. 16 * 17 * [1] https://developer.arm.com/docs/den0077/latest 18 * 19 * Copyright (C) 2021 ARM Ltd. 20 */ 21 22 #define DRIVER_NAME "ARM FF-A" 23 #define pr_fmt(fmt) DRIVER_NAME ": " fmt 24 25 #include <linux/arm_ffa.h> 26 #include <linux/bitfield.h> 27 #include <linux/device.h> 28 #include <linux/io.h> 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 #include <linux/mm.h> 32 #include <linux/scatterlist.h> 33 #include <linux/slab.h> 34 #include <linux/uuid.h> 35 36 #include "common.h" 37 38 #define FFA_DRIVER_VERSION FFA_VERSION_1_0 39 40 #define FFA_SMC(calling_convention, func_num) \ 41 ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, (calling_convention), \ 42 ARM_SMCCC_OWNER_STANDARD, (func_num)) 43 44 #define FFA_SMC_32(func_num) FFA_SMC(ARM_SMCCC_SMC_32, (func_num)) 45 #define FFA_SMC_64(func_num) FFA_SMC(ARM_SMCCC_SMC_64, (func_num)) 46 47 #define FFA_ERROR FFA_SMC_32(0x60) 48 #define FFA_SUCCESS FFA_SMC_32(0x61) 49 #define FFA_INTERRUPT FFA_SMC_32(0x62) 50 #define FFA_VERSION FFA_SMC_32(0x63) 51 #define FFA_FEATURES FFA_SMC_32(0x64) 52 #define FFA_RX_RELEASE FFA_SMC_32(0x65) 53 #define FFA_RXTX_MAP FFA_SMC_32(0x66) 54 #define FFA_FN64_RXTX_MAP FFA_SMC_64(0x66) 55 #define FFA_RXTX_UNMAP FFA_SMC_32(0x67) 56 #define FFA_PARTITION_INFO_GET FFA_SMC_32(0x68) 57 #define FFA_ID_GET FFA_SMC_32(0x69) 58 #define FFA_MSG_POLL FFA_SMC_32(0x6A) 59 #define FFA_MSG_WAIT FFA_SMC_32(0x6B) 60 #define FFA_YIELD FFA_SMC_32(0x6C) 61 #define FFA_RUN FFA_SMC_32(0x6D) 62 #define FFA_MSG_SEND FFA_SMC_32(0x6E) 63 #define FFA_MSG_SEND_DIRECT_REQ FFA_SMC_32(0x6F) 64 #define FFA_FN64_MSG_SEND_DIRECT_REQ FFA_SMC_64(0x6F) 65 #define FFA_MSG_SEND_DIRECT_RESP FFA_SMC_32(0x70) 66 #define FFA_FN64_MSG_SEND_DIRECT_RESP FFA_SMC_64(0x70) 67 #define FFA_MEM_DONATE FFA_SMC_32(0x71) 68 #define FFA_FN64_MEM_DONATE FFA_SMC_64(0x71) 69 #define FFA_MEM_LEND FFA_SMC_32(0x72) 70 #define FFA_FN64_MEM_LEND FFA_SMC_64(0x72) 71 #define FFA_MEM_SHARE FFA_SMC_32(0x73) 72 #define FFA_FN64_MEM_SHARE FFA_SMC_64(0x73) 73 #define FFA_MEM_RETRIEVE_REQ FFA_SMC_32(0x74) 74 #define FFA_FN64_MEM_RETRIEVE_REQ FFA_SMC_64(0x74) 75 #define FFA_MEM_RETRIEVE_RESP FFA_SMC_32(0x75) 76 #define FFA_MEM_RELINQUISH FFA_SMC_32(0x76) 77 #define FFA_MEM_RECLAIM FFA_SMC_32(0x77) 78 #define FFA_MEM_OP_PAUSE FFA_SMC_32(0x78) 79 #define FFA_MEM_OP_RESUME FFA_SMC_32(0x79) 80 #define FFA_MEM_FRAG_RX FFA_SMC_32(0x7A) 81 #define FFA_MEM_FRAG_TX FFA_SMC_32(0x7B) 82 #define FFA_NORMAL_WORLD_RESUME FFA_SMC_32(0x7C) 83 84 /* 85 * For some calls it is necessary to use SMC64 to pass or return 64-bit values. 86 * For such calls FFA_FN_NATIVE(name) will choose the appropriate 87 * (native-width) function ID. 88 */ 89 #ifdef CONFIG_64BIT 90 #define FFA_FN_NATIVE(name) FFA_FN64_##name 91 #else 92 #define FFA_FN_NATIVE(name) FFA_##name 93 #endif 94 95 /* FFA error codes. */ 96 #define FFA_RET_SUCCESS (0) 97 #define FFA_RET_NOT_SUPPORTED (-1) 98 #define FFA_RET_INVALID_PARAMETERS (-2) 99 #define FFA_RET_NO_MEMORY (-3) 100 #define FFA_RET_BUSY (-4) 101 #define FFA_RET_INTERRUPTED (-5) 102 #define FFA_RET_DENIED (-6) 103 #define FFA_RET_RETRY (-7) 104 #define FFA_RET_ABORTED (-8) 105 106 #define MAJOR_VERSION_MASK GENMASK(30, 16) 107 #define MINOR_VERSION_MASK GENMASK(15, 0) 108 #define MAJOR_VERSION(x) ((u16)(FIELD_GET(MAJOR_VERSION_MASK, (x)))) 109 #define MINOR_VERSION(x) ((u16)(FIELD_GET(MINOR_VERSION_MASK, (x)))) 110 #define