1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static int sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 /* I don't know why the SCSI stack doesn't define something like this... */ 129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); 130 131 static const char sbp2_driver_name[] = "sbp2"; 132 133 /* 134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 135 * and one struct scsi_device per sbp2_logical_unit. 136 */ 137 struct sbp2_logical_unit { 138 struct sbp2_target *tgt; 139 struct list_head link; 140 struct fw_address_handler address_handler; 141 struct list_head orb_list; 142 143 u64 command_block_agent_address; 144 u16 lun; 145 int login_id; 146 147 /* 148 * The generation is updated once we've logged in or reconnected 149 * to the logical unit. Thus, I/O to the device will automatically 150 * fail and get retried if it happens in a window where the device 151 * is not ready, e.g. after a bus reset but before we reconnect. 152 */ 153 int generation; 154 int retries; 155 struct delayed_work work; 156 bool has_sdev; 157 bool blocked; 158 }; 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct kref kref; 166 struct fw_unit *unit; 167 const char *bus_id; 168 struct list_head lu_list; 169 170 u64 management_agent_address; 171 u64 guid; 172 int directory_id; 173 int node_id; 174 int address_high; 175 unsigned int workarounds; 176 unsigned int mgt_orb_timeout; 177 unsigned int max_payload; 178 179 int dont_block; /* counter for each logical unit */ 180 int blocked; /* ditto */ 181 }; 182 183 static struct fw_device *target_device(struct sbp2_target *tgt) 184 { 185 return fw_parent_device(tgt->unit); 186 } 187 188 /* Impossible login_id, to detect logout attempt before successful login */ 189 #define INVALID_LOGIN_ID 0x10000 190 191 /* 192 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 193 * provided in the config rom. Most devices do provide a value, which 194 * we'll use for login management orbs, but with some sane limits. 195 */ 196 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */ 197 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */ 198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 199 #define SBP2_ORB_NULL 0x80000000 200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 202 203 /* 204 * There is no transport protocol limit to the CDB length, but we implement 205 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 206 */ 207 #define SBP2_MAX_CDB_SIZE 16 208 209 /* 210 * The default maximum s/g segment size of a FireWire controller is 211 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 212 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 213 */ 214 #define SBP2_MAX_SEG_SIZE 0xfffc 215 216 /* Unit directory keys */ 217 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 218 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 219 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 221 222 /* Management orb opcodes */ 223 #define SBP2_LOGIN_REQUEST 0x0 224 #define SBP2_QUERY_LOGINS_REQUEST 0x1 225 #define SBP2_RECONNECT_REQUEST 0x3 226 #define SBP2_SET_PASSWORD_REQUEST 0x4 227 #define SBP2_LOGOUT_REQUEST 0x7 228 #define SBP2_ABORT_TASK_REQUEST 0xb 229 #define SBP2_ABORT_TASK_SET 0xc 230 #define SBP2_LOGICAL_UNIT_RESET 0xe 231 #define SBP2_TARGET_RESET_REQUEST 0xf 232 233 /* Offsets for command block agent registers */ 234 #define SBP2_AGENT_STATE 0x00 235 #define SBP2_AGENT_RESET 0x04 236 #define SBP2_ORB_POINTER 0x08 237 #define SBP2_DOORBELL 0x10 238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 239 240 /* Status write response codes */ 241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 245 246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 253 #define STATUS_GET_DATA(v) ((v).data) 254 255 struct sbp2_status { 256 u32 status; 257 u32 orb_low; 258 u8 data[24]; 259 }; 260 261 struct sbp2_pointer { 262 __be32 high; 263 __be32 low; 264 }; 265 266 struct sbp2_orb { 267 struct fw_transaction t; 268 struct kref kref; 269 dma_addr_t request_bus; 270 int rcode; 271 struct sbp2_pointer pointer; 272 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 273 struct list_head link; 274 }; 275 276 #define MANAGEMENT_ORB_LUN(v) ((v)) 277 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 278 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 279 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 280 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 281 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 282 283 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 284 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 285 286 struct sbp2_management_orb { 287 struct sbp2_orb base; 288 struct { 289 struct sbp2_pointer password; 290 struct sbp2_pointer response; 291 __be32 misc; 292 __be32 length; 293 struct sbp2_pointer status_fifo; 294 } request; 295 __be32 response[4]; 296 dma_addr_t response_bus; 297 struct completion done; 298 struct sbp2_status status; 299 }; 300 301 struct sbp2_login_response { 302 __be32 misc; 303 struct sbp2_pointer command_block_agent; 304 __be32 reconnect_hold; 305 }; 306 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 307 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 308 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 309 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 310 #define COMMAND_ORB_SPEED(v) ((v) << 24) 311 #define COMMAND_ORB_DIRECTION ((1) << 27) 312 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 313 #define COMMAND_ORB_NOTIFY ((1) << 31) 314 315 struct sbp2_command_orb { 316 struct sbp2_orb base; 317 struct { 318 struct sbp2_pointer next; 319 struct sbp2_pointer data_descriptor; 320 __be32 misc; 321 u8 command_block[SBP2_MAX_CDB_SIZE]; 322 } request; 323 struct scsi_cmnd *cmd; 324 scsi_done_fn_t done; 325 struct sbp2_logical_unit *lu; 326 327 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 328 dma_addr_t