1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static int sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 /* I don't know why the SCSI stack doesn't define something like this... */ 129 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *); 130 131 static const char sbp2_driver_name[] = "sbp2"; 132 133 /* 134 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 135 * and one struct scsi_device per sbp2_logical_unit. 136 */ 137 struct sbp2_logical_unit { 138 struct sbp2_target *tgt; 139 struct list_head link; 140 struct fw_address_handler address_handler; 141 struct list_head orb_list; 142 143 u64 command_block_agent_address; 144 u16 lun; 145 int login_id; 146 147 /* 148 * The generation is updated once we've logged in or reconnected 149 * to the logical unit. Thus, I/O to the device will automatically 150 * fail and get retried if it happens in a window where the device 151 * is not ready, e.g. after a bus reset but before we reconnect. 152 */ 153 int generation; 154 int retries; 155 struct delayed_work work; 156 bool has_sdev; 157 bool blocked; 158 }; 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct kref kref; 166 struct fw_unit *unit; 167 const char *bus_id; 168 struct list_head lu_list; 169 170 u64 management_agent_address; 171 u64 guid; 172 int directory_id; 173 int node_id; 174 int address_high; 175 unsigned int workarounds; 176 unsigned int mgt_orb_timeout; 177 unsigned int max_payload; 178 179 int dont_block; /* counter for each logical unit */ 180 int blocked; /* ditto */ 181 }; 182 183 static struct fw_device *target_device(struct sbp2_target *tgt) 184 { 185 return fw_parent_device(tgt->unit); 186 } 187 188 /* Impossible login_id, to detect logout attempt before successful login */ 189 #define INVALID_LOGIN_ID 0x10000 190 191 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 192 #define SBP2_ORB_NULL 0x80000000 193 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 194 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 195 196 /* 197 * There is no transport protocol limit to the CDB length, but we implement 198 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 199 */ 200 #define SBP2_MAX_CDB_SIZE 16 201 202 /* 203 * The default maximum s/g segment size of a FireWire controller is 204 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 205 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 206 */ 207 #define SBP2_MAX_SEG_SIZE 0xfffc 208 209 /* Unit directory keys */ 210 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 211 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 212 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 213 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 214 215 /* Management orb opcodes */ 216 #define SBP2_LOGIN_REQUEST 0x0 217 #define SBP2_QUERY_LOGINS_REQUEST 0x1 218 #define SBP2_RECONNECT_REQUEST 0x3 219 #define SBP2_SET_PASSWORD_REQUEST 0x4 220 #define SBP2_LOGOUT_REQUEST 0x7 221 #define SBP2_ABORT_TASK_REQUEST 0xb 222 #define SBP2_ABORT_TASK_SET 0xc 223 #define SBP2_LOGICAL_UNIT_RESET 0xe 224 #define SBP2_TARGET_RESET_REQUEST 0xf 225 226 /* Offsets for command block agent registers */ 227 #define SBP2_AGENT_STATE 0x00 228 #define SBP2_AGENT_RESET 0x04 229 #define SBP2_ORB_POINTER 0x08 230 #define SBP2_DOORBELL 0x10 231 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 232 233 /* Status write response codes */ 234 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 235 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 236 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 237 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 238 239 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 240 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 241 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 242 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 243 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 244 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 245 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 246 #define STATUS_GET_DATA(v) ((v).data) 247 248 struct sbp2_status { 249 u32 status; 250 u32 orb_low; 251 u8 data[24]; 252 }; 253 254 struct sbp2_pointer { 255 __be32 high; 256 __be32 low; 257 }; 258 259 struct sbp2_orb { 260 struct fw_transaction t; 261 struct kref kref; 262 dma_addr_t request_bus; 263 int rcode; 264 struct sbp2_pointer pointer; 265 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 266 struct list_head link; 267 }; 268 269 #define MANAGEMENT_ORB_LUN(v) ((v)) 270 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 271 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 272 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 273 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 274 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 275 276 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 277 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 278 279 struct sbp2_management_orb { 280 struct sbp2_orb base; 281 struct { 282 struct sbp2_pointer password; 283 struct sbp2_pointer response; 284 __be32 misc; 285 __be32 length; 286 struct sbp2_pointer status_fifo; 287 } request; 288 __be32 response[4]; 289 dma_addr_t response_bus; 290 struct completion done; 291 struct sbp2_status status; 292 }; 293 294 struct sbp2_login_response { 295 __be32 misc; 296 struct sbp2_pointer command_block_agent; 297 __be32 reconnect_hold; 298 }; 299 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 300 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 301 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 302 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 303 #define COMMAND_ORB_SPEED(v) ((v) << 24) 304 #define COMMAND_ORB_DIRECTION ((1) << 27) 305 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 306 #define COMMAND_ORB_NOTIFY ((1) << 31) 307 308 struct sbp2_command_orb { 309 struct sbp2_orb base; 310 struct { 311 struct sbp2_pointer next; 312 struct sbp2_pointer data_descriptor; 313 __be32 misc; 314 u8 command_block[SBP2_MAX_CDB_SIZE]; 315 } request; 316 struct