PACK_VERSION_INFO(major, minor) \ 111 (FIELD_PREP(MAJOR_VERSION_MASK, (major)) | \ 112 FIELD_PREP(MINOR_VERSION_MASK, (minor))) 113 #define FFA_VERSION_1_0 PACK_VERSION_INFO(1, 0) 114 #define FFA_MIN_VERSION FFA_VERSION_1_0 115 116 #define SENDER_ID_MASK GENMASK(31, 16) 117 #define RECEIVER_ID_MASK GENMASK(15, 0) 118 #define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x)))) 119 #define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x)))) 120 #define PACK_TARGET_INFO(s, r) \ 121 (FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r))) 122 123 /* 124 * FF-A specification mentions explicitly about '4K pages'. This should 125 * not be confused with the kernel PAGE_SIZE, which is the translation 126 * granule kernel is configured and may be one among 4K, 16K and 64K. 127 */ 128 #define FFA_PAGE_SIZE SZ_4K 129 /* 130 * Keeping RX TX buffer size as 4K for now 131 * 64K may be preferred to keep it min a page in 64K PAGE_SIZE config 132 */ 133 #define RXTX_BUFFER_SIZE SZ_4K 134 135 static ffa_fn *invoke_ffa_fn; 136 137 static const int ffa_linux_errmap[] = { 138 /* better than switch case as long as return value is continuous */ 139 0, /* FFA_RET_SUCCESS */ 140 -EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */ 141 -EINVAL, /* FFA_RET_INVALID_PARAMETERS */ 142 -ENOMEM, /* FFA_RET_NO_MEMORY */ 143 -EBUSY, /* FFA_RET_BUSY */ 144 -EINTR, /* FFA_RET_INTERRUPTED */ 145 -EACCES, /* FFA_RET_DENIED */ 146 -EAGAIN, /* FFA_RET_RETRY */ 147 -ECANCELED, /* FFA_RET_ABORTED */ 148 }; 149 150 static inline int ffa_to_linux_errno(int errno) 151 { 152 int err_idx = -errno; 153 154 if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap)) 155 return ffa_linux_errmap[err_idx]; 156 return -EINVAL; 157 } 158 159 struct ffa_drv_info { 160 u32 version; 161 u16 vm_id; 162 struct mutex rx_lock; /* lock to protect Rx buffer */ 163 struct mutex tx_lock; /* lock to protect Tx buffer */ 164 void *rx_buffer; 165 void *tx_buffer; 166 bool mem_ops_native; 167 }; 168 169 static struct ffa_drv_info *drv_info; 170 171 /* 172 * The driver must be able to support all the versions from the earliest 173 * supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION. 174 * The specification states that if firmware supports a FFA implementation 175 * that is incompatible with and at a greater version number than specified 176 * by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION), 177 * it must return the NOT_SUPPORTED error code. 178 */ 179 static u32 ffa_compatible_version_find(u32 version) 180 { 181 u16 major = MAJOR_VERSION(version), minor = MINOR_VERSION(version); 182 u16 drv_major = MAJOR_VERSION(FFA_DRIVER_VERSION); 183 u16 drv_minor = MINOR_VERSION(FFA_DRIVER_VERSION); 184 185 if ((major < drv_major) || (major == drv_major && minor <= drv_minor)) 186 return version; 187 188 pr_info("Firmware version higher than driver version, downgrading\n"); 189 return FFA_DRIVER_VERSION; 190 } 191 192 static int ffa_version_check(u32 *version) 193 { 194 ffa_value_t ver; 195 196 invoke_ffa_fn((ffa_value_t){ 197 .a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION, 198 }, &ver); 199 200 if (ver.a0 == FFA_RET_NOT_SUPPORTED) { 201 pr_info("FFA_VERSION returned not supported\n"); 202 return -EOPNOTSUPP; 203 } 204 205 if (ver.a0 < FFA_MIN_VERSION) { 206 pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n", 207 MAJOR_VERSION(ver.a0), MINOR_VERSION(ver.a0), 208 MAJOR_VERSION(FFA_MIN_VERSION), 209 MINOR_VERSION(FFA_MIN_VERSION)); 210 return -EINVAL; 211 } 212 213 pr_info("Driver version %d.