page_table_bus; 329 }; 330 331 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 332 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 333 334 /* 335 * List of devices with known bugs. 336 * 337 * The firmware_revision field, masked with 0xffff00, is the best 338 * indicator for the type of bridge chip of a device. It yields a few 339 * false positives but this did not break correctly behaving devices 340 * so far. 341 */ 342 static const struct { 343 u32 firmware_revision; 344 u32 model; 345 unsigned int workarounds; 346 } sbp2_workarounds_table[] = { 347 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x001010, 350 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 351 SBP2_WORKAROUND_MODE_SENSE_8 | 352 SBP2_WORKAROUND_POWER_CONDITION, 353 }, 354 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 355 .firmware_revision = 0x002800, 356 .model = 0x000000, 357 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 358 }, 359 /* Initio bridges, actually only needed for some older ones */ { 360 .firmware_revision = 0x000200, 361 .model = SBP2_ROM_VALUE_WILDCARD, 362 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 363 }, 364 /* PL-3507 bridge with Prolific firmware */ { 365 .firmware_revision = 0x012800, 366 .model = SBP2_ROM_VALUE_WILDCARD, 367 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 368 }, 369 /* Symbios bridge */ { 370 .firmware_revision = 0xa0b800, 371 .model = SBP2_ROM_VALUE_WILDCARD, 372 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 373 }, 374 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 375 .firmware_revision = 0x002600, 376 .model = SBP2_ROM_VALUE_WILDCARD, 377 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 378 }, 379 /* 380 * iPod 2nd generation: needs 128k max transfer size workaround 381 * iPod 3rd generation: needs fix capacity workaround 382 */ 383 { 384 .firmware_revision = 0x0a2700, 385 .model = 0x000000, 386 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 387 SBP2_WORKAROUND_FIX_CAPACITY, 388 }, 389 /* iPod 4th generation */ { 390 .firmware_revision = 0x0a2700, 391 .model = 0x000021, 392 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 393 }, 394 /* iPod mini */ { 395 .firmware_revision = 0x0a2700, 396 .model = 0x000022, 397 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 398 }, 399 /* iPod mini */ { 400 .firmware_revision = 0x0a2700, 401 .model = 0x000023, 402 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 403 }, 404 /* iPod Photo */ { 405 .firmware_revision = 0x0a2700, 406 .model = 0x00007e, 407 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 408 } 409 }; 410 411 static void free_orb(struct kref *kref) 412 { 413 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 414 415 kfree(orb); 416 } 417 418 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 419 int tcode, int destination, int source, 420 int generation, int speed, 421 unsigned long long offset, 422 void *payload, size_t length, void *callback_data) 423 { 424 struct sbp2_logical_unit *lu = callback_data; 425 struct sbp2_orb *orb; 426 struct sbp2_status status; 427 unsigned long flags; 428 429 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 430 length < 8 || length > sizeof(status)) { 431 fw_send_response(card, request, RCODE_TYPE_ERROR); 432 return; 433 } 434 435 status.status = be32_to_cpup(payload); 436 status.orb_low = be32_to_cpup(payload + 4); 437 memset(status.data, 0, sizeof(status.data)); 438 if (length > 8) 439 memcpy(status.data, payload + 8, length - 8); 440 441 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 442 fw_notify("non-orb related status write, not handled\n"); 443 fw_send_response(card, request, RCODE_COMPLETE); 444 return; 445 } 446 447 /* Lookup the orb corresponding to this status write. */ 448 spin_lock_irqsave(&card->lock, flags); 449 list_for_each_entry(orb, &lu->orb_list, link) { 450 if (STATUS_GET_ORB_HIGH(status) == 0 && 451 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 452 orb->rcode = RCODE_COMPLETE; 453 list_del(&orb->link); 454 break; 455 } 456 } 457 spin_unlock_irqrestore(&card->lock, flags); 458 459 if (&orb->link != &lu->orb_list) { 460 orb->callback(orb, &status); 461 kref_put(&orb->kref, free_orb); 462 } else { 463 fw_error("status write for unknown orb\n"); 464 } 465 466 fw_send_response(card, request, RCODE_COMPLETE); 467 } 468 469 static void complete_transaction(struct fw_card *card, int rcode, 470 void *payload, size_t length, void *data) 471 { 472 struct sbp2_orb *orb = data; 473 unsigned long flags; 474 475 /* 476 * This is a little tricky. We can get the status write for 477 * the orb before we get this callback. The status write 478 * handler above will assume the orb pointer transaction was 479 * successful and set the rcode to RCODE_COMPLETE for the orb. 480 * So this callback only sets the rcode if it hasn't already 481 * been set and only does the cleanup if the transaction 482 * failed and we didn't already get a status write. 483 */ 484 spin_lock_irqsave(&card->lock, flags); 485 486 if (orb->rcode == -1) 487 orb->rcode = rcode; 488 if (orb->rcode != RCODE_COMPLETE) { 489 list_del(&orb->link); 490 spin_unlock_irqrestore(&card->lock, flags); 491 orb->callback(orb, NULL); 492 } else { 493 spin_unlock_irqrestore(&card->lock, flags); 494 } 495 496 kref_put(&orb->kref, free_orb); 497 } 498 499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 500 int node_id, int generation, u64 offset) 501 { 502 struct fw_device *device = target_device(lu->tgt); 503 unsigned long flags; 504 505 orb->pointer.high = 0; 506 orb->pointer.low = cpu_to_be32(orb->request_bus); 507 508 spin_lock_irqsave(&device->card->lock, flags); 509 list_add_tail(&orb->link, &lu->orb_list); 510 spin_unlock_irqrestore(&device->card->lock, flags); 511 512 /* Take a ref for the orb list and for the transaction callback. */ 513 kref_get(&orb->kref); 514 kref_get(&orb->kref); 515 516 