1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 #include <asm/system.h> 56 57 #include <scsi/scsi.h> 58 #include <scsi/scsi_cmnd.h> 59 #include <scsi/scsi_device.h> 60 #include <scsi/scsi_host.h> 61 62 /* 63 * So far only bridges from Oxford Semiconductor are known to support 64 * concurrent logins. Depending on firmware, four or two concurrent logins 65 * are possible on OXFW911 and newer Oxsemi bridges. 66 * 67 * Concurrent logins are useful together with cluster filesystems. 68 */ 69 static int sbp2_param_exclusive_login = 1; 70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 72 "(default = Y, use N for concurrent initiators)"); 73 74 /* 75 * Flags for firmware oddities 76 * 77 * - 128kB max transfer 78 * Limit transfer size. Necessary for some old bridges. 79 * 80 * - 36 byte inquiry 81 * When scsi_mod probes the device, let the inquiry command look like that 82 * from MS Windows. 83 * 84 * - skip mode page 8 85 * Suppress sending of mode_sense for mode page 8 if the device pretends to 86 * support the SCSI Primary Block commands instead of Reduced Block Commands. 87 * 88 * - fix capacity 89 * Tell sd_mod to correct the last sector number reported by read_capacity. 90 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 91 * Don't use this with devices which don't have this bug. 92 * 93 * - delay inquiry 94 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 95 * 96 * - power condition 97 * Set the power condition field in the START STOP UNIT commands sent by 98 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 99 * Some disks need this to spin down or to resume properly. 100 * 101 * - override internal blacklist 102 * Instead of adding to the built-in blacklist, use only the workarounds 103 * specified in the module load parameter. 104 * Useful if a blacklist entry interfered with a non-broken device. 105 */ 106 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 107 #define SBP2_WORKAROUND_INQUIRY_36 0x2 108 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 109 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 110 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 111 #define SBP2_INQUIRY_DELAY 12 112 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 113 #define SBP2_WORKAROUND_OVERRIDE 0x100 114 115 static int sbp2_param_workarounds; 116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 118 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 119 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 120 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 121 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 122 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 123 ", set power condition in start stop unit = " 124 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 125 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 126 ", or a combination)"); 127 128 static const char sbp2_driver_name[] = "sbp2"; 129 130 /* 131 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 132 * and one struct scsi_device per sbp2_logical_unit. 133 */ 134 struct sbp2_logical_unit { 135 struct sbp2_target *tgt; 136 struct list_head link; 137 struct fw_address_handler address_handler; 138 struct list_head orb_list; 139 140 u64 command_block_agent_address; 141 u16 lun; 142 int login_id; 143 144 /* 145 * The generation is updated once we've logged in or reconnected 146 * to the logical unit. Thus, I/O to the device will automatically 147 * fail and get retried if it happens in a window where the device 148 * is not ready, e.g. after a bus reset but before we reconnect. 149 */ 150 int generation; 151 int retries; 152 struct delayed_work work; 153 bool has_sdev; 154 bool blocked; 155 }; 156 157 /* 158 * We create one struct sbp2_target per IEEE 1212 Unit Directory 159 * and one struct Scsi_Host per sbp2_target. 