%d\n", MAJOR_VERSION(FFA_DRIVER_VERSION), 214 MINOR_VERSION(FFA_DRIVER_VERSION)); 215 pr_info("Firmware version %d.%d found\n", MAJOR_VERSION(ver.a0), 216 MINOR_VERSION(ver.a0)); 217 *version = ffa_compatible_version_find(ver.a0); 218 219 return 0; 220 } 221 222 static int ffa_rx_release(void) 223 { 224 ffa_value_t ret; 225 226 invoke_ffa_fn((ffa_value_t){ 227 .a0 = FFA_RX_RELEASE, 228 }, &ret); 229 230 if (ret.a0 == FFA_ERROR) 231 return ffa_to_linux_errno((int)ret.a2); 232 233 /* check for ret.a0 == FFA_RX_RELEASE ? */ 234 235 return 0; 236 } 237 238 static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt) 239 { 240 ffa_value_t ret; 241 242 invoke_ffa_fn((ffa_value_t){ 243 .a0 = FFA_FN_NATIVE(RXTX_MAP), 244 .a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt, 245 }, &ret); 246 247 if (ret.a0 == FFA_ERROR) 248 return ffa_to_linux_errno((int)ret.a2); 249 250 return 0; 251 } 252 253 static int ffa_rxtx_unmap(u16 vm_id) 254 { 255 ffa_value_t ret; 256 257 invoke_ffa_fn((ffa_value_t){ 258 .a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0), 259 }, &ret); 260 261 if (ret.a0 == FFA_ERROR) 262 return ffa_to_linux_errno((int)ret.a2); 263 264 return 0; 265 } 266 267 #define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0) 268 269 /* buffer must be sizeof(struct ffa_partition_info) * num_partitions */ 270 static int 271 __ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3, 272 struct ffa_partition_info *buffer, int num_partitions) 273 { 274 int idx, count, flags = 0, sz, buf_sz; 275 ffa_value_t partition_info; 276 277 if (!buffer || !num_partitions) /* Just get the count for now */ 278 flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY; 279 280 mutex_lock(&drv_info->rx_lock); 281 invoke_ffa_fn((ffa_value_t){ 282 .a0 = FFA_PARTITION_INFO_GET, 283 .a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3, 284 .a5 = flags, 285 }, &partition_info); 286 287 if (partition_info.a0 == FFA_ERROR) { 288 mutex_unlock(&drv_info->rx_lock); 289 return ffa_to_linux_errno((int)partition_info.a2); 290 } 291 292 count = partition_info.a2; 293 294 if (drv_info->version > FFA_VERSION_1_0) { 295 buf_sz = sz = partition_info.a3; 296 if (sz > sizeof(*buffer)) 297 buf_sz = sizeof(*buffer); 298 } else { 299 /* FFA_VERSION_1_0 lacks size in the response */ 300 buf_sz = sz = 8; 301 } 302 303 if (buffer && count <= num_partitions) 304 for (idx = 0; idx < count; idx++) 305 memcpy(buffer + idx, drv_info->rx_buffer + idx * sz, 306 buf_sz); 307 308 ffa_rx_release(); 309 310 mutex_unlock(&drv_info->rx_lock); 311 312 return count; 313 } 314 315 /* buffer is allocated and caller must free the same if returned count > 0 */ 316 static int 317 ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer) 318 { 319 int count; 320 u32 uuid0_4[4]; 321 struct ffa_partition_info *pbuf; 322 323 export_uuid((u8 *)uuid0_4, uuid); 324 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 325 uuid0_4[3], NULL, 0); 326 if (count <= 0) 327 return count; 328 329 pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL); 330 if (!pbuf) 331 return -ENOMEM; 332 333 count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2], 334 uuid0_4[3], pbuf, count); 335 if (count <= 0) 336 kfree(pbuf); 337 else 338 *buffer = pbuf; 339 340 return count; 341 } 342 343 #define VM_ID_MASK GENMASK(15, 0) 344 static int