scsi_cmnd *cmd; 317 scsi_done_fn_t done; 318 struct sbp2_logical_unit *lu; 319 320 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 321 dma_addr_t page_table_bus; 322 }; 323 324 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 325 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 326 327 /* 328 * List of devices with known bugs. 329 * 330 * The firmware_revision field, masked with 0xffff00, is the best 331 * indicator for the type of bridge chip of a device. It yields a few 332 * false positives but this did not break correctly behaving devices 333 * so far. 334 */ 335 static const struct { 336 u32 firmware_revision; 337 u32 model; 338 unsigned int workarounds; 339 } sbp2_workarounds_table[] = { 340 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 341 .firmware_revision = 0x002800, 342 .model = 0x001010, 343 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 344 SBP2_WORKAROUND_MODE_SENSE_8 | 345 SBP2_WORKAROUND_POWER_CONDITION, 346 }, 347 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 348 .firmware_revision = 0x002800, 349 .model = 0x000000, 350 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 351 }, 352 /* Initio bridges, actually only needed for some older ones */ { 353 .firmware_revision = 0x000200, 354 .model = SBP2_ROM_VALUE_WILDCARD, 355 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 356 }, 357 /* PL-3507 bridge with Prolific firmware */ { 358 .firmware_revision = 0x012800, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 361 }, 362 /* Symbios bridge */ { 363 .firmware_revision = 0xa0b800, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 366 }, 367 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 368 .firmware_revision = 0x002600, 369 .model = SBP2_ROM_VALUE_WILDCARD, 370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 371 }, 372 /* 373 * iPod 2nd generation: needs 128k max transfer size workaround 374 * iPod 3rd generation: needs fix capacity workaround 375 */ 376 { 377 .firmware_revision = 0x0a2700, 378 .model = 0x000000, 379 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 380 SBP2_WORKAROUND_FIX_CAPACITY, 381 }, 382 /* iPod 4th generation */ { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000021, 385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod mini */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000022, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod mini */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x000023, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 }, 397 /* iPod Photo */ { 398 .firmware_revision = 0x0a2700, 399 .model = 0x00007e, 400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 401 } 402 }; 403 404 static void free_orb(struct kref *kref) 405 { 406 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 407 408 kfree(orb); 409 } 410 411 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 412 int tcode, int destination, int source, 413 int generation, unsigned long long offset, 414 void *payload, size_t length, void *callback_data) 415 { 416 struct sbp2_logical_unit *lu = callback_data; 417 struct sbp2_orb *orb; 418 struct sbp2_status status; 419 unsigned long flags; 420 421 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 422 length < 8 || length > sizeof(status)) { 423 fw_send_response(card, request, RCODE_TYPE_ERROR); 424 return; 425 } 426 427 status.status = be32_to_cpup(payload); 428 status.orb_low = be32_to_cpup(payload + 4); 429 memset(status.data, 0, sizeof(status.data)); 430 if (length > 8) 431 memcpy(status.data, payload + 8, length - 8); 432 433 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 434 fw_notify("non-orb related status write, not handled\n"); 435 fw_send_response(card, request, RCODE_COMPLETE); 436 return; 437 } 438 439 /* Lookup the orb corresponding to this status write. */ 440 spin_lock_irqsave(&card->lock, flags); 441 list_for_each_entry(orb, &lu->orb_list, link) { 442 if (STATUS_GET_ORB_HIGH(status) == 0 && 443 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 444 orb->rcode = RCODE_COMPLETE; 445 list_del(&orb->link); 446 break; 447 } 448 } 449 spin_unlock_irqrestore(&card->lock, flags); 450 451 if (&orb->link != &lu->orb_list) { 452 orb->callback(orb, &status); 453 kref_put(&orb->kref, free_orb); /* orb callback reference */ 454 } else { 455 fw_error("status write for unknown orb\n"); 456 } 457 458 fw_send_response(card, request, RCODE_COMPLETE); 459 } 460 461 static void complete_transaction(struct fw_card *card, int rcode, 462 void *payload, size_t length, void *data) 463 { 464 struct sbp2_orb *orb = data; 465 unsigned long flags; 466 467 /* 468 * This is a little tricky. We can get the status write for 469 * the orb before we get this callback. The status write 470 * handler above will assume the orb pointer transaction was 471 * successful and set the rcode to RCODE_COMPLETE for the orb. 472 * So this callback only sets the rcode if it hasn't already 473 * been set and only does the cleanup if the transaction 474 * failed and we didn't already get a status write. 475 * 476 * Here we treat RCODE_CANCELLED like RCODE_COMPLETE because some 477 * OXUF936QSE firmwares occasionally respond after Split_Timeout and 478 * complete the ORB just fine. Note, we also get RCODE_CANCELLED 479 * from sbp2_cancel_orbs() if fw_cancel_transaction() == 0. 