160 */ 161 struct sbp2_target { 162 struct kref kref; 163 struct fw_unit *unit; 164 const char *bus_id; 165 struct list_head lu_list; 166 167 u64 management_agent_address; 168 u64 guid; 169 int directory_id; 170 int node_id; 171 int address_high; 172 unsigned int workarounds; 173 unsigned int mgt_orb_timeout; 174 unsigned int max_payload; 175 176 int dont_block; /* counter for each logical unit */ 177 int blocked; /* ditto */ 178 }; 179 180 static struct fw_device *target_device(struct sbp2_target *tgt) 181 { 182 return fw_parent_device(tgt->unit); 183 } 184 185 /* Impossible login_id, to detect logout attempt before successful login */ 186 #define INVALID_LOGIN_ID 0x10000 187 188 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 189 #define SBP2_ORB_NULL 0x80000000 190 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 191 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 192 193 /* 194 * There is no transport protocol limit to the CDB length, but we implement 195 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 196 */ 197 #define SBP2_MAX_CDB_SIZE 16 198 199 /* 200 * The default maximum s/g segment size of a FireWire controller is 201 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to 202 * be quadlet-aligned, we set the length limit to 0xffff & ~3. 203 */ 204 #define SBP2_MAX_SEG_SIZE 0xfffc 205 206 /* Unit directory keys */ 207 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 208 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 209 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 211 212 /* Management orb opcodes */ 213 #define SBP2_LOGIN_REQUEST 0x0 214 #define SBP2_QUERY_LOGINS_REQUEST 0x1 215 #define SBP2_RECONNECT_REQUEST 0x3 216 #define SBP2_SET_PASSWORD_REQUEST 0x4 217 #define SBP2_LOGOUT_REQUEST 0x7 218 #define SBP2_ABORT_TASK_REQUEST 0xb 219 #define SBP2_ABORT_TASK_SET 0xc 220 #define SBP2_LOGICAL_UNIT_RESET 0xe 221 #define SBP2_TARGET_RESET_REQUEST 0xf 222 223 /* Offsets for command block agent registers */ 224 #define SBP2_AGENT_STATE 0x00 225 #define SBP2_AGENT_RESET 0x04 226 #define SBP2_ORB_POINTER 0x08 227 #define SBP2_DOORBELL 0x10 228 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 229 230 /* Status write response codes */ 231 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 232 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 233 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 234 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 235 236 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 237 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 238 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 239 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 240 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 241 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 242 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 243 #define STATUS_GET_DATA(v) ((v).data) 244 245 struct sbp2_status { 246 u32 status; 247 u32 orb_low; 248 u8 data[24]; 249 }; 250 251 struct sbp2_pointer { 252 __be32 high; 253 __be32 low; 254 }; 255 256 struct sbp2_orb { 257 struct fw_transaction t; 258 struct kref kref; 259 dma_addr_t request_bus; 260 int rcode; 261 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 262 struct list_head link; 263 }; 264 265 #define MANAGEMENT_ORB_LUN(v) ((v)) 266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 271 272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 274 275 struct sbp2_management_orb { 276 struct sbp2_orb base; 277 struct { 278 struct sbp2_pointer password; 279 struct sbp2_pointer response; 280 __be32 misc; 281 __be32 length; 282 struct sbp2_pointer status_fifo; 283 } request; 284 __be32 response[4]; 285 dma_addr_t response_bus; 286 struct completion done; 287 struct sbp2_status status; 288 }; 289 290 struct sbp2_login_response { 291 __be32 misc; 292 struct sbp2_pointer command_block_agent; 293 __be32 reconnect_hold; 294 }; 295 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 299 #define COMMAND_ORB_SPEED(v) ((v) << 24) 300 #define COMMAND_ORB_DIRECTION ((1) << 27) 301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 302 #define COMMAND_ORB_NOTIFY ((1) << 31) 303 304 struct sbp2_command_orb { 305 struct sbp2_orb base; 306 struct { 307 struct sbp2_pointer next; 308 struct sbp2_pointer data_descriptor; 309 __be32 misc; 310 u8 command_block[SBP2_MAX_CDB_SIZE]; 311 } request; 312 struct scsi_cmnd *cmd; 313 struct sbp2_logical_unit *lu; 314 315 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 316 dma_addr_t page_table_bus; 317 }; 318 319 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 320 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 321 322 /* 323 * List of devices with known bugs. 324 * 325 * The