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 517 node_id, generation, device->max_speed, offset, 518 &orb->pointer, sizeof(orb->pointer), 519 complete_transaction, orb); 520 } 521 522 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 523 { 524 struct fw_device *device = target_device(lu->tgt); 525 struct sbp2_orb *orb, *next; 526 struct list_head list; 527 unsigned long flags; 528 int retval = -ENOENT; 529 530 INIT_LIST_HEAD(&list); 531 spin_lock_irqsave(&device->card->lock, flags); 532 list_splice_init(&lu->orb_list, &list); 533 spin_unlock_irqrestore(&device->card->lock, flags); 534 535 list_for_each_entry_safe(orb, next, &list, link) { 536 retval = 0; 537 if (fw_cancel_transaction(device->card, &orb->t) == 0) 538 continue; 539 540 orb->rcode = RCODE_CANCELLED; 541 orb->callback(orb, NULL); 542 } 543 544 return retval; 545 } 546 547 static void complete_management_orb(struct sbp2_orb *base_orb, 548 struct sbp2_status *status) 549 { 550 struct sbp2_management_orb *orb = 551 container_of(base_orb, struct sbp2_management_orb, base); 552 553 if (status) 554 memcpy(&orb->status, status, sizeof(*status)); 555 complete(&orb->done); 556 } 557 558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 559 int generation, int function, 560 int lun_or_login_id, void *response) 561 { 562 struct fw_device *device = target_device(lu->tgt); 563 struct sbp2_management_orb *orb; 564 unsigned int timeout; 565 int retval = -ENOMEM; 566 567 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 568 return 0; 569 570 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 571 if (orb == NULL) 572 return -ENOMEM; 573 574 kref_init(&orb->base.kref); 575 orb->response_bus = 576 dma_map_single(device->card->device, &orb->response, 577 sizeof(orb->response), DMA_FROM_DEVICE); 578 if (dma_mapping_error(device->card->device, orb->response_bus)) 579 goto fail_mapping_response; 580 581 orb->request.response.high = 0; 582 orb->request.response.low = cpu_to_be32(orb->response_bus); 583 584 orb->request.misc = cpu_to_be32( 585 MANAGEMENT_ORB_NOTIFY | 586 MANAGEMENT_ORB_FUNCTION(function) | 587 MANAGEMENT_ORB_LUN(lun_or_login_id)); 588 orb->request.length = cpu_to_be32( 589 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 590 591 orb->request.status_fifo.high = 592 cpu_to_be32(lu->address_handler.offset >> 32); 593 orb->request.status_fifo.low = 594 cpu_to_be32(lu->address_handler.offset); 595 596 if (function == SBP2_LOGIN_REQUEST) { 597 /* Ask for 2^2 == 4 seconds reconnect grace period */ 598 orb->request.misc |= cpu_to_be32( 599 MANAGEMENT_ORB_RECONNECT(2) | 600 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 601 timeout = lu->tgt->mgt_orb_timeout; 602 } else { 603 timeout = SBP2_ORB_TIMEOUT; 604 } 605 606 init_completion(&orb->done); 607 orb->base.callback = complete_management_orb; 608 609 orb->base.request_bus = 610 dma_map_single(device->card->device, &orb->request, 611 sizeof(orb->request), DMA_TO_DEVICE); 612 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 613 goto fail_mapping_request; 614 615 sbp2_send_orb(&orb->base, lu, node_id, generation, 616 lu->tgt->management_agent_address); 617 618 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 619 620 retval = -EIO; 621 if (sbp2_cancel_orbs(lu) == 0) { 622 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 623 lu->tgt->bus_id, orb->base.rcode); 624 goto out; 625 } 626 627 if (orb->base.rcode != RCODE_COMPLETE) { 628 fw_error("%s: management write failed, rcode 0x%02x\n", 629 lu->tgt->bus_id, orb->base.rcode); 630 goto out; 631 } 632 633 if (STATUS_GET_RESPONSE(orb->status) != 0 || 634 STATUS_GET_SBP_STATUS(orb->status) != 0) { 635 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 636 STATUS_GET_RESPONSE(orb->status), 637 STATUS_GET_SBP_STATUS(orb->status)); 638 goto out; 639 } 640 641 retval = 0; 642 out: 643 dma_unmap_single(device->card->device, orb->base.request_bus, 644 sizeof(orb->request), DMA_TO_DEVICE); 645 fail_mapping_request: 646 dma_unmap_single(device->card->device, orb->response_bus, 647 sizeof(orb->response), DMA_FROM_DEVICE); 648 fail_mapping_response: 649 if (response) 650 memcpy(response, orb->response, sizeof(orb->response)); 651 kref_put(&orb->base.kref, free_orb); 652 653 return retval; 654 } 655 656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 657 { 658 struct fw_device *device = target_device(lu->tgt); 659 __be32 d = 0; 660 661 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 662 lu->tgt->node_id, lu->generation, device->max_speed, 663 lu->command_block_agent_address + SBP2_AGENT_RESET, 664 &d, sizeof(d)); 665 } 666 667 static void complete_agent_reset_write_no_wait(struct fw_card *card, 668 int rcode, void *payload, size_t length, void *data) 669 { 670 kfree(data); 671 } 672 673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 674 { 675 struct fw_device *device = target_device(lu->tgt); 676 struct fw_transaction *t; 677 static __be32 d; 678 679 t = kmalloc(sizeof(*t), GFP_ATOMIC); 680 if (t == NULL) 681 return; 682 683 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 684 lu->tgt->node_id, lu->generation, device->max_speed, 685 lu->command_block_agent_address + SBP2_AGENT_RESET, 686 &d, sizeof(d), complete_agent_reset_write_no_wait, t); 687 } 688 689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 690 { 691 /* 692 * We may access dont_block without taking card->lock here: 693 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 694 * are currently serialized against each other. 695 * And a wrong result in sbp2_conditionally_block()'s access of 696 * dont_block is rather harmless, it simply misses its first chance. 697 */ 698 --lu->tgt->dont_block; 699 } 700 701 /* 702 * Blocks lu->tgt if all of the following conditions are met: 703 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 704 * logical units have been finished (indicated by dont_block == 0). 705 * - lu->generation is stale. 