ffa_id_get(u16 *vm_id) 345 { 346 ffa_value_t id; 347 348 invoke_ffa_fn((ffa_value_t){ 349 .a0 = FFA_ID_GET, 350 }, &id); 351 352 if (id.a0 == FFA_ERROR) 353 return ffa_to_linux_errno((int)id.a2); 354 355 *vm_id = FIELD_GET(VM_ID_MASK, (id.a2)); 356 357 return 0; 358 } 359 360 static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit, 361 struct ffa_send_direct_data *data) 362 { 363 u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id); 364 ffa_value_t ret; 365 366 if (mode_32bit) { 367 req_id = FFA_MSG_SEND_DIRECT_REQ; 368 resp_id = FFA_MSG_SEND_DIRECT_RESP; 369 } else { 370 req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ); 371 resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP); 372 } 373 374 invoke_ffa_fn((ffa_value_t){ 375 .a0 = req_id, .a1 = src_dst_ids, .a2 = 0, 376 .a3 = data->data0, .a4 = data->data1, .a5 = data->data2, 377 .a6 = data->data3, .a7 = data->data4, 378 }, &ret); 379 380 while (ret.a0 == FFA_INTERRUPT) 381 invoke_ffa_fn((ffa_value_t){ 382 .a0 = FFA_RUN, .a1 = ret.a1, 383 }, &ret); 384 385 if (ret.a0 == FFA_ERROR) 386 return ffa_to_linux_errno((int)ret.a2); 387 388 if (ret.a0 == resp_id) { 389 data->data0 = ret.a3; 390 data->data1 = ret.a4; 391 data->data2 = ret.a5; 392 data->data3 = ret.a6; 393 data->data4 = ret.a7; 394 return 0; 395 } 396 397 return -EINVAL; 398 } 399 400 static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz, 401 u32 frag_len, u32 len, u64 *handle) 402 { 403 ffa_value_t ret; 404 405 invoke_ffa_fn((ffa_value_t){ 406 .a0 = func_id, .a1 = len, .a2 = frag_len, 407 .a3 = buf, .a4 = buf_sz, 408 }, &ret); 409 410 while (ret.a0 == FFA_MEM_OP_PAUSE) 411 invoke_ffa_fn((ffa_value_t){ 412 .a0 = FFA_MEM_OP_RESUME, 413 .a1 = ret.a1, .a2 = ret.a2, 414 }, &ret); 415 416 if (ret.a0 == FFA_ERROR) 417 return ffa_to_linux_errno((int)ret.a2); 418 419 if (ret.a0 == FFA_SUCCESS) { 420 if (handle) 421 *handle = PACK_HANDLE(ret.a2, ret.a3); 422 } else if (ret.a0 == FFA_MEM_FRAG_RX) { 423 if (handle) 424 *handle = PACK_HANDLE(ret.a1, ret.a2); 425 } else { 426 return -EOPNOTSUPP; 427 } 428 429 return frag_len; 430 } 431 432 static int ffa_mem_next_frag(u64 handle, u32 frag_len) 433 { 434 ffa_value_t ret; 435 436 invoke_ffa_fn((ffa_value_t){ 437 .a0 = FFA_MEM_FRAG_TX, 438 .a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle), 439 .a3 = frag_len, 440 }, &ret); 441 442 while (ret.a0 == FFA_MEM_OP_PAUSE) 443 invoke_ffa_fn((ffa_value_t){ 444 .a0 = FFA_MEM_OP_RESUME, 445 .a1 = ret.a1, .a2 = ret.a2, 446 }, &ret); 447 448 if (ret.a0 == FFA_ERROR) 449 return ffa_to_linux_errno((int)ret.a2); 450 451 if (ret.a0 == FFA_MEM_FRAG_RX) 452 return ret.a3; 453 else if (ret.a0 == FFA_SUCCESS) 454 return 0; 455 456 return -EOPNOTSUPP; 457 } 458 459 static int 460 ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len, 461 u32 len, u64 *handle, bool first) 462 { 463 if (!first) 464 return ffa_mem_next_frag(*handle, frag_len); 465 466 return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle); 467 } 468 469 static u32 ffa_get_num_pages_sg(struct scatterlist *sg) 470 { 471 u32 num_pages = 0; 472 473 do { 474 num_pages += sg->length / FFA_PAGE_SIZE; 475 } while ((sg = sg_next(sg))); 476 477 return num_pages; 478 } 479 480 static int 481 ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize, 482 struct ffa_mem_ops_args *args) 483 { 484 int rc = 0; 485 bool first = true; 486 phys_addr_t addr = 0; 487 struct ffa_composite_mem_region *composite; 488 struct ffa_mem_region_addr_range *constituents; 489 struct ffa_mem_region_attributes *ep_mem_access; 490 struct ffa_mem_region *mem_region = buffer; 491 u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg); 492 493 mem_region->tag = args->tag; 494 mem_region->flags = args->flags; 495 mem_region->sender_id = drv_info->vm_id; 496 mem_region->attributes = FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | 497 FFA_MEM_INNER_SHAREABLE; 498 ep_mem_access = &mem_region->ep_mem_access[0]; 499 500 for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) { 501 ep_mem_access->receiver = args->attrs[idx].receiver; 502 ep_mem_access->attrs = args->attrs[idx].attrs; 503 ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs); 504 } 505 mem_region->ep_count = args->nattrs; 506 507 composite = buffer + COMPOSITE_OFFSET(args->nattrs); 508 composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg); 509 composite->addr_range_cnt = num_entries; 510 511 length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries); 512 frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0); 513 if (frag_len > max_fragsize) 514 return -ENXIO; 515 516 if (!args->use_txbuf) { 517 addr = virt_to_phys(buffer); 518 buf_sz = max_fragsize / FFA_PAGE_SIZE; 519 } 520 521 constituents = buffer + frag_len; 522 idx = 0; 523 do { 524 if (frag_len == max_fragsize) { 525 rc = ffa_transmit_fragment(func_id, addr, buf_sz, 526 frag_len, length, 527 &args->g_handle, first); 528 if (rc < 0) 529 return -ENXIO; 530 531 first = false; 532 idx = 0; 533 frag_len = 0; 534 constituents = buffer; 535 } 536 537 if ((void *)constituents - buffer > max_fragsize) { 538 pr_err("Memory Region Fragment > Tx Buffer size\n"); 539 return -EFAULT; 540 } 541 542 constituents->address = sg_phys(args->sg); 543 constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE; 544 constituents++; 545 frag_len += sizeof(struct ffa_mem_region_addr_range); 546 } while ((args->sg = sg_next(args->sg))); 547 548 return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len, 549 length, &args->g_handle, first); 550 } 551 552 static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args) 553 { 554 int ret; 555 void *buffer; 556 557 if (!args->use_txbuf) { 558 buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 559 if (!buffer) 560 return -ENOMEM; 561 } else { 562 buffer = drv_info->tx_buffer; 563 mutex_lock(&drv_info->tx_lock); 564 } 565 566 ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args); 567 568 if (args->use_txbuf) 569 mutex_unlock(&drv_info->tx_lock); 570 else 571 free_pages_exact(buffer, RXTX_BUFFER_SIZE); 572 573 return ret < 0 ? ret : 0; 574 } 575 576 static int ffa_memory_reclaim(u64 g_handle, u32 flags) 577 { 578 ffa_value_t ret; 579 580 invoke_ffa_fn((ffa_value_t){ 581 .a0 = FFA_MEM_RECLAIM, 582 .a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle), 583 .a3 = flags, 584 }, &ret); 585 586 if (ret.a0 == FFA_ERROR) 587 return ffa_to_linux_errno((int)ret.a2); 588 589 return 0; 590 } 591 592 static int ffa_features(u32 func_feat_id, u32 input_props, 593 u32 *if_props_1, u32 *if_props_2) 594 { 595 ffa_value_t id; 596 597 if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) { 598 pr_err("%s: Invalid Parameters: %x, %x", __func__, 599 func_feat_id, input_props); 600 return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS); 601 } 602 603 invoke_ffa_fn((ffa_value_t){ 604 .a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props, 605 }, &id); 606 607 if (id.a0 == FFA_ERROR) 608 return ffa_to_linux_errno((int)id.a2); 609 610 if (if_props_1) 611 *if_props_1 = id.a2; 612 if (if_props_2) 613 *if_props_2 = id.a3; 614 615 return 0; 616 } 617 618 static void ffa_set_up_mem_ops_native_flag(void) 619 { 620 if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) || 621 !ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL)) 622 drv_info->mem_ops_native = true; 623 } 624 625 static u32 ffa_api_version_get(void) 626 { 627 return drv_info->version; 628 } 629 630 static int ffa_partition_info_get(const char *uuid_str, 631 struct ffa_partition_info *buffer) 632 { 633 int count; 634 uuid_t uuid; 635 struct ffa_partition_info *pbuf; 636 637 if (uuid_parse(uuid_str, &uuid)) { 638 pr_err("invalid uuid (%s)\n", uuid_str); 639 return -ENODEV; 640 } 641 642 count = ffa_partition_probe(&uuid, &pbuf); 643 if (count <= 0) 644 return -ENOENT; 645 646 memcpy(buffer, pbuf, sizeof(*pbuf) * count); 647 kfree(pbuf); 648 return 0; 649 } 650 651 static void _ffa_mode_32bit_set(struct ffa_device *dev) 652 { 653 dev->mode_32bit = true; 654 } 655 656 static void ffa_mode_32bit_set(struct ffa_device *dev) 657 { 658 if (drv_info->version > FFA_VERSION_1_0) 659 return; 660 661 _ffa_mode_32bit_set(dev); 662 } 663 664 static int ffa_sync_send_receive(struct ffa_device *dev, 665 struct ffa_send_direct_data *data) 666 { 667 return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id, 668 dev->mode_32bit, data); 669 } 670 671 static int ffa_memory_share(struct ffa_mem_ops_args *args) 672 { 673 if (drv_info->mem_ops_native) 674 return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args); 675 676 return ffa_memory_ops(FFA_MEM_SHARE, args); 677 } 678 679 static int ffa_memory_lend(struct ffa_mem_ops_args *args) 680 { 681 /* Note that upon a successful MEM_LEND request the caller 682 * must ensure that the memory region specified is not accessed 683 * until a successful MEM_RECALIM call has been made. 684 * On systems with a hypervisor present this will been enforced, 685 * however on systems without a hypervisor the responsibility 686 * falls to the calling kernel driver to prevent access. 687 */ 688 if (drv_info->mem_ops_native) 689 return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args); 690 691 return ffa_memory_ops(FFA_MEM_LEND, args); 692 } 693 694 static const struct ffa_info_ops ffa_drv_info_ops = { 695 .api_version_get = ffa_api_version_get, 696 .partition_info_get = ffa_partition_info_get, 697 }; 698 699 static const struct ffa_msg_ops ffa_drv_msg_ops = { 700 .mode_32bit_set = ffa_mode_32bit_set, 701 .sync_send_receive = ffa_sync_send_receive, 702 }; 703 704 static const struct ffa_mem_ops ffa_drv_mem_ops = { 705 .memory_reclaim = ffa_memory_reclaim, 706 .memory_share = ffa_memory_share, 707 .memory_lend = ffa_memory_lend, 708 }; 709 710 static const struct ffa_ops ffa_drv_ops = { 711 .info_ops = &ffa_drv_info_ops, 712 .msg_ops = &ffa_drv_msg_ops, 713 .mem_ops = &ffa_drv_mem_ops, 714 }; 715 716 void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid) 717 { 718 int count, idx; 719 struct ffa_partition_info *pbuf, *tpbuf; 720 721 /* 722 * FF-A v1.1 provides UUID for each partition as part of the discovery 723 * API, the discovered UUID must be populated in the device's UUID and 724 * there is no need to copy the same from the driver table. 