firmware_revision field, masked with 0xffff00, is the best 326 * indicator for the type of bridge chip of a device. It yields a few 327 * false positives but this did not break correctly behaving devices 328 * so far. 329 */ 330 static const struct { 331 u32 firmware_revision; 332 u32 model; 333 unsigned int workarounds; 334 } sbp2_workarounds_table[] = { 335 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 336 .firmware_revision = 0x002800, 337 .model = 0x001010, 338 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 339 SBP2_WORKAROUND_MODE_SENSE_8 | 340 SBP2_WORKAROUND_POWER_CONDITION, 341 }, 342 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 343 .firmware_revision = 0x002800, 344 .model = 0x000000, 345 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 346 }, 347 /* Initio bridges, actually only needed for some older ones */ { 348 .firmware_revision = 0x000200, 349 .model = SBP2_ROM_VALUE_WILDCARD, 350 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 351 }, 352 /* PL-3507 bridge with Prolific firmware */ { 353 .firmware_revision = 0x012800, 354 .model = SBP2_ROM_VALUE_WILDCARD, 355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 356 }, 357 /* Symbios bridge */ { 358 .firmware_revision = 0xa0b800, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 361 }, 362 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 363 .firmware_revision = 0x002600, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 366 }, 367 /* 368 * iPod 2nd generation: needs 128k max transfer size workaround 369 * iPod 3rd generation: needs fix capacity workaround 370 */ 371 { 372 .firmware_revision = 0x0a2700, 373 .model = 0x000000, 374 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 375 SBP2_WORKAROUND_FIX_CAPACITY, 376 }, 377 /* iPod 4th generation */ { 378 .firmware_revision = 0x0a2700, 379 .model = 0x000021, 380 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 381 }, 382 /* iPod mini */ { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000022, 385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod mini */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000023, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod Photo */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x00007e, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 } 397 }; 398 399 static void free_orb(struct kref *kref) 400 { 401 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 402 403 kfree(orb); 404 } 405 406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 407 int tcode, int destination, int source, 408 int generation, unsigned long long offset, 409 void *payload, size_t length, void *callback_data) 410 { 411 struct sbp2_logical_unit *lu = callback_data; 412 struct sbp2_orb *orb; 413 struct sbp2_status status; 414 unsigned long flags; 415 416 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 417 length < 8 || length > sizeof(status)) { 418 fw_send_response(card, request, RCODE_TYPE_ERROR); 419 return; 420 } 421 422 status.status = be32_to_cpup(payload); 423 status.orb_low = be32_to_cpup(payload + 4); 424 memset(status.data, 0, sizeof(status.data)); 425 if (length > 8) 426 memcpy(status.data, payload + 8, length - 8); 427 428 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 429 fw_notify("non-orb related status write, not handled\n"); 430 fw_send_response(card, request, RCODE_COMPLETE); 431 return; 432 } 433 434 /* Lookup the orb corresponding to this status write. */ 435 spin_lock_irqsave(&card->lock, flags); 436 list_for_each_entry(orb, &lu->orb_list, link) { 437 if (STATUS_GET_ORB_HIGH(status) == 0 && 438 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 439 orb->rcode = RCODE_COMPLETE; 440 list_del(&orb->link); 441 break; 442 } 443 } 444 spin_unlock_irqrestore(&card->lock, flags); 445 446 if (&orb->link != &lu->orb_list) { 447 orb->callback(orb, &status); 448 kref_put(&orb->kref, free_orb); /* orb callback reference */ 449 } else { 450 fw_error("status write for unknown orb\n"); 451 } 452 453 fw_send_response(card, request, RCODE_COMPLETE); 454 } 455 456 static void complete_transaction(struct fw_card *card, int rcode, 457 void *payload, size_t length, void *data) 458 { 459 struct sbp2_orb *orb = data; 460 unsigned long flags; 461 462 /* 463 * This is a little tricky. We can get the status write for 464 * the orb before we get this callback. The status write 465 * handler above will assume the orb pointer transaction was 466 * successful and set the rcode to RCODE_COMPLETE for the orb. 467 * So this callback only sets the rcode if it hasn't already 468 * been set and only does the cleanup if the transaction 469 * failed and we didn't already get a status write. 