706 * 707 * Note, scsi_block_requests() must be called while holding card->lock, 708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 709 * unblock the target. 710 */ 711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 712 { 713 struct sbp2_target *tgt = lu->tgt; 714 struct fw_card *card = target_device(tgt)->card; 715 struct Scsi_Host *shost = 716 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 717 unsigned long flags; 718 719 spin_lock_irqsave(&card->lock, flags); 720 if (!tgt->dont_block && !lu->blocked && 721 lu->generation != card->generation) { 722 lu->blocked = true; 723 if (++tgt->blocked == 1) 724 scsi_block_requests(shost); 725 } 726 spin_unlock_irqrestore(&card->lock, flags); 727 } 728 729 /* 730 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 731 * Note, it is harmless to run scsi_unblock_requests() outside the 732 * card->lock protected section. On the other hand, running it inside 733 * the section might clash with shost->host_lock. 734 */ 735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 736 { 737 struct sbp2_target *tgt = lu->tgt; 738 struct fw_card *card = target_device(tgt)->card; 739 struct Scsi_Host *shost = 740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 741 unsigned long flags; 742 bool unblock = false; 743 744 spin_lock_irqsave(&card->lock, flags); 745 if (lu->blocked && lu->generation == card->generation) { 746 lu->blocked = false; 747 unblock = --tgt->blocked == 0; 748 } 749 spin_unlock_irqrestore(&card->lock, flags); 750 751 if (unblock) 752 scsi_unblock_requests(shost); 753 } 754 755 /* 756 * Prevents future blocking of tgt and unblocks it. 757 * Note, it is harmless to run scsi_unblock_requests() outside the 758 * card->lock protected section. On the other hand, running it inside 759 * the section might clash with shost->host_lock. 760 */ 761 static void sbp2_unblock(struct sbp2_target *tgt) 762 { 763 struct fw_card *card = target_device(tgt)->card; 764 struct Scsi_Host *shost = 765 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 766 unsigned long flags; 767 768 spin_lock_irqsave(&card->lock, flags); 769 ++tgt->dont_block; 770 spin_unlock_irqrestore(&card->lock, flags); 771 772 scsi_unblock_requests(shost); 773 } 774 775 static int sbp2_lun2int(u16 lun) 776 { 777 struct scsi_lun eight_bytes_lun; 778 779 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 780 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 781 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 782 783 return scsilun_to_int(&eight_bytes_lun); 784 } 785 786 static void sbp2_release_target(struct kref *kref) 787 { 788 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); 789 struct sbp2_logical_unit *lu, *next; 790 struct Scsi_Host *shost = 791 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 792 struct scsi_device *sdev; 793 struct fw_device *device = target_device(tgt); 794 795 /* prevent deadlocks */ 796 sbp2_unblock(tgt); 797 798 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 799 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 800 if (sdev) { 801 scsi_remove_device(sdev); 802 scsi_device_put(sdev); 803 } 804 if (lu->login_id != INVALID_LOGIN_ID) { 805 int generation, node_id; 806 /* 807 * tgt->node_id may be obsolete here if we failed 808 * during initial login or after a bus reset where 809 * the topology changed. 810 */ 811 generation = device->generation; 812 smp_rmb(); /* node_id vs. generation */ 813 node_id = device->node_id; 814 sbp2_send_management_orb(lu, node_id, generation, 815 SBP2_LOGOUT_REQUEST, 816 lu->login_id, NULL); 817 } 818 fw_core_remove_address_handler(&lu->address_handler); 819 list_del(&lu->link); 820 kfree(lu); 821 } 822 scsi_remove_host(shost); 823 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 824 825 fw_unit_put(tgt->unit); 826 scsi_host_put(shost); 827 fw_device_put(device); 828 } 829 830 static struct workqueue_struct *sbp2_wq; 831 832 static void sbp2_target_put(struct sbp2_target *tgt) 833 { 834 kref_put(&tgt->kref, sbp2_release_target); 835 } 836 837 /* 838 * Always get the target's kref when scheduling work on one its units. 839 * Each workqueue job is responsible to call sbp2_target_put() upon return. 840 */ 841 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 842 { 843 kref_get(&lu->tgt->kref); 844 if (!queue_delayed_work(sbp2_wq, &lu->work, delay)) 845 sbp2_target_put(lu->tgt); 846 } 847 848 /* 849 * Write retransmit retry values into the BUSY_TIMEOUT register. 850 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 851 * default retry_limit value is 0 (i.e. never retry transmission). We write a 852 * saner value after logging into the device. 853 * - The dual-phase retry protocol is optional to implement, and if not 854 * supported, writes to the dual-phase portion of the register will be 855 * ignored. We try to write the original 1394-1995 default here. 856 * - In the case of devices that are also SBP-3-compliant, all writes are 857 * ignored, as the register is read-only, but contains single-phase retry of 858 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 859 * write attempt is safe and yields more consistent behavior for all devices. 860 * 861 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 862 * and section 6.4 of the SBP-3 spec for further details. 