480 */ 481 spin_lock_irqsave(&card->lock, flags); 482 483 if (orb->rcode == -1) 484 orb->rcode = rcode; 485 486 if (orb->rcode != RCODE_COMPLETE && orb->rcode != RCODE_CANCELLED) { 487 list_del(&orb->link); 488 spin_unlock_irqrestore(&card->lock, flags); 489 490 orb->callback(orb, NULL); 491 kref_put(&orb->kref, free_orb); /* orb callback reference */ 492 } else { 493 spin_unlock_irqrestore(&card->lock, flags); 494 } 495 496 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 497 } 498 499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 500 int node_id, int generation, u64 offset) 501 { 502 struct fw_device *device = target_device(lu->tgt); 503 unsigned long flags; 504 505 orb->pointer.high = 0; 506 orb->pointer.low = cpu_to_be32(orb->request_bus); 507 508 spin_lock_irqsave(&device->card->lock, flags); 509 list_add_tail(&orb->link, &lu->orb_list); 510 spin_unlock_irqrestore(&device->card->lock, flags); 511 512 kref_get(&orb->kref); /* transaction callback reference */ 513 kref_get(&orb->kref); /* orb callback reference */ 514 515 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 516 node_id, generation, device->max_speed, offset, 517 &orb->pointer, 8, complete_transaction, orb); 518 } 519 520 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 521 { 522 struct fw_device *device = target_device(lu->tgt); 523 struct sbp2_orb *orb, *next; 524 struct list_head list; 525 unsigned long flags; 526 int retval = -ENOENT; 527 528 INIT_LIST_HEAD(&list); 529 spin_lock_irqsave(&device->card->lock, flags); 530 list_splice_init(&lu->orb_list, &list); 531 spin_unlock_irqrestore(&device->card->lock, flags); 532 533 list_for_each_entry_safe(orb, next, &list, link) { 534 retval = 0; 535 fw_cancel_transaction(device->card, &orb->t); 536 537 orb->rcode = RCODE_CANCELLED; 538 orb->callback(orb, NULL); 539 kref_put(&orb->kref, free_orb); /* orb callback reference */ 540 } 541 542 return retval; 543 } 544 545 static void complete_management_orb(struct sbp2_orb *base_orb, 546 struct sbp2_status *status) 547 { 548 struct sbp2_management_orb *orb = 549 container_of(base_orb, struct sbp2_management_orb, base); 550 551 if (status) 552 memcpy(&orb->status, status, sizeof(*status)); 553 complete(&orb->done); 554 } 555 556 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 557 int generation, int function, 558 int lun_or_login_id, void *response) 559 { 560 struct fw_device *device = target_device(lu->tgt); 561 struct sbp2_management_orb *orb; 562 unsigned int timeout; 563 int retval = -ENOMEM; 564 565 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 566 return 0; 567 568 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 569 if (orb == NULL) 570 return -ENOMEM; 571 572 kref_init(&orb->base.kref); 573 orb->response_bus = 574 dma_map_single(device->card->device, &orb->response, 575 sizeof(orb->response), DMA_FROM_DEVICE); 576 if (dma_mapping_error(device->card->device, orb->response_bus)) 577 goto fail_mapping_response; 578 579 orb->request.response.high = 0; 580 orb->request.response.low = cpu_to_be32(orb->response_bus); 581 582 orb->request.misc = cpu_to_be32( 583 MANAGEMENT_ORB_NOTIFY | 584 MANAGEMENT_ORB_FUNCTION(function) | 585 MANAGEMENT_ORB_LUN(lun_or_login_id)); 586 orb->request.length = cpu_to_be32( 587 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 588 589 orb->request.status_fifo.high = 590 cpu_to_be32(lu->address_handler.offset >> 32); 591 orb->request.status_fifo.low = 592 cpu_to_be32(lu->address_handler.offset); 593 594 if (function == SBP2_LOGIN_REQUEST) { 595 /* Ask for 2^2 == 4 seconds reconnect grace period */ 596 orb->request.misc |= cpu_to_be32( 597 MANAGEMENT_ORB_RECONNECT(2) | 598 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 599 timeout = lu->tgt->mgt_orb_timeout; 600 } else { 601 timeout = SBP2_ORB_TIMEOUT; 602 } 603 604 init_completion(&orb->done); 605 orb->base.callback = complete_management_orb; 606 607 orb->base.request_bus = 608 dma_map_single(device->card->device, &orb->request, 609 sizeof(orb->request), DMA_TO_DEVICE); 610 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 611 goto fail_mapping_request; 612 613 sbp2_send_orb(&orb->base, lu, node_id, generation, 614 lu->tgt->management_agent_address); 615 616 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 617 618 retval = -EIO; 619 if (sbp2_cancel_orbs(lu) == 0) { 620 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 621 lu->tgt->bus_id, orb->base.rcode); 622 goto out; 623 } 624 625 if (orb->base.rcode != RCODE_COMPLETE) { 626 fw_error("%s: management write failed, rcode 0x%02x\n", 627 lu->tgt->bus_id, orb->base.rcode); 628 goto out; 629 } 630 631 if (STATUS_GET_RESPONSE(orb->status) != 0 || 632 STATUS_GET_SBP_STATUS(orb->status) != 0) { 633 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 634 STATUS_GET_RESPONSE(orb->status), 635 STATUS_GET_SBP_STATUS(orb->status)); 636 goto out; 637 } 638 639 retval = 0; 640 out: 641 dma_unmap_single(device->card->device, orb->base.request_bus, 642 sizeof(orb->request), DMA_TO_DEVICE); 643 fail_mapping_request: 644 dma_unmap_single(device->card->device, orb->response_bus, 645 sizeof(orb->response), DMA_FROM_DEVICE); 646 fail_mapping_response: 647 if (response) 648 memcpy(response, orb->response, sizeof(orb->response)); 649 kref_put(&orb->base.kref, free_orb); 650 651 return retval; 652 } 653 654 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 655 { 656 struct fw_device *device = target_device(lu->tgt); 657 __be32 d = 0; 658 659 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 660 lu->tgt->node_id, lu->generation, device->max_speed, 661 lu->command_block_agent_address + SBP2_AGENT_RESET, 662 &d, 4); 663 } 664 665 static void complete_agent_reset_write_no_wait(struct fw_card *card, 666 int rcode, void *payload, size_t length, void *data) 667 { 668 kfree(data); 669 } 670 671 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 672 { 673 struct fw_device *device = target_device(lu->tgt); 674 struct fw_transaction *t; 675 static __be32 d; 676 677 t = kmalloc(sizeof(*t), GFP_ATOMIC); 678 if (t == NULL) 679 return; 680 681 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 682 lu->tgt->node_id, lu->generation, device->max_speed, 683 lu->command_block_agent_address + SBP2_AGENT_RESET, 684 &d, 4, complete_agent_reset_write_no_wait, t); 685 } 686 687 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 688 { 689 /* 690 * We may access dont_block without taking card->lock here: 691 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 692 * are currently serialized against each other. 693 * And a wrong result in sbp2_conditionally_block()'s access of 694 * dont_block is rather harmless, it simply misses its first chance. 