470 */ 471 spin_lock_irqsave(&card->lock, flags); 472 473 if (orb->rcode == -1) 474 orb->rcode = rcode; 475 if (orb->rcode != RCODE_COMPLETE) { 476 list_del(&orb->link); 477 spin_unlock_irqrestore(&card->lock, flags); 478 479 orb->callback(orb, NULL); 480 kref_put(&orb->kref, free_orb); /* orb callback reference */ 481 } else { 482 spin_unlock_irqrestore(&card->lock, flags); 483 } 484 485 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 486 } 487 488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 489 int node_id, int generation, u64 offset) 490 { 491 struct fw_device *device = target_device(lu->tgt); 492 struct sbp2_pointer orb_pointer; 493 unsigned long flags; 494 495 orb_pointer.high = 0; 496 orb_pointer.low = cpu_to_be32(orb->request_bus); 497 498 spin_lock_irqsave(&device->card->lock, flags); 499 list_add_tail(&orb->link, &lu->orb_list); 500 spin_unlock_irqrestore(&device->card->lock, flags); 501 502 kref_get(&orb->kref); /* transaction callback reference */ 503 kref_get(&orb->kref); /* orb callback reference */ 504 505 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 506 node_id, generation, device->max_speed, offset, 507 &orb_pointer, 8, complete_transaction, orb); 508 } 509 510 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 511 { 512 struct fw_device *device = target_device(lu->tgt); 513 struct sbp2_orb *orb, *next; 514 struct list_head list; 515 unsigned long flags; 516 int retval = -ENOENT; 517 518 INIT_LIST_HEAD(&list); 519 spin_lock_irqsave(&device->card->lock, flags); 520 list_splice_init(&lu->orb_list, &list); 521 spin_unlock_irqrestore(&device->card->lock, flags); 522 523 list_for_each_entry_safe(orb, next, &list, link) { 524 retval = 0; 525 if (fw_cancel_transaction(device->card, &orb->t) == 0) 526 continue; 527 528 orb->rcode = RCODE_CANCELLED; 529 orb->callback(orb, NULL); 530 kref_put(&orb->kref, free_orb); /* orb callback reference */ 531 } 532 533 return retval; 534 } 535 536 static void complete_management_orb(struct sbp2_orb *base_orb, 537 struct sbp2_status *status) 538 { 539 struct sbp2_management_orb *orb = 540 container_of(base_orb, struct sbp2_management_orb, base); 541 542 if (status) 543 memcpy(&orb->status, status, sizeof(*status)); 544 complete(&orb->done); 545 } 546 547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 548 int generation, int function, 549 int lun_or_login_id, void *response) 550 { 551 struct fw_device *device = target_device(lu->tgt); 552 struct sbp2_management_orb *orb; 553 unsigned int timeout; 554 int retval = -ENOMEM; 555 556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 557 return 0; 558 559 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 560 if (orb == NULL) 561 return -ENOMEM; 562 563 kref_init(&orb->base.kref); 564 orb->response_bus = 565 dma_map_single(device->card->device, &orb->response, 566 sizeof(orb->response), DMA_FROM_DEVICE); 567 if (dma_mapping_error(device->card->device, orb->response_bus)) 568 goto fail_mapping_response; 569 570 orb->request.response.high = 0; 571 orb->request.response.low = cpu_to_be32(orb->response_bus); 572 573 orb->request.misc = cpu_to_be32( 574 MANAGEMENT_ORB_NOTIFY | 575 MANAGEMENT_ORB_FUNCTION(function) | 576 MANAGEMENT_ORB_LUN(lun_or_login_id)); 577 orb->request.length = cpu_to_be32( 578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 579 580 orb->request.status_fifo.high = 581 cpu_to_be32(lu->address_handler.offset >> 32); 582 orb->request.status_fifo.low = 583 cpu_to_be32(lu->address_handler.offset); 584 585 if (function == SBP2_LOGIN_REQUEST) { 586 /* Ask for 2^2 == 4 seconds reconnect grace period */ 587 orb->request.misc |= cpu_to_be32( 588 MANAGEMENT_ORB_RECONNECT(2) | 589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 590 timeout = lu->tgt->mgt_orb_timeout; 591 } else { 592 timeout = SBP2_ORB_TIMEOUT; 593 } 594 595 init_completion(&orb->done); 596 orb->base.callback = complete_management_orb; 597 598 orb->base.request_bus = 599 dma_map_single(device->card->device, &orb->request, 600 sizeof(orb->request), DMA_TO_DEVICE); 601 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 602 goto fail_mapping_request; 603 604 sbp2_send_orb(&orb->base, lu, node_id, generation, 605 lu->tgt->management_agent_address); 606 607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 608 609 retval = -EIO; 610 if (sbp2_cancel_orbs(lu) == 0) { 611 fw_error("%s: orb reply timed out, rcode=0x%02x\n", 612 lu->tgt->bus_id, orb->base.rcode); 613 goto out; 614 } 615 616 if (orb->base.rcode != RCODE_COMPLETE) { 617 fw_error("%s: management write failed, rcode 0x%02x\n", 618 lu->tgt->bus_id, orb->base.rcode); 619 goto out; 620 } 621 622 if (STATUS_GET_RESPONSE(orb->status) != 0 || 623 STATUS_GET_SBP_STATUS(orb->status) != 0) { 624 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id, 625 STATUS_GET_RESPONSE(orb->status), 626 STATUS_GET_SBP_STATUS(orb->status)); 627 goto out; 628 } 629 630 retval = 0; 631 out: 632 dma_unmap_single(device->card->device, orb->base.request_bus, 633 sizeof(orb->request), DMA_TO_DEVICE); 634 fail_mapping_request: 635 dma_unmap_single(device->card->device, orb->response_bus, 636 sizeof(orb->response), DMA_FROM_DEVICE); 637 fail_mapping_response: 638 if (response) 639 memcpy(response, orb->response, sizeof(orb->response)); 640 kref_put(&orb->base.kref, free_orb); 641 642 return retval; 643 } 644 645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 646 { 647 struct fw_device *device = target_device(lu->tgt); 648 __be32 d = 0; 649 650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 651 lu->tgt->node_id, lu->generation, device->max_speed, 652 lu->command_block_agent_address + SBP2_AGENT_RESET, 653 &d, 4); 654 } 655 656 static void complete_agent_reset_write_no_wait(struct fw_card *card, 657 int rcode, void *payload, size_t length, void *data) 658 { 659 kfree(data); 660 } 661 662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 663 { 664 struct fw_device *device = target_device(lu->tgt); 665 struct fw_transaction *t; 666 static __be32 d; 667 668 t = kmalloc(sizeof(*t), GFP_ATOMIC); 669 if (t == NULL) 670 return; 671 672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 673 lu->tgt->node_id, lu->generation, device->max_speed, 674 lu->command_block_agent_address + SBP2_AGENT_RESET, 675 &d, 4, complete_agent_reset_write_no_wait, t); 676 } 677 678 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 679 { 680 /* 681 * We may access dont_block without taking card->lock here: 682 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 683 * are currently serialized against each other. 684 * And a wrong result in sbp2_conditionally_block()'s access of 685 * dont_block is rather harmless, it simply misses its first chance. 686 */ 687 --lu->tgt->dont_block; 688 } 689 690 /* 691 * Blocks lu->tgt if all of the following conditions are met: 692 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 693 * logical units have been finished (indicated by dont_block == 0). 694 * - lu->generation is stale. 695 * 696 * Note, scsi_block_requests() must be called while holding card->lock, 697 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 698 * unblock the target. 699 */ 700 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 701 { 702 struct sbp2_target *tgt = lu->tgt; 703 struct fw_card *card = target_device(tgt)->card; 704 struct Scsi_Host *shost = 705 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 706 unsigned long flags; 707 708 spin_lock_irqsave(&card->lock, flags); 709 if (!tgt->dont_block && !lu->blocked && 710 lu->generation != card->generation) { 711 lu->blocked = true; 712 if (++tgt->blocked == 1) 713 scsi_block_requests(shost); 714 } 715 spin_unlock_irqrestore(&card->lock, flags); 716 } 717 718 /* 719 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 720 * Note, it is harmless to run scsi_unblock_requests() outside the 721 * card->lock protected section. On the other hand, running it inside 722 * the section might clash with shost->host_lock. 723 */ 724 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 725 { 726 struct sbp2_target *tgt = lu->tgt; 727 struct fw_card *card = target_device(tgt)->card; 728 struct Scsi_Host *shost = 729 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 730 unsigned long flags; 731 bool unblock = false; 732 733 spin_lock_irqsave(&card->lock, flags); 734 if (lu->blocked && lu->generation == card->generation) { 735 lu->blocked = false; 736 unblock = --tgt->blocked == 0; 737 } 738 spin_unlock_irqrestore(&card->lock, flags); 739 740 if (unblock) 741 scsi_unblock_requests(shost); 742 } 743 744 /* 745 * Prevents future blocking of tgt and unblocks it. 746 * Note, it is harmless to run scsi_unblock_requests() outside the 747 * card->lock protected section. On the other hand, running it inside 748 * the section might clash with shost->host_lock. 749 */ 750 static void sbp2_unblock(struct sbp2_target *tgt) 751 { 752 struct fw_card *card = target_device(tgt)->card; 753 struct Scsi_Host *shost = 754 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 755 unsigned long flags; 756 757 spin_lock_irqsave(&card->lock, flags); 758 ++tgt->dont_block; 759 spin_unlock_irqrestore(&card->lock, flags); 760 761 scsi_unblock_requests(shost); 762 } 763 764 static int sbp2_lun2int(u16 lun) 765 { 766 struct scsi_lun eight_bytes_lun; 767 768 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 769 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 770 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 771 772 return scsilun_to_int(&eight_bytes_lun); 773 } 774 775 static void sbp2_release_target(struct kref *kref) 776 { 777 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref); 778 struct sbp2_logical_unit *lu, *next; 779 struct Scsi_Host *shost = 780 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 781 struct scsi_device *sdev; 782 struct fw_device *device = target_device(tgt); 783 784 /* prevent deadlocks */ 785 sbp2_unblock(tgt); 786 787 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 788 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 789 if (sdev) { 790 scsi_remove_device(sdev); 791 scsi_device_put(sdev); 792 } 793 if (lu->login_id != INVALID_LOGIN_ID) { 794 int generation, node_id; 795 /* 796 * tgt->node_id may be obsolete here if we failed 797 * during initial login or after a bus reset where 798 * the topology changed. 799 */ 800 generation = device->generation; 801 smp_rmb(); /* node_id vs. generation */ 802 node_id = device->node_id; 803 sbp2_send_management_orb(lu, node_id, generation, 804 SBP2_LOGOUT_REQUEST, 805 lu->login_id, NULL); 806 } 807 fw_core_remove_address_handler(&lu->address_handler); 808 list_del(&lu->link); 809 kfree(lu); 810 } 811 scsi_remove_host(shost); 812 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no); 813 814 fw_unit_put(tgt->unit); 815 scsi_host_put(shost); 816 fw_device_put(device); 817 } 818 819 static void sbp2_target_get(struct sbp2_target *tgt) 820 { 821 kref_get(&tgt->kref); 822 } 823 824 static void sbp2_target_put(struct sbp2_target *tgt) 825 { 826 kref_put(&tgt->kref, sbp2_release_target); 827 } 828 829 /* 830 * Always get the target's kref when scheduling work on one its units. 831 * Each workqueue job is responsible to call sbp2_target_put() upon return. 832 */ 833 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 834 { 835 sbp2_target_get(lu->tgt); 836 if (!queue_delayed_work(fw_workqueue, &lu->work, delay)) 837 sbp2_target_put(lu->tgt); 838 } 839 840 /* 841 * Write retransmit retry values into the BUSY_TIMEOUT register. 842 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 843 * default retry_limit value is 0 (i.e. never retry transmission). We write a 844 * saner value after logging into the device. 845 * - The dual-phase retry protocol is optional to implement, and if not 846 * supported, writes to the dual-phase portion of the register will be 847 * ignored. We try to write the original 1394-1995 default here. 848 * - In the case of devices that are also SBP-3-compliant, all writes are 849 * ignored, as the register is read-only, but contains single-phase retry of 850 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 851 * write attempt is safe and yields more consistent behavior for all devices. 852 * 853 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 854 * and section 6.4 of the SBP-3 spec for further details. 