863 */ 864 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 865 { 866 struct fw_device *device = target_device(lu->tgt); 867 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 868 869 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 870 lu->tgt->node_id, lu->generation, device->max_speed, 871 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, 872 &d, sizeof(d)); 873 } 874 875 static void sbp2_reconnect(struct work_struct *work); 876 877 static void sbp2_login(struct work_struct *work) 878 { 879 struct sbp2_logical_unit *lu = 880 container_of(work, struct sbp2_logical_unit, work.work); 881 struct sbp2_target *tgt = lu->tgt; 882 struct fw_device *device = target_device(tgt); 883 struct Scsi_Host *shost; 884 struct scsi_device *sdev; 885 struct sbp2_login_response response; 886 int generation, node_id, local_node_id; 887 888 if (fw_device_is_shutdown(device)) 889 goto out; 890 891 generation = device->generation; 892 smp_rmb(); /* node IDs must not be older than generation */ 893 node_id = device->node_id; 894 local_node_id = device->card->node_id; 895 896 /* If this is a re-login attempt, log out, or we might be rejected. */ 897 if (lu->has_sdev) 898 sbp2_send_management_orb(lu, device->node_id, generation, 899 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 900 901 if (sbp2_send_management_orb(lu, node_id, generation, 902 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 903 if (lu->retries++ < 5) { 904 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 905 } else { 906 fw_error("%s: failed to login to LUN %04x\n", 907 tgt->bus_id, lu->lun); 908 /* Let any waiting I/O fail from now on. */ 909 sbp2_unblock(lu->tgt); 910 } 911 goto out; 912 } 913 914 tgt->node_id = node_id; 915 tgt->address_high = local_node_id << 16; 916 smp_wmb(); /* node IDs must not be older than generation */ 917 lu->generation = generation; 918 919 lu->command_block_agent_address = 920 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 921 << 32) | be32_to_cpu(response.command_block_agent.low); 922 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 923 924 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 925 tgt->bus_id, lu->lun, lu->retries); 926 927 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 928 sbp2_set_busy_timeout(lu); 929 930 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 931 sbp2_agent_reset(lu); 932 933 /* This was a re-login. */ 934 if (lu->has_sdev) { 935 sbp2_cancel_orbs(lu); 936 sbp2_conditionally_unblock(lu); 937 goto out; 938 } 939 940 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 941 ssleep(SBP2_INQUIRY_DELAY); 942 943 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 944 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 945 /* 946 * FIXME: We are unable to perform reconnects while in sbp2_login(). 947 * Therefore __scsi_add_device() will get into trouble if a bus reset 948 * happens in parallel. It will either fail or leave us with an 949 * unusable sdev. As a workaround we check for this and retry the 950 * whole login and SCSI probing. 951 */ 952 953 /* Reported error during __scsi_add_device() */ 954 if (IS_ERR(sdev)) 955 goto out_logout_login; 956 957 /* Unreported error during __scsi_add_device() */ 958 smp_rmb(); /* get current card generation */ 959 if (generation != device->card->generation) { 960 scsi_remove_device(sdev); 961 scsi_device_put(sdev); 962 goto out_logout_login; 963 } 964 965 /* No error during __scsi_add_device() */ 966 lu->has_sdev = true; 967 scsi_device_put(sdev); 968 sbp2_allow_block(lu); 969 goto out; 970 971 out_logout_login: 972 smp_rmb(); /* generation may have changed */ 973 generation = device->generation; 974 smp_rmb(); /* node_id must not be older than generation */ 975 976 sbp2_send_management_orb(lu, device->node_id, generation, 977 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 978 /* 979 * If a bus reset happened, sbp2_update will have requeued 980 * lu->work already. Reset the work from reconnect to login. 981 */ 982 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 983 out: 984 sbp2_target_put(tgt); 985 } 986 987 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 988 { 989 struct sbp2_logical_unit *lu; 990 991 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 992 if (!lu) 993 return -ENOMEM; 994 995 lu->address_handler.length = 0x100; 996 lu->address_handler.address_callback = sbp2_status_write; 997 lu->address_handler.callback_data = lu; 998 999 if (fw_core_add_address_handler(&lu->address_handler, 1000 &fw_high_memory_region) < 0) { 1001 kfree(lu); 1002 return -ENOMEM; 1003 } 1004 1005 lu->tgt = tgt; 1006 lu->lun = lun_entry & 0xffff; 1007 lu->login_id = INVALID_LOGIN_ID; 1008 lu->retries = 0; 1009 lu->has_sdev = false; 1010 lu->blocked = false; 1011 ++tgt->dont_block; 1012 INIT_LIST_HEAD(&lu->orb_list); 1013 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1014 1015 list_add_tail(&lu->link, &tgt->lu_list); 1016 return 0; 1017 } 1018 1019 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory) 1020 { 1021 struct fw_csr_iterator ci; 1022 int key, value; 1023 1024 fw_csr_iterator_init(&ci, directory); 1025 while (fw_csr_iterator_next(&ci, &key, &value)) 1026 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1027 sbp2_add_logical_unit(tgt, value) < 0) 1028 return -ENOMEM; 1029 return 0; 1030 } 1031 1032 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory, 1033 u32 *model, u32 *firmware_revision) 1034 { 1035 struct fw_csr_iterator ci; 1036 int key, value; 1037 unsigned int timeout; 1038 1039 fw_csr_iterator_init(&ci, directory); 1040 while (fw_csr_iterator_next(&ci, &key, &value)) { 1041 switch (key) { 1042 1043 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1044 tgt->management_agent_address = 1045 CSR_REGISTER_BASE + 4 * value; 1046 break; 1047 1048 case CSR_DIRECTORY_ID: 1049 tgt->directory_id = value; 1050 break; 1051 1052 case CSR_MODEL: 1053 *model = value; 1054 break; 1055 1056 case SBP2_CSR_FIRMWARE_REVISION: 1057 *firmware_revision = value; 1058 break; 1059 1060 case SBP2_CSR_UNIT_CHARACTERISTICS: 1061 /* the timeout value is stored in 500ms units */ 1062 timeout = ((unsigned int) value >> 8 & 0xff) * 500; 1063 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT); 1064 tgt->mgt_orb_timeout = 1065 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT); 1066 1067 if (timeout > tgt->mgt_orb_timeout) 1068 fw_notify("%s: config rom contains %ds " 1069 "management ORB timeout, limiting " 1070 "to %ds\n", tgt->bus_id, 