xref: /openbmc/linux/drivers/firmware/Kconfig (revision 8e774e02)
1# SPDX-License-Identifier: GPL-2.0-only
2#
3# For a description of the syntax of this configuration file,
4# see Documentation/kbuild/kconfig-language.rst.
5#
6
7menu "Firmware Drivers"
8
9config ARM_SCMI_PROTOCOL
10	bool "ARM System Control and Management Interface (SCMI) Message Protocol"
11	depends on ARM || ARM64 || COMPILE_TEST
12	depends on MAILBOX
13	help
14	  ARM System Control and Management Interface (SCMI) protocol is a
15	  set of operating system-independent software interfaces that are
16	  used in system management. SCMI is extensible and currently provides
17	  interfaces for: Discovery and self-description of the interfaces
18	  it supports, Power domain management which is the ability to place
19	  a given device or domain into the various power-saving states that
20	  it supports, Performance management which is the ability to control
21	  the performance of a domain that is composed of compute engines
22	  such as application processors and other accelerators, Clock
23	  management which is the ability to set and inquire rates on platform
24	  managed clocks and Sensor management which is the ability to read
25	  sensor data, and be notified of sensor value.
26
27	  This protocol library provides interface for all the client drivers
28	  making use of the features offered by the SCMI.
29
30config ARM_SCMI_POWER_DOMAIN
31	tristate "SCMI power domain driver"
32	depends on ARM_SCMI_PROTOCOL || (COMPILE_TEST && OF)
33	default y
34	select PM_GENERIC_DOMAINS if PM
35	help
36	  This enables support for the SCMI power domains which can be
37	  enabled or disabled via the SCP firmware
38
39	  This driver can also be built as a module.  If so, the module
40	  will be called scmi_pm_domain. Note this may needed early in boot
41	  before rootfs may be available.
42
43config ARM_SCPI_PROTOCOL
44	tristate "ARM System Control and Power Interface (SCPI) Message Protocol"
45	depends on ARM || ARM64 || COMPILE_TEST
46	depends on MAILBOX
47	help
48	  System Control and Power Interface (SCPI) Message Protocol is
49	  defined for the purpose of communication between the Application
50	  Cores(AP) and the System Control Processor(SCP). The MHU peripheral
51	  provides a mechanism for inter-processor communication between SCP
52	  and AP.
53
54	  SCP controls most of the power managament on the Application
55	  Processors. It offers control and management of: the core/cluster
56	  power states, various power domain DVFS including the core/cluster,
57	  certain system clocks configuration, thermal sensors and many
58	  others.
59
60	  This protocol library provides interface for all the client drivers
61	  making use of the features offered by the SCP.
62
63config ARM_SCPI_POWER_DOMAIN
64	tristate "SCPI power domain driver"
65	depends on ARM_SCPI_PROTOCOL || (COMPILE_TEST && OF)
66	default y
67	select PM_GENERIC_DOMAINS if PM
68	help
69	  This enables support for the SCPI power domains which can be
70	  enabled or disabled via the SCP firmware
71
72config ARM_SDE_INTERFACE
73	bool "ARM Software Delegated Exception Interface (SDEI)"
74	depends on ARM64
75	help
76	  The Software Delegated Exception Interface (SDEI) is an ARM
77	  standard for registering callbacks from the platform firmware
78	  into the OS. This is typically used to implement RAS notifications.
79
80config EDD
81	tristate "BIOS Enhanced Disk Drive calls determine boot disk"
82	depends on X86
83	help
84	  Say Y or M here if you want to enable BIOS Enhanced Disk Drive
85	  Services real mode BIOS calls to determine which disk
86	  BIOS tries boot from.  This information is then exported via sysfs.
87
88	  This option is experimental and is known to fail to boot on some
89          obscure configurations. Most disk controller BIOS vendors do
90          not yet implement this feature.
91
92config EDD_OFF
93	bool "Sets default behavior for EDD detection to off"
94	depends on EDD
95	default n
96	help
97	  Say Y if you want EDD disabled by default, even though it is compiled into the
98	  kernel. Say N if you want EDD enabled by default. EDD can be dynamically set
99	  using the kernel parameter 'edd={on|skipmbr|off}'.
100
101config FIRMWARE_MEMMAP
102    bool "Add firmware-provided memory map to sysfs" if EXPERT
103    default X86
104    help
105      Add the firmware-provided (unmodified) memory map to /sys/firmware/memmap.
106      That memory map is used for example by kexec to set up parameter area
107      for the next kernel, but can also be used for debugging purposes.
108
109      See also Documentation/ABI/testing/sysfs-firmware-memmap.
110
111config EFI_PCDP
112	bool "Console device selection via EFI PCDP or HCDP table"
113	depends on ACPI && EFI && IA64
114	default y if IA64
115	help
116	  If your firmware supplies the PCDP table, and you want to
117	  automatically use the primary console device it describes
118	  as the Linux console, say Y here.
119
120	  If your firmware supplies the HCDP table, and you want to
121	  use the first serial port it describes as the Linux console,
122	  say Y here.  If your EFI ConOut path contains only a UART
123	  device, it will become the console automatically.  Otherwise,
124	  you must specify the "console=hcdp" kernel boot argument.
125
126	  Neither the PCDP nor the HCDP affects naming of serial devices,
127	  so a serial console may be /dev/ttyS0, /dev/ttyS1, etc, depending
128	  on how the driver discovers devices.