695 */ 696 --lu->tgt->dont_block; 697 } 698 699 /* 700 * Blocks lu->tgt if all of the following conditions are met: 701 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 702 * logical units have been finished (indicated by dont_block == 0). 703 * - lu->generation is stale. 704 * 705 * Note, scsi_block_requests() must be called while holding card->lock, 706 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 707 * unblock the target. 708 */ 709 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 710 { 711 struct sbp2_target *tgt = lu->tgt; 712 struct fw_card *card = target_device(tgt)->card; 713 struct Scsi_Host *shost = 714 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 715 unsigned long flags; 716 717 spin_lock_irqsave(&card->lock, flags); 718 if (!tgt->dont_block && !lu->blocked && 719 lu->generation != card->generation) { 720 lu->blocked = true; 721 if (++tgt->blocked == 1) 722 scsi_block_requests(shost); 723 } 724 spin_unlock_irqrestore(&card->lock, flags); 725 } 726 727 /* 728 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 729 * Note, it is harmless to run scsi_unblock_requests() outside the 730 * card->lock protected section. On the other hand, running it inside 731 * the section might clash with shost->host_lock. 732 */ 733 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 734 { 735 struct sbp2_target *tgt = lu->tgt; 736 struct fw_card *card = target_device(tgt)->card; 737 struct Scsi_Host *shost = 738 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 739 unsigned long flags; 740 bool unblock = false; 741 742 spin_lock_irqsave(&card->lock, flags); 743 if (lu->blocked && lu->generation == card->generation) { 744 lu->blocked = false; 745 unblock = --tgt->blocked == 0; 746 } 747 spin_unlock_irqrestore(&card->lock, flags); 748 749 if (unblock) 750 scsi_unblock_requests(shost); 751 } 752 753 /* 754 * Prevents future blocking of tgt and unblocks it. 755 * Note, it is harmless to run scsi_unblock_requests() outside the 756 * card->lock protected section. On the other hand, running it inside 757 * the section might clash with shost->host_lock. 758 */ 759 static void sbp2_unblock(struct sbp2_target *tgt) 760 { 761 struct fw_card *card = target_device(tgt)->card; 762 struct Scsi_Host *shost = 763 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 764 unsigned long flags; 765 766 spin_lock_irqsave(&card->lock, flags); 767 ++tgt->dont_block; 768 spin_unlock_irqrestore(&card->lock, flags); 769 770 scsi_unblock_requests(shost); 771 } 772 773 static int sbp2_lun2int(u16 lun) 774 { 775 struct scsi_lun eight_bytes_lun; 776 777 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 778 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 779 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 780 781 return scsilun_to_int(&eight_bytes_lun); 782 } 783 784 static void sbp2_release_target(struct kref *kref) 785 { 786 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); 787 struct sbp2_logical_unit *lu, *next; 788 struct Scsi_Host *shost = 789 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 790 struct scsi_device *sdev; 791 struct fw_device *device = target_device(tgt); 792 793 /* prevent deadlocks */ 794 sbp2_unblock(tgt); 795 796 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 797 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 798 if (sdev) { 799 scsi_remove_device(sdev); 800 scsi_device_put(sdev); 801 } 802 if (lu->login_id != INVALID_LOGIN_ID) { 803 int generation, node_id; 804 /* 805 * tgt->node_id may be obsolete here if we failed 806 * during initial login or after a bus reset where 807 * the topology changed. 808 */ 809 generation = device->generation; 810 smp_rmb(); /* node_id vs. generation */ 811 node_id = device->node_id; 812 sbp2_send_management_orb(lu, node_id, generation, 813 SBP2_LOGOUT_REQUEST, 814 lu->login_id, NULL); 815 } 816 fw_core_remove_address_handler(&lu->address_handler); 817 list_del(&lu->link); 818 kfree(lu); 819 } 820 scsi_remove_host(shost); 821 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 822 823 fw_unit_put(tgt->unit); 824 scsi_host_put(shost); 825 fw_device_put(device); 826 } 827 828 static void sbp2_target_get(struct sbp2_target *tgt) 829 { 830 kref_get(&tgt->kref); 831 } 832 833 static void sbp2_target_put(struct sbp2_target *tgt) 834 { 835 kref_put(&tgt->kref, sbp2_release_target); 836 } 837 838 static struct workqueue_struct *sbp2_wq; 839 840 /* 841 * Always get the target's kref when scheduling work on one its units. 842 * Each workqueue job is responsible to call sbp2_target_put() upon return. 843 */ 844 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 845 { 846 sbp2_target_get(lu->tgt); 847 if (!queue_delayed_work(sbp2_wq, &lu->work, delay)) 848 sbp2_target_put(lu->tgt); 849 } 850 851 /* 852 * Write retransmit retry values into the BUSY_TIMEOUT register. 853 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 854 * default retry_limit value is 0 (i.e. never retry transmission). We write a 855 * saner value after logging into the device. 856 * - The dual-phase retry protocol is optional to implement, and if not 857 * supported, writes to the dual-phase portion of the register will be 858 * ignored. We try to write the original 1394-1995 default here. 859 * - In the case of devices that are also SBP-3-compliant, all writes are 860 * ignored, as the register is read-only, but contains single-phase retry of 861 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 862 * write attempt is safe and yields more consistent behavior for all devices. 863 * 864 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 865 * and section 6.4 of the SBP-3 spec for further details. 