1071 timeout / 1000, 1072 tgt->mgt_orb_timeout / 1000); 1073 break; 1074 1075 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1076 if (sbp2_add_logical_unit(tgt, value) < 0) 1077 return -ENOMEM; 1078 break; 1079 1080 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1081 /* Adjust for the increment in the iterator */ 1082 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1083 return -ENOMEM; 1084 break; 1085 } 1086 } 1087 return 0; 1088 } 1089 1090 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1091 u32 firmware_revision) 1092 { 1093 int i; 1094 unsigned int w = sbp2_param_workarounds; 1095 1096 if (w) 1097 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1098 "if you need the workarounds parameter for %s\n", 1099 tgt->bus_id); 1100 1101 if (w & SBP2_WORKAROUND_OVERRIDE) 1102 goto out; 1103 1104 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1105 1106 if (sbp2_workarounds_table[i].firmware_revision != 1107 (firmware_revision & 0xffffff00)) 1108 continue; 1109 1110 if (sbp2_workarounds_table[i].model != model && 1111 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1112 continue; 1113 1114 w |= sbp2_workarounds_table[i].workarounds; 1115 break; 1116 } 1117 out: 1118 if (w) 1119 fw_notify("Workarounds for %s: 0x%x " 1120 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1121 tgt->bus_id, w, firmware_revision, model); 1122 tgt->workarounds = w; 1123 } 1124 1125 static struct scsi_host_template scsi_driver_template; 1126 1127 static int sbp2_probe(struct device *dev) 1128 { 1129 struct fw_unit *unit = fw_unit(dev); 1130 struct fw_device *device = fw_parent_device(unit); 1131 struct sbp2_target *tgt; 1132 struct sbp2_logical_unit *lu; 1133 struct Scsi_Host *shost; 1134 u32 model, firmware_revision; 1135 1136 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1137 BUG_ON(dma_set_max_seg_size(device->card->device, 1138 SBP2_MAX_SEG_SIZE)); 1139 1140 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1141 if (shost == NULL) 1142 return -ENOMEM; 1143 1144 tgt = (struct sbp2_target *)shost->hostdata; 1145 dev_set_drvdata(&unit->device, tgt); 1146 tgt->unit = unit; 1147 kref_init(&tgt->kref); 1148 INIT_LIST_HEAD(&tgt->lu_list); 1149 tgt->bus_id = dev_name(&unit->device); 1150 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1151 1152 if (fw_device_enable_phys_dma(device) < 0) 1153 goto fail_shost_put; 1154 1155 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1156 1157 if (scsi_add_host(shost, &unit->device) < 0) 1158 goto fail_shost_put; 1159 1160 fw_device_get(device); 1161 fw_unit_get(unit); 1162 1163 /* implicit directory ID */ 1164 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1165 + CSR_CONFIG_ROM) & 0xffffff; 1166 1167 firmware_revision = SBP2_ROM_VALUE_MISSING; 1168 model = SBP2_ROM_VALUE_MISSING; 1169 1170 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1171 &firmware_revision) < 0) 1172 goto fail_tgt_put; 1173 1174 sbp2_init_workarounds(tgt, model, firmware_revision); 1175 1176 /* 1177 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1178 * and so on up to 4096 bytes. The SBP-2 max_payload field 1179 * specifies the max payload size as 2 ^ (max_payload + 2), so 1180 * if we set this to max_speed + 7, we get the right value. 1181 */ 1182 tgt->max_payload = min(device->max_speed + 7, 10U); 1183 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); 1184 1185 /* Do the login in a workqueue so we can easily reschedule retries. */ 1186 list_for_each_entry(lu, &tgt->lu_list, link) 1187 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1188 return 0; 1189 1190 fail_tgt_put: 1191 sbp2_target_put(tgt); 1192 return -ENOMEM; 1193 1194 fail_shost_put: 1195 scsi_host_put(shost); 1196 return -ENOMEM; 1197 } 1198 1199 static int sbp2_remove(struct device *dev) 1200 { 1201 struct fw_unit *unit = fw_unit(dev); 1202 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1203 1204 sbp2_target_put(tgt); 1205 return 0; 1206 } 1207 1208 static void sbp2_reconnect(struct work_struct *work) 1209 { 1210 struct sbp2_logical_unit *lu = 1211 container_of(work, struct sbp2_logical_unit, work.work); 1212 struct sbp2_target *tgt = lu->tgt; 1213 struct fw_device *device = target_device(tgt); 1214 int generation, node_id, local_node_id; 1215 1216 if (fw_device_is_shutdown(device)) 1217 goto out; 1218 1219 generation = device->generation; 1220 smp_rmb(); /* node IDs must not be older than generation */ 1221 node_id = device->node_id; 1222 local_node_id = device->card->node_id; 1223 1224 if (sbp2_send_management_orb(lu, node_id, generation, 1225 SBP2_RECONNECT_REQUEST, 1226 lu->login_id, NULL) < 0) { 1227 /* 1228 * If reconnect was impossible even though we are in the 1229 * current generation, fall back and try to log in again. 1230 * 1231 * We could check for "Function rejected" status, but 1232 * looking at the bus generation as simpler and more general. 1233 */ 1234 smp_rmb(); /* get current card generation */ 1235 if (generation == device->card->generation || 1236 lu->retries++ >= 5) { 1237 fw_error("%s: failed to reconnect\n", tgt->bus_id); 1238 lu->retries = 0; 1239 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 1240 } 1241 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1242 goto out; 1243 } 1244 1245 tgt->node_id = node_id; 1246 tgt->address_high = local_node_id << 16; 1247 smp_wmb(); /* node IDs must not be older than generation */ 1248 lu->generation = generation; 1249 1250 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 1251 tgt->bus_id, lu->lun, lu->retries); 1252 1253 sbp2_agent_reset(lu); 1254 sbp2_cancel_orbs(lu); 1255 sbp2_conditionally_unblock(lu); 1256 out: 1257 sbp2_target_put(tgt); 1258 } 1259 1260 static void sbp2_update(struct fw_unit *unit) 1261 { 1262 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1263 struct sbp2_logical_unit *lu; 1264 1265 fw_device_enable_phys_dma(fw_parent_device(unit)); 1266 1267 /* 1268 * Fw-core serializes sbp2_update() against sbp2_remove(). 