129
130	  You must also enable the appropriate drivers (serial, VGA, etc.)
131
132	  See DIG64_HCDPv20_042804.pdf available from
133	  <http://www.dig64.org/specifications/>
134
135config DMIID
136    bool "Export DMI identification via sysfs to userspace"
137    depends on DMI
138    default y
139	help
140	  Say Y here if you want to query SMBIOS/DMI system identification
141	  information from userspace through /sys/class/dmi/id/ or if you want
142	  DMI-based module auto-loading.
143
144config DMI_SYSFS
145	tristate "DMI table support in sysfs"
146	depends on SYSFS && DMI
147	default n
148	help
149	  Say Y or M here to enable the exporting of the raw DMI table
150	  data via sysfs.  This is useful for consuming the data without
151	  requiring any access to /dev/mem at all.  Tables are found
152	  under /sys/firmware/dmi when this option is enabled and
153	  loaded.
154
155config DMI_SCAN_MACHINE_NON_EFI_FALLBACK
156	bool
157
158config ISCSI_IBFT_FIND
159	bool "iSCSI Boot Firmware Table Attributes"
160	depends on X86 && ACPI
161	default n
162	help
163	  This option enables the kernel to find the region of memory
164	  in which the ISCSI Boot Firmware Table (iBFT) resides. This
165	  is necessary for iSCSI Boot Firmware Table Attributes module to work
166	  properly.
167
168config ISCSI_IBFT
169	tristate "iSCSI Boot Firmware Table Attributes module"
170	select ISCSI_BOOT_SYSFS
171	depends on ISCSI_IBFT_FIND && SCSI && SCSI_LOWLEVEL
172	default	n
173	help
174	  This option enables support for detection and exposing of iSCSI
175	  Boot Firmware Table (iBFT) via sysfs to userspace. If you wish to
176	  detect iSCSI boot parameters dynamically during system boot, say Y.
177	  Otherwise, say N.
178
179config RASPBERRYPI_FIRMWARE
180	tristate "Raspberry Pi Firmware Driver"
181	depends on BCM2835_MBOX
182	help
183	  This option enables support for communicating with the firmware on the
184	  Raspberry Pi.
185
186config FW_CFG_SYSFS
187	tristate "QEMU fw_cfg device support in sysfs"
188	depends on SYSFS && (ARM || ARM64 || PPC_PMAC || SPARC || X86)
189	depends on HAS_IOPORT_MAP
190	default n
191	help
192	  Say Y or M here to enable the exporting of the QEMU firmware
193	  configuration (fw_cfg) file entries via sysfs. Entries are
194	  found under /sys/firmware/fw_cfg when this option is enabled
195	  and loaded.
196
197config FW_CFG_SYSFS_CMDLINE
198	bool "QEMU fw_cfg device parameter parsing"
199	depends on FW_CFG_SYSFS
200	help
201	  Allow the qemu_fw_cfg device to be initialized via the kernel
202	  command line or using a module parameter.
203	  WARNING: Using incorrect parameters (base address in particular)
204	  may crash your system.
205
206config INTEL_STRATIX10_SERVICE
207	tristate "Intel Stratix10 Service Layer"
208	depends on ARCH_STRATIX10 && HAVE_ARM_SMCCC
209	default n
210	help
211	  Intel Stratix10 service layer runs at privileged exception level,
212	  interfaces with the service providers (FPGA manager is one of them)
213	  and manages secure monitor call to communicate with secure monitor
214	  software at secure monitor exception level.
215
216	  Say Y here if you want Stratix10 service layer support.
217
218config QCOM_SCM
219	bool
220	depends on ARM || ARM64
221	select RESET_CONTROLLER
222
223config QCOM_SCM_32
224	def_bool y
225	depends on QCOM_SCM && ARM
226
227config QCOM_SCM_64
228	def_bool y
229	depends on QCOM_SCM && ARM64
230
231config QCOM_SCM_DOWNLOAD_MODE_DEFAULT
232	bool "Qualcomm download mode enabled by default"
233	depends on QCOM_SCM
234	help
235	  A device with "download mode" enabled will upon an unexpected
236	  warm-restart enter a special debug mode that allows the user to
237	  "download" memory content over USB for offline postmortem analysis.
238	  The feature can be enabled/disabled on the kernel command line.
239
240	  Say Y here to enable "download mode" by default.
241
242config TI_SCI_PROTOCOL
243	tristate "TI System Control Interface (TISCI) Message Protocol"
244	depends on TI_MESSAGE_MANAGER
245	help
246	  TI System Control Interface (TISCI) Message Protocol is used to manage
247	  compute systems such as ARM, DSP etc with the system controller in
248	  complex System on Chip(SoC) such as those found on certain keystone
249	  generation SoC from TI.
250
251	  System controller provides various facilities including power
252	  management function support.
253
254	  This protocol library is used by client drivers to use the features
255	  provided by the system controller.
256
257config TRUSTED_FOUNDATIONS
258	bool "Trusted Foundations secure monitor support"
259	depends on ARM && CPU_V7
260	help
261	  Some devices (including most early Tegra-based consumer devices on
262	  the market) are booted with the Trusted Foundations secure monitor
263	  active, requiring some core operations to be performed by the secure
264	  monitor instead of the kernel.
265
266	  This option allows the kernel to invoke the secure monitor whenever
267	  required on devices using Trusted Foundations. See the functions and
268	  comments in linux/firmware/trusted_foundations.h or the device tree
269	  bindings for "tlm,trusted-foundations" for details on how to use it.
270
271	  Choose N if you don't know what this is about.
272
273config HAVE_ARM_SMCCC
274	bool
275
276source "drivers/firmware/psci/Kconfig"
277source "drivers/firmware/broadcom/Kconfig"
278source "drivers/firmware/google/Kconfig"
279source "drivers/firmware/efi/Kconfig"
280source "drivers/firmware/imx/Kconfig"
281source "drivers/firmware/meson/Kconfig"
282source "drivers/firmware/tegra/Kconfig"
283source "drivers/firmware/xilinx/Kconfig"
284
285endmenu
286