866 */ 867 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 868 { 869 struct fw_device *device = target_device(lu->tgt); 870 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 871 872 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 873 lu->tgt->node_id, lu->generation, device->max_speed, 874 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 875 } 876 877 static void sbp2_reconnect(struct work_struct *work); 878 879 static void sbp2_login(struct work_struct *work) 880 { 881 struct sbp2_logical_unit *lu = 882 container_of(work, struct sbp2_logical_unit, work.work); 883 struct sbp2_target *tgt = lu->tgt; 884 struct fw_device *device = target_device(tgt); 885 struct Scsi_Host *shost; 886 struct scsi_device *sdev; 887 struct sbp2_login_response response; 888 int generation, node_id, local_node_id; 889 890 if (fw_device_is_shutdown(device)) 891 goto out; 892 893 generation = device->generation; 894 smp_rmb(); /* node IDs must not be older than generation */ 895 node_id = device->node_id; 896 local_node_id = device->card->node_id; 897 898 /* If this is a re-login attempt, log out, or we might be rejected. */ 899 if (lu->has_sdev) 900 sbp2_send_management_orb(lu, device->node_id, generation, 901 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 902 903 if (sbp2_send_management_orb(lu, node_id, generation, 904 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 905 if (lu->retries++ < 5) { 906 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 907 } else { 908 fw_error("%s: failed to login to LUN %04x\n", 909 tgt->bus_id, lu->lun); 910 /* Let any waiting I/O fail from now on. */ 911 sbp2_unblock(lu->tgt); 912 } 913 goto out; 914 } 915 916 tgt->node_id = node_id; 917 tgt->address_high = local_node_id << 16; 918 smp_wmb(); /* node IDs must not be older than generation */ 919 lu->generation = generation; 920 921 lu->command_block_agent_address = 922 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 923 << 32) | be32_to_cpu(response.command_block_agent.low); 924 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 925 926 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 927 tgt->bus_id, lu->lun, lu->retries); 928 929 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 930 sbp2_set_busy_timeout(lu); 931 932 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 933 sbp2_agent_reset(lu); 934 935 /* This was a re-login. */ 936 if (lu->has_sdev) { 937 sbp2_cancel_orbs(lu); 938 sbp2_conditionally_unblock(lu); 939 goto out; 940 } 941 942 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 943 ssleep(SBP2_INQUIRY_DELAY); 944 945 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 946 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 947 /* 948 * FIXME: We are unable to perform reconnects while in sbp2_login(). 949 * Therefore __scsi_add_device() will get into trouble if a bus reset 950 * happens in parallel. It will either fail or leave us with an 951 * unusable sdev. As a workaround we check for this and retry the 952 * whole login and SCSI probing. 953 */ 954 955 /* Reported error during __scsi_add_device() */ 956 if (IS_ERR(sdev)) 957 goto out_logout_login; 958 959 /* Unreported error during __scsi_add_device() */ 960 smp_rmb(); /* get current card generation */ 961 if (generation != device->card->generation) { 962 scsi_remove_device(sdev); 963 scsi_device_put(sdev); 964 goto out_logout_login; 965 } 966 967 /* No error during __scsi_add_device() */ 968 lu->has_sdev = true; 969 scsi_device_put(sdev); 970 sbp2_allow_block(lu); 971 goto out; 972 973 out_logout_login: 974 smp_rmb(); /* generation may have changed */ 975 generation = device->generation; 976 smp_rmb(); /* node_id must not be older than generation */ 977 978 sbp2_send_management_orb(lu, device->node_id, generation, 979 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 980 /* 981 * If a bus reset happened, sbp2_update will have requeued 982 * lu->work already. Reset the work from reconnect to login. 983 */ 984 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 985 out: 986 sbp2_target_put(tgt); 987 } 988 989 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 990 { 991 struct sbp2_logical_unit *lu; 992 993 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 994 if (!lu) 995 return -ENOMEM; 996 997 lu->address_handler.length = 0x100; 998 lu->address_handler.address_callback = sbp2_status_write; 999 lu->address_handler.callback_data = lu; 1000 1001 if (fw_core_add_address_handler(&lu->address_handler, 1002 &fw_high_memory_region) < 0) { 1003 kfree(lu); 1004 return -ENOMEM; 1005 } 1006 1007 lu->tgt = tgt; 1008 lu->lun = lun_entry & 0xffff; 1009 lu->login_id = INVALID_LOGIN_ID; 1010 lu->retries = 0; 1011 lu->has_sdev = false; 1012 lu->blocked = false; 1013 ++tgt->dont_block; 1014 INIT_LIST_HEAD(&lu->orb_list); 1015 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1016 1017 list_add_tail(&lu->link, &tgt->lu_list); 1018 return 0; 1019 } 1020 1021 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1022 const u32 *directory) 1023 { 1024 struct fw_csr_iterator ci; 1025 int key, value; 1026 1027 fw_csr_iterator_init(&ci, directory); 1028 while (fw_csr_iterator_next(&ci, &key, &value)) 1029 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1030 sbp2_add_logical_unit(tgt, value) < 0) 1031 return -ENOMEM; 1032 return 0; 1033 } 1034 1035 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1036 u32 *model, u32 *firmware_revision) 1037 { 1038 struct fw_csr_iterator ci; 1039 int key, value; 1040 1041 fw_csr_iterator_init(&ci, directory); 1042 while (fw_csr_iterator_next(&ci, &key, &value)) { 1043 switch (key) { 1044 1045 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1046 tgt->management_agent_address = 1047 CSR_REGISTER_BASE + 4 * value; 1048 break; 1049 1050 case CSR_DIRECTORY_ID: 1051 tgt->directory_id = value; 1052 break; 1053 1054 case CSR_MODEL: 1055 *model = value; 1056 break; 1057 1058 case SBP2_CSR_FIRMWARE_REVISION: 1059 *firmware_revision = value; 1060 break; 1061 1062 case SBP2_CSR_UNIT_CHARACTERISTICS: 1063 /* the timeout value is stored in 500ms units */ 1064 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1065 break; 1066 1067 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1068 if (sbp2_add_logical_unit(tgt, value) < 0) 1069 return -ENOMEM; 1070 break; 1071 1072 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1073 /* Adjust for the increment in the iterator */ 1074 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1075 return -ENOMEM; 1076 break; 1077 } 1078 } 1079 return 0; 1080 } 1081 1082 /* 1083 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1084 * provided in the config rom. Most devices do provide a value, which 1085 * we'll use for login management orbs, but with some sane limits. 