1269 * Iteration over tgt->lu_list is therefore safe here. 1270 */ 1271 list_for_each_entry(lu, &tgt->lu_list, link) { 1272 sbp2_conditionally_block(lu); 1273 lu->retries = 0; 1274 sbp2_queue_work(lu, 0); 1275 } 1276 } 1277 1278 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1279 #define SBP2_SW_VERSION_ENTRY 0x00010483 1280 1281 static const struct ieee1394_device_id sbp2_id_table[] = { 1282 { 1283 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1284 IEEE1394_MATCH_VERSION, 1285 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1286 .version = SBP2_SW_VERSION_ENTRY, 1287 }, 1288 { } 1289 }; 1290 1291 static struct fw_driver sbp2_driver = { 1292 .driver = { 1293 .owner = THIS_MODULE, 1294 .name = sbp2_driver_name, 1295 .bus = &fw_bus_type, 1296 .probe = sbp2_probe, 1297 .remove = sbp2_remove, 1298 }, 1299 .update = sbp2_update, 1300 .id_table = sbp2_id_table, 1301 }; 1302 1303 static void sbp2_unmap_scatterlist(struct device *card_device, 1304 struct sbp2_command_orb *orb) 1305 { 1306 if (scsi_sg_count(orb->cmd)) 1307 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1308 scsi_sg_count(orb->cmd), 1309 orb->cmd->sc_data_direction); 1310 1311 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1312 dma_unmap_single(card_device, orb->page_table_bus, 1313 sizeof(orb->page_table), DMA_TO_DEVICE); 1314 } 1315 1316 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1317 { 1318 int sam_status; 1319 1320 sense_data[0] = 0x70; 1321 sense_data[1] = 0x0; 1322 sense_data[2] = sbp2_status[1]; 1323 sense_data[3] = sbp2_status[4]; 1324 sense_data[4] = sbp2_status[5]; 1325 sense_data[5] = sbp2_status[6]; 1326 sense_data[6] = sbp2_status[7]; 1327 sense_data[7] = 10; 1328 sense_data[8] = sbp2_status[8]; 1329 sense_data[9] = sbp2_status[9]; 1330 sense_data[10] = sbp2_status[10]; 1331 sense_data[11] = sbp2_status[11]; 1332 sense_data[12] = sbp2_status[2]; 1333 sense_data[13] = sbp2_status[3]; 1334 sense_data[14] = sbp2_status[12]; 1335 sense_data[15] = sbp2_status[13]; 1336 1337 sam_status = sbp2_status[0] & 0x3f; 1338 1339 switch (sam_status) { 1340 case SAM_STAT_GOOD: 1341 case SAM_STAT_CHECK_CONDITION: 1342 case SAM_STAT_CONDITION_MET: 1343 case SAM_STAT_BUSY: 1344 case SAM_STAT_RESERVATION_CONFLICT: 1345 case SAM_STAT_COMMAND_TERMINATED: 1346 return DID_OK << 16 | sam_status; 1347 1348 default: 1349 return DID_ERROR << 16; 1350 } 1351 } 1352 1353 static void complete_command_orb(struct sbp2_orb *base_orb, 1354 struct sbp2_status *status) 1355 { 1356 struct sbp2_command_orb *orb = 1357 container_of(base_orb, struct sbp2_command_orb, base); 1358 struct fw_device *device = target_device(orb->lu->tgt); 1359 int result; 1360 1361 if (status != NULL) { 1362 if (STATUS_GET_DEAD(*status)) 1363 sbp2_agent_reset_no_wait(orb->lu); 1364 1365 switch (STATUS_GET_RESPONSE(*status)) { 1366 case SBP2_STATUS_REQUEST_COMPLETE: 1367 result = DID_OK << 16; 1368 break; 1369 case SBP2_STATUS_TRANSPORT_FAILURE: 1370 result = DID_BUS_BUSY << 16; 1371 break; 1372 case SBP2_STATUS_ILLEGAL_REQUEST: 1373 case SBP2_STATUS_VENDOR_DEPENDENT: 1374 default: 1375 result = DID_ERROR << 16; 1376 break; 1377 } 1378 1379 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1380 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1381 orb->cmd->sense_buffer); 1382 } else { 1383 /* 1384 * If the orb completes with status == NULL, something 1385 * went wrong, typically a bus reset happened mid-orb 1386 * or when sending the write (less likely). 1387 */ 1388 result = DID_BUS_BUSY << 16; 1389 sbp2_conditionally_block(orb->lu); 1390 } 1391 1392 dma_unmap_single(device->card->device, orb->base.request_bus, 1393 sizeof(orb->request), DMA_TO_DEVICE); 1394 sbp2_unmap_scatterlist(device->card->device, orb); 1395 1396 orb->cmd->result = result; 1397 orb->done(orb->cmd); 1398 } 1399 1400 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1401 struct fw_device *device, struct sbp2_logical_unit *lu) 1402 { 1403 struct scatterlist *sg = scsi_sglist(orb->cmd); 1404 int i, n; 1405 1406 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1407 orb->cmd->sc_data_direction); 1408 if (n == 0) 1409 goto fail; 1410 1411 /* 1412 * Handle the special case where there is only one element in 1413 * the scatter list by converting it to an immediate block 1414 * request. This is also a workaround for broken devices such 1415 * as the second generation iPod which doesn't support page 1416 * tables. 1417 */ 1418 if (n == 1) { 1419 orb->request.data_descriptor.high = 1420 cpu_to_be32(lu->tgt->address_high); 1421 orb->request.data_descriptor.low = 1422 cpu_to_be32(sg_dma_address(sg)); 1423 orb->request.misc |= 1424 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1425 return 0; 1426 } 1427 1428 for_each_sg(sg, sg, n, i) { 1429 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1430 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1431 } 1432 1433 orb->page_table_bus = 1434 dma_map_single(device->card->device, orb->page_table, 1435 sizeof(orb->page_table), DMA_TO_DEVICE); 1436 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1437 goto fail_page_table; 1438 1439 /* 1440 * The data_descriptor pointer is the one case where we need 1441 * to fill in the node ID part of the address. All other 1442 * pointers assume that the data referenced reside on the 1443 * initiator (i.e. us), but data_descriptor can refer to data 1444 * on other nodes so we need to put our ID in descriptor.high. 1445 */ 1446 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1447 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1448 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1449 COMMAND_ORB_DATA_SIZE(n)); 1450 1451 return 0; 1452 1453 fail_page_table: 1454 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1455 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1456 fail: 1457 return -ENOMEM; 1458 } 1459 1460 /* SCSI stack integration */ 1461 1462 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done) 1463 { 1464 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1465 struct fw_device *device = target_device(lu->tgt); 1466 struct sbp2_command_orb *orb; 1467 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1468 1469 /* 1470 * Bidirectional commands are not yet implemented, and unknown 1471 * transfer direction not handled. 