725 */ 726 if (drv_info->version > FFA_VERSION_1_0) 727 return; 728 729 count = ffa_partition_probe(uuid, &pbuf); 730 if (count <= 0) 731 return; 732 733 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) 734 if (tpbuf->id == ffa_dev->vm_id) 735 uuid_copy(&ffa_dev->uuid, uuid); 736 kfree(pbuf); 737 } 738 739 static void ffa_setup_partitions(void) 740 { 741 int count, idx; 742 uuid_t uuid; 743 struct ffa_device *ffa_dev; 744 struct ffa_partition_info *pbuf, *tpbuf; 745 746 count = ffa_partition_probe(&uuid_null, &pbuf); 747 if (count <= 0) { 748 pr_info("%s: No partitions found, error %d\n", __func__, count); 749 return; 750 } 751 752 for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) { 753 import_uuid(&uuid, (u8 *)tpbuf->uuid); 754 755 /* Note that if the UUID will be uuid_null, that will require 756 * ffa_device_match() to find the UUID of this partition id 757 * with help of ffa_device_match_uuid(). FF-A v1.1 and above 758 * provides UUID here for each partition as part of the 759 * discovery API and the same is passed. 760 */ 761 ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops); 762 if (!ffa_dev) { 763 pr_err("%s: failed to register partition ID 0x%x\n", 764 __func__, tpbuf->id); 765 continue; 766 } 767 768 if (drv_info->version > FFA_VERSION_1_0 && 769 !(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC)) 770 _ffa_mode_32bit_set(ffa_dev); 771 } 772 kfree(pbuf); 773 } 774 775 static int __init ffa_init(void) 776 { 777 int ret; 778 779 ret = ffa_transport_init(&invoke_ffa_fn); 780 if (ret) 781 return ret; 782 783 ret = arm_ffa_bus_init(); 784 if (ret) 785 return ret; 786 787 drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL); 788 if (!drv_info) { 789 ret = -ENOMEM; 790 goto ffa_bus_exit; 791 } 792 793 ret = ffa_version_check(&drv_info->version); 794 if (ret) 795 goto free_drv_info; 796 797 if (ffa_id_get(&drv_info->vm_id)) { 798 pr_err("failed to obtain VM id for self\n"); 799 ret = -ENODEV; 800 goto free_drv_info; 801 } 802 803 drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 804 if (!drv_info->rx_buffer) { 805 ret = -ENOMEM; 806 goto free_pages; 807 } 808 809 drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL); 810 if (!drv_info->tx_buffer) { 811 ret = -ENOMEM; 812 goto free_pages; 813 } 814 815 ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer), 816 virt_to_phys(drv_info->rx_buffer), 817 RXTX_BUFFER_SIZE / FFA_PAGE_SIZE); 818 if (ret) { 819 pr_err("failed to register FFA RxTx buffers\n"); 820 goto free_pages; 821 } 822 823 mutex_init(&drv_info->rx_lock); 824 mutex_init(&drv_info->tx_lock); 825 826 ffa_setup_partitions(); 827 828 ffa_set_up_mem_ops_native_flag(); 829 830 return 0; 831 free_pages: 832 if (drv_info->tx_buffer) 833 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 834 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 835 free_drv_info: 836 kfree(drv_info); 837 ffa_bus_exit: 838 arm_ffa_bus_exit(); 839 return ret; 840 } 841 subsys_initcall(ffa_init); 842 843 static void __exit ffa_exit(void) 844 { 845 ffa_rxtx_unmap(drv_info->vm_id); 846 free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE); 847 free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE); 848 kfree(drv_info); 849 arm_ffa_bus_exit(); 850 } 851 module_exit(ffa_exit); 852 853 MODULE_ALIAS("arm-ffa"); 854 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>"); 855 MODULE_DESCRIPTION("Arm FF-A interface driver"); 856 MODULE_LICENSE("GPL v2"); 857