1086 */ 1087 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1088 { 1089 unsigned int timeout = tgt->mgt_orb_timeout; 1090 1091 if (timeout > 40000) 1092 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", 1093 tgt->bus_id, timeout / 1000); 1094 1095 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1096 } 1097 1098 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1099 u32 firmware_revision) 1100 { 1101 int i; 1102 unsigned int w = sbp2_param_workarounds; 1103 1104 if (w) 1105 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1106 "if you need the workarounds parameter for %s\n", 1107 tgt->bus_id); 1108 1109 if (w & SBP2_WORKAROUND_OVERRIDE) 1110 goto out; 1111 1112 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1113 1114 if (sbp2_workarounds_table[i].firmware_revision != 1115 (firmware_revision & 0xffffff00)) 1116 continue; 1117 1118 if (sbp2_workarounds_table[i].model != model && 1119 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1120 continue; 1121 1122 w |= sbp2_workarounds_table[i].workarounds; 1123 break; 1124 } 1125 out: 1126 if (w) 1127 fw_notify("Workarounds for %s: 0x%x " 1128 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1129 tgt->bus_id, w, firmware_revision, model); 1130 tgt->workarounds = w; 1131 } 1132 1133 static struct scsi_host_template scsi_driver_template; 1134 1135 static int sbp2_probe(struct device *dev) 1136 { 1137 struct fw_unit *unit = fw_unit(dev); 1138 struct fw_device *device = fw_parent_device(unit); 1139 struct sbp2_target *tgt; 1140 struct sbp2_logical_unit *lu; 1141 struct Scsi_Host *shost; 1142 u32 model, firmware_revision; 1143 1144 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1145 BUG_ON(dma_set_max_seg_size(device->card->device, 1146 SBP2_MAX_SEG_SIZE)); 1147 1148 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1149 if (shost == NULL) 1150 return -ENOMEM; 1151 1152 tgt = (struct sbp2_target *)shost->hostdata; 1153 dev_set_drvdata(&unit->device, tgt); 1154 tgt->unit = unit; 1155 kref_init(&tgt->kref); 1156 INIT_LIST_HEAD(&tgt->lu_list); 1157 tgt->bus_id = dev_name(&unit->device); 1158 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1159 1160 if (fw_device_enable_phys_dma(device) < 0) 1161 goto fail_shost_put; 1162 1163 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1164 1165 if (scsi_add_host(shost, &unit->device) < 0) 1166 goto fail_shost_put; 1167 1168 fw_device_get(device); 1169 fw_unit_get(unit); 1170 1171 /* implicit directory ID */ 1172 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1173 + CSR_CONFIG_ROM) & 0xffffff; 1174 1175 firmware_revision = SBP2_ROM_VALUE_MISSING; 1176 model = SBP2_ROM_VALUE_MISSING; 1177 1178 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1179 &firmware_revision) < 0) 1180 goto fail_tgt_put; 1181 1182 sbp2_clamp_management_orb_timeout(tgt); 1183 sbp2_init_workarounds(tgt, model, firmware_revision); 1184 1185 /* 1186 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1187 * and so on up to 4096 bytes. The SBP-2 max_payload field 1188 * specifies the max payload size as 2 ^ (max_payload + 2), so 1189 * if we set this to max_speed + 7, we get the right value. 1190 */ 1191 tgt->max_payload = min(device->max_speed + 7, 10U); 1192 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); 1193 1194 /* Do the login in a workqueue so we can easily reschedule retries. */ 1195 list_for_each_entry(lu, &tgt->lu_list, link) 1196 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1197 return 0; 1198 1199 fail_tgt_put: 1200 sbp2_target_put(tgt); 1201 return -ENOMEM; 1202 1203 fail_shost_put: 1204 scsi_host_put(shost); 1205 return -ENOMEM; 1206 } 1207 1208 static int sbp2_remove(struct device *dev) 1209 { 1210 struct fw_unit *unit = fw_unit(dev); 1211 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1212 1213 sbp2_target_put(tgt); 1214 return 0; 1215 } 1216 1217 static void sbp2_reconnect(struct work_struct *work) 1218 { 1219 struct sbp2_logical_unit *lu = 1220 container_of(work, struct sbp2_logical_unit, work.work); 1221 struct sbp2_target *tgt = lu->tgt; 1222 struct fw_device *device = target_device(tgt); 1223 int generation, node_id, local_node_id; 1224 1225 if (fw_device_is_shutdown(device)) 1226 goto out; 1227 1228 generation = device->generation; 1229 smp_rmb(); /* node IDs must not be older than generation */ 1230 node_id = device->node_id; 1231 local_node_id = device->card->node_id; 1232 1233 if (sbp2_send_management_orb(lu, node_id, generation, 1234 SBP2_RECONNECT_REQUEST, 1235 lu->login_id, NULL) < 0) { 1236 /* 1237 * If reconnect was impossible even though we are in the 1238 * current generation, fall back and try to log in again. 1239 * 1240 * We could check for "Function rejected" status, but 1241 * looking at the bus generation as simpler and more general. 1242 */ 1243 smp_rmb(); /* get current card generation */ 1244 if (generation == device->card->generation || 1245 lu->retries++ >= 5) { 1246 fw_error("%s: failed to reconnect\n", tgt->bus_id); 1247 lu->retries = 0; 1248 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 1249 } 1250 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1251 goto out; 1252 } 1253 1254 tgt->node_id = node_id; 1255 tgt->address_high = local_node_id << 16; 1256 smp_wmb(); /* node IDs must not be older than generation */ 1257 lu->generation = generation; 1258 1259 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 1260 tgt->bus_id, lu->lun, lu->retries); 1261 1262 sbp2_agent_reset(lu); 1263 sbp2_cancel_orbs(lu); 1264 sbp2_conditionally_unblock(lu); 1265 out: 1266 sbp2_target_put(tgt); 1267 } 1268 1269 static void sbp2_update(struct fw_unit *unit) 1270 { 1271 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1272 struct sbp2_logical_unit *lu; 1273 1274 fw_device_enable_phys_dma(fw_parent_device(unit)); 1275 1276 /* 1277 * Fw-core serializes sbp2_update() against sbp2_remove(). 