1472 */ 1473 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1474 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1475 cmd->result = DID_ERROR << 16; 1476 done(cmd); 1477 return 0; 1478 } 1479 1480 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1481 if (orb == NULL) { 1482 fw_notify("failed to alloc orb\n"); 1483 return SCSI_MLQUEUE_HOST_BUSY; 1484 } 1485 1486 /* Initialize rcode to something not RCODE_COMPLETE. */ 1487 orb->base.rcode = -1; 1488 kref_init(&orb->base.kref); 1489 1490 orb->lu = lu; 1491 orb->done = done; 1492 orb->cmd = cmd; 1493 1494 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1495 orb->request.misc = cpu_to_be32( 1496 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1497 COMMAND_ORB_SPEED(device->max_speed) | 1498 COMMAND_ORB_NOTIFY); 1499 1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1502 1503 generation = device->generation; 1504 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1505 1506 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1507 goto out; 1508 1509 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1510 1511 orb->base.callback = complete_command_orb; 1512 orb->base.request_bus = 1513 dma_map_single(device->card->device, &orb->request, 1514 sizeof(orb->request), DMA_TO_DEVICE); 1515 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1516 sbp2_unmap_scatterlist(device->card->device, orb); 1517 goto out; 1518 } 1519 1520 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1521 lu->command_block_agent_address + SBP2_ORB_POINTER); 1522 retval = 0; 1523 out: 1524 kref_put(&orb->base.kref, free_orb); 1525 return retval; 1526 } 1527 1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1529 { 1530 struct sbp2_logical_unit *lu = sdev->hostdata; 1531 1532 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1533 if (!lu) 1534 return -ENOSYS; 1535 1536 sdev->allow_restart = 1; 1537 1538 /* SBP-2 requires quadlet alignment of the data buffers. */ 1539 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1540 1541 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1542 sdev->inquiry_len = 36; 1543 1544 return 0; 1545 } 1546 1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1548 { 1549 struct sbp2_logical_unit *lu = sdev->hostdata; 1550 1551 sdev->use_10_for_rw = 1; 1552 1553 if (sbp2_param_exclusive_login) 1554 sdev->manage_start_stop = 1; 1555 1556 if (sdev->type == TYPE_ROM) 1557 sdev->use_10_for_ms = 1; 1558 1559 if (sdev->type == TYPE_DISK && 1560 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1561 sdev->skip_ms_page_8 = 1; 1562 1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1564 sdev->fix_capacity = 1; 1565 1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1567 sdev->start_stop_pwr_cond = 1; 1568 1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1570 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512); 1571 1572 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * Called by scsi stack when something has really gone wrong. Usually 1579 * called when a command has timed-out for some reason. 1580 */ 1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1582 { 1583 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1584 1585 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1586 sbp2_agent_reset(lu); 1587 sbp2_cancel_orbs(lu); 1588 1589 return SUCCESS; 1590 } 1591 1592 /* 1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1594 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1595 * 1596 * This is the concatenation of target port identifier and logical unit 1597 * identifier as per SAM-2...SAM-4 annex A. 1598 */ 1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1600 struct device_attribute *attr, char *buf) 1601 { 1602 struct scsi_device *sdev = to_scsi_device(dev); 1603 struct sbp2_logical_unit *lu; 1604 1605 if (!sdev) 1606 return 0; 1607 1608 lu = sdev->hostdata; 1609 1610 return sprintf(buf, "%016llx:%06x:%04x\n", 1611 (unsigned long long)lu->tgt->guid, 1612 lu->tgt->directory_id, lu->lun); 1613 } 1614 1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1616 1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1618 &dev_attr_ieee1394_id, 1619 NULL 1620 }; 1621 1622 static struct scsi_host_template scsi_driver_template = { 1623 .module = THIS_MODULE, 1624 .name = "SBP-2 IEEE-1394", 1625 .proc_name = sbp2_driver_name, 1626 .queuecommand = sbp2_scsi_queuecommand, 1627 .slave_alloc = sbp2_scsi_slave_alloc, 1628 .slave_configure = sbp2_scsi_slave_configure, 1629 .eh_abort_handler = sbp2_scsi_abort, 1630 .this_id = -1, 1631 .sg_tablesize = SG_ALL, 1632 .use_clustering = ENABLE_CLUSTERING, 1633 .cmd_per_lun = 1, 1634 .can_queue = 1, 1635 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1636 }; 1637 1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1639 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1640 MODULE_LICENSE("GPL"); 1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1642 1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1645 MODULE_ALIAS("sbp2"); 1646 #endif 1647 1648 static int __init sbp2_init(void) 1649 { 1650 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); 1651 if (!sbp2_wq) 1652 return -ENOMEM; 1653 1654 return driver_register(&sbp2_driver.driver); 1655 } 1656 1657 static void __exit sbp2_cleanup(void) 1658 { 1659 driver_unregister(&sbp2_driver.driver); 1660 destroy_workqueue(sbp2_wq); 1661 } 1662 1663 module_init(sbp2_init); 1664 module_exit(sbp2_cleanup); 1665