1278 * Iteration over tgt->lu_list is therefore safe here. 1279 */ 1280 list_for_each_entry(lu, &tgt->lu_list, link) { 1281 sbp2_conditionally_block(lu); 1282 lu->retries = 0; 1283 sbp2_queue_work(lu, 0); 1284 } 1285 } 1286 1287 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1288 #define SBP2_SW_VERSION_ENTRY 0x00010483 1289 1290 static const struct ieee1394_device_id sbp2_id_table[] = { 1291 { 1292 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1293 IEEE1394_MATCH_VERSION, 1294 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1295 .version = SBP2_SW_VERSION_ENTRY, 1296 }, 1297 { } 1298 }; 1299 1300 static struct fw_driver sbp2_driver = { 1301 .driver = { 1302 .owner = THIS_MODULE, 1303 .name = sbp2_driver_name, 1304 .bus = &fw_bus_type, 1305 .probe = sbp2_probe, 1306 .remove = sbp2_remove, 1307 }, 1308 .update = sbp2_update, 1309 .id_table = sbp2_id_table, 1310 }; 1311 1312 static void sbp2_unmap_scatterlist(struct device *card_device, 1313 struct sbp2_command_orb *orb) 1314 { 1315 if (scsi_sg_count(orb->cmd)) 1316 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1317 scsi_sg_count(orb->cmd), 1318 orb->cmd->sc_data_direction); 1319 1320 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1321 dma_unmap_single(card_device, orb->page_table_bus, 1322 sizeof(orb->page_table), DMA_TO_DEVICE); 1323 } 1324 1325 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1326 { 1327 int sam_status; 1328 1329 sense_data[0] = 0x70; 1330 sense_data[1] = 0x0; 1331 sense_data[2] = sbp2_status[1]; 1332 sense_data[3] = sbp2_status[4]; 1333 sense_data[4] = sbp2_status[5]; 1334 sense_data[5] = sbp2_status[6]; 1335 sense_data[6] = sbp2_status[7]; 1336 sense_data[7] = 10; 1337 sense_data[8] = sbp2_status[8]; 1338 sense_data[9] = sbp2_status[9]; 1339 sense_data[10] = sbp2_status[10]; 1340 sense_data[11] = sbp2_status[11]; 1341 sense_data[12] = sbp2_status[2]; 1342 sense_data[13] = sbp2_status[3]; 1343 sense_data[14] = sbp2_status[12]; 1344 sense_data[15] = sbp2_status[13]; 1345 1346 sam_status = sbp2_status[0] & 0x3f; 1347 1348 switch (sam_status) { 1349 case SAM_STAT_GOOD: 1350 case SAM_STAT_CHECK_CONDITION: 1351 case SAM_STAT_CONDITION_MET: 1352 case SAM_STAT_BUSY: 1353 case SAM_STAT_RESERVATION_CONFLICT: 1354 case SAM_STAT_COMMAND_TERMINATED: 1355 return DID_OK << 16 | sam_status; 1356 1357 default: 1358 return DID_ERROR << 16; 1359 } 1360 } 1361 1362 static void complete_command_orb(struct sbp2_orb *base_orb, 1363 struct sbp2_status *status) 1364 { 1365 struct sbp2_command_orb *orb = 1366 container_of(base_orb, struct sbp2_command_orb, base); 1367 struct fw_device *device = target_device(orb->lu->tgt); 1368 int result; 1369 1370 if (status != NULL) { 1371 if (STATUS_GET_DEAD(*status)) 1372 sbp2_agent_reset_no_wait(orb->lu); 1373 1374 switch (STATUS_GET_RESPONSE(*status)) { 1375 case SBP2_STATUS_REQUEST_COMPLETE: 1376 result = DID_OK << 16; 1377 break; 1378 case SBP2_STATUS_TRANSPORT_FAILURE: 1379 result = DID_BUS_BUSY << 16; 1380 break; 1381 case SBP2_STATUS_ILLEGAL_REQUEST: 1382 case SBP2_STATUS_VENDOR_DEPENDENT: 1383 default: 1384 result = DID_ERROR << 16; 1385 break; 1386 } 1387 1388 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1389 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1390 orb->cmd->sense_buffer); 1391 } else { 1392 /* 1393 * If the orb completes with status == NULL, something 1394 * went wrong, typically a bus reset happened mid-orb 1395 * or when sending the write (less likely). 1396 */ 1397 result = DID_BUS_BUSY << 16; 1398 sbp2_conditionally_block(orb->lu); 1399 } 1400 1401 dma_unmap_single(device->card->device, orb->base.request_bus, 1402 sizeof(orb->request), DMA_TO_DEVICE); 1403 sbp2_unmap_scatterlist(device->card->device, orb); 1404 1405 orb->cmd->result = result; 1406 orb->done(orb->cmd); 1407 } 1408 1409 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1410 struct fw_device *device, struct sbp2_logical_unit *lu) 1411 { 1412 struct scatterlist *sg = scsi_sglist(orb->cmd); 1413 int i, n; 1414 1415 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1416 orb->cmd->sc_data_direction); 1417 if (n == 0) 1418 goto fail; 1419 1420 /* 1421 * Handle the special case where there is only one element in 1422 * the scatter list by converting it to an immediate block 1423 * request. This is also a workaround for broken devices such 1424 * as the second generation iPod which doesn't support page 1425 * tables. 1426 */ 1427 if (n == 1) { 1428 orb->request.data_descriptor.high = 1429 cpu_to_be32(lu->tgt->address_high); 1430 orb->request.data_descriptor.low = 1431 cpu_to_be32(sg_dma_address(sg)); 1432 orb->request.misc |= 1433 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1434 return 0; 1435 } 1436 1437 for_each_sg(sg, sg, n, i) { 1438 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1439 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1440 } 1441 1442 orb->page_table_bus = 1443 dma_map_single(device->card->device, orb->page_table, 1444 sizeof(orb->page_table), DMA_TO_DEVICE); 1445 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1446 goto fail_page_table; 1447 1448 /* 1449 * The data_descriptor pointer is the one case where we need 1450 * to fill in the node ID part of the address. All other 1451 * pointers assume that the data referenced reside on the 1452 * initiator (i.e. us), but data_descriptor can refer to data 1453 * on other nodes so we need to put our ID in descriptor.high. 1454 */ 1455 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1456 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1457 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1458 COMMAND_ORB_DATA_SIZE(n)); 1459 1460 return 0; 1461 1462 fail_page_table: 1463 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1464 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1465 fail: 1466 return -ENOMEM; 1467 } 1468 1469 /* SCSI stack integration */ 1470 1471 static int sbp2_scsi_queuecommand_lck(struct scsi_cmnd *cmd, scsi_done_fn_t done) 1472 { 1473 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1474 struct fw_device *device = target_device(lu->tgt); 1475 struct sbp2_command_orb *orb; 1476 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1477 1478 /* 1479 * Bidirectional commands are not yet implemented, and unknown 1480 * transfer direction not handled. 1481 */ 1482 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1483 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1484 cmd->result = DID_ERROR << 16; 1485 done(cmd); 1486 return 0; 1487 } 1488 1489 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1490 if (orb == NULL) { 1491 fw_notify("failed to alloc orb\n"); 1492 return SCSI_MLQUEUE_HOST_BUSY; 1493 } 1494 1495 /* Initialize rcode to something not RCODE_COMPLETE. */ 1496 orb->base.rcode = -1; 1497 kref_init(&orb->base.kref); 1498 1499 orb->lu = lu; 1500 orb->done = done; 1501 orb->cmd = cmd; 1502 1503 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1504 orb->request.misc = cpu_to_be32( 1505 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1506 COMMAND_ORB_SPEED(device->max_speed) | 1507 COMMAND_ORB_NOTIFY); 1508 1509 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1510 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1511 1512 generation = device->generation; 1513 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1514 1515 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1516 goto out; 1517 1518 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1519 1520 orb->base.callback = complete_command_orb; 1521 orb->base.request_bus = 1522 dma_map_single(device->card->device, &orb->request, 1523 sizeof(orb->request), DMA_TO_DEVICE); 1524 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1525 sbp2_unmap_scatterlist(device->card->device, orb); 1526 goto out; 1527 } 1528 1529 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1530 lu->command_block_agent_address + SBP2_ORB_POINTER); 1531 retval = 0; 1532 out: 1533 kref_put(&orb->base.kref, free_orb); 1534 return retval; 1535 } 1536 1537 static DEF_SCSI_QCMD(sbp2_scsi_queuecommand) 1538 1539 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1540 { 1541 struct sbp2_logical_unit *lu = sdev->hostdata; 1542 1543 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1544 if (!lu) 1545 return -ENOSYS; 1546 1547 sdev->allow_restart = 1; 1548 1549 /* SBP-2 requires quadlet alignment of the data buffers. */ 1550 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1551 1552 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1553 sdev->inquiry_len = 36; 1554 1555 return 0; 1556 } 1557 1558 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1559 { 1560 struct sbp2_logical_unit *lu = sdev->hostdata; 1561 1562 sdev->use_10_for_rw = 1; 1563 1564 if (sbp2_param_exclusive_login) 1565 sdev->manage_start_stop = 1; 1566 1567 if (sdev->type == TYPE_ROM) 1568 sdev->use_10_for_ms = 1; 1569 1570 if (sdev->type == TYPE_DISK && 1571 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1572 sdev->skip_ms_page_8 = 1; 1573 1574 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1575 sdev->fix_capacity = 1; 1576 1577 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1578 sdev->start_stop_pwr_cond = 1; 1579 1580 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1581 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1582 1583 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1584 1585 return 0; 1586 } 1587 1588 /* 1589 * Called by scsi stack when something has really gone wrong. Usually 1590 * called when a command has timed-out for some reason. 1591 */ 1592 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1593 { 1594 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1595 1596 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1597 sbp2_agent_reset(lu); 1598 sbp2_cancel_orbs(lu); 1599 1600 return SUCCESS; 1601 } 1602 1603 /* 1604 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1605 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1606 * 1607 * This is the concatenation of target port identifier and logical unit 1608 * identifier as per SAM-2...SAM-4 annex A. 1609 */ 1610 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1611 struct device_attribute *attr, char *buf) 1612 { 1613 struct scsi_device *sdev = to_scsi_device(dev); 1614 struct sbp2_logical_unit *lu; 1615 1616 if (!sdev) 1617 return 0; 1618 1619 lu = sdev->hostdata; 1620 1621 return sprintf(buf, "%016llx:%06x:%04x\n", 1622 (unsigned long long)lu->tgt->guid, 1623 lu->tgt->directory_id, lu->lun); 1624 } 1625 1626 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1627 1628 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1629 &dev_attr_ieee1394_id, 1630 NULL 1631 }; 1632 1633 static struct scsi_host_template scsi_driver_template = { 1634 .module = THIS_MODULE, 1635 .name = "SBP-2 IEEE-1394", 1636 .proc_name = sbp2_driver_name, 1637 .queuecommand = sbp2_scsi_queuecommand, 1638 .slave_alloc = sbp2_scsi_slave_alloc, 1639 .slave_configure = sbp2_scsi_slave_configure, 1640 .eh_abort_handler = sbp2_scsi_abort, 1641 .this_id = -1, 1642 .sg_tablesize = SG_ALL, 1643 .use_clustering = ENABLE_CLUSTERING, 1644 .cmd_per_lun = 1, 1645 .can_queue = 1, 1646 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1647 }; 1648 1649 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1650 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1651 MODULE_LICENSE("GPL"); 1652 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1653 1654 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1655 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1656 MODULE_ALIAS("sbp2"); 1657 #endif 1658 1659 static int __init sbp2_init(void) 1660 { 1661 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME); 1662 if (!sbp2_wq) 1663 return -ENOMEM; 1664 1665 return driver_register(&sbp2_driver.driver); 1666 } 1667 1668 static void __exit sbp2_cleanup(void) 1669 { 1670 driver_unregister(&sbp2_driver.driver); 1671 destroy_workqueue(sbp2_wq); 1672 } 1673 1674 module_init(sbp2_init); 1675 module_exit(sbp2_cleanup); 1676