855 */ 856 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 857 { 858 struct fw_device *device = target_device(lu->tgt); 859 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 860 861 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 862 lu->tgt->node_id, lu->generation, device->max_speed, 863 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 864 } 865 866 static void sbp2_reconnect(struct work_struct *work); 867 868 static void sbp2_login(struct work_struct *work) 869 { 870 struct sbp2_logical_unit *lu = 871 container_of(work, struct sbp2_logical_unit, work.work); 872 struct sbp2_target *tgt = lu->tgt; 873 struct fw_device *device = target_device(tgt); 874 struct Scsi_Host *shost; 875 struct scsi_device *sdev; 876 struct sbp2_login_response response; 877 int generation, node_id, local_node_id; 878 879 if (fw_device_is_shutdown(device)) 880 goto out; 881 882 generation = device->generation; 883 smp_rmb(); /* node IDs must not be older than generation */ 884 node_id = device->node_id; 885 local_node_id = device->card->node_id; 886 887 /* If this is a re-login attempt, log out, or we might be rejected. */ 888 if (lu->has_sdev) 889 sbp2_send_management_orb(lu, device->node_id, generation, 890 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 891 892 if (sbp2_send_management_orb(lu, node_id, generation, 893 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 894 if (lu->retries++ < 5) { 895 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 896 } else { 897 fw_error("%s: failed to login to LUN %04x\n", 898 tgt->bus_id, lu->lun); 899 /* Let any waiting I/O fail from now on. */ 900 sbp2_unblock(lu->tgt); 901 } 902 goto out; 903 } 904 905 tgt->node_id = node_id; 906 tgt->address_high = local_node_id << 16; 907 smp_wmb(); /* node IDs must not be older than generation */ 908 lu->generation = generation; 909 910 lu->command_block_agent_address = 911 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 912 << 32) | be32_to_cpu(response.command_block_agent.low); 913 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 914 915 fw_notify("%s: logged in to LUN %04x (%d retries)\n", 916 tgt->bus_id, lu->lun, lu->retries); 917 918 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 919 sbp2_set_busy_timeout(lu); 920 921 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 922 sbp2_agent_reset(lu); 923 924 /* This was a re-login. */ 925 if (lu->has_sdev) { 926 sbp2_cancel_orbs(lu); 927 sbp2_conditionally_unblock(lu); 928 goto out; 929 } 930 931 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 932 ssleep(SBP2_INQUIRY_DELAY); 933 934 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 935 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 936 /* 937 * FIXME: We are unable to perform reconnects while in sbp2_login(). 938 * Therefore __scsi_add_device() will get into trouble if a bus reset 939 * happens in parallel. It will either fail or leave us with an 940 * unusable sdev. As a workaround we check for this and retry the 941 * whole login and SCSI probing. 942 */ 943 944 /* Reported error during __scsi_add_device() */ 945 if (IS_ERR(sdev)) 946 goto out_logout_login; 947 948 /* Unreported error during __scsi_add_device() */ 949 smp_rmb(); /* get current card generation */ 950 if (generation != device->card->generation) { 951 scsi_remove_device(sdev); 952 scsi_device_put(sdev); 953 goto out_logout_login; 954 } 955 956 /* No error during __scsi_add_device() */ 957 lu->has_sdev = true; 958 scsi_device_put(sdev); 959 sbp2_allow_block(lu); 960 goto out; 961 962 out_logout_login: 963 smp_rmb(); /* generation may have changed */ 964 generation = device->generation; 965 smp_rmb(); /* node_id must not be older than generation */ 966 967 sbp2_send_management_orb(lu, device->node_id, generation, 968 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 969 /* 970 * If a bus reset happened, sbp2_update will have requeued 971 * lu->work already. Reset the work from reconnect to login. 972 */ 973 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 974 out: 975 sbp2_target_put(tgt); 976 } 977 978 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 979 { 980 struct sbp2_logical_unit *lu; 981 982 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 983 if (!lu) 984 return -ENOMEM; 985 986 lu->address_handler.length = 0x100; 987 lu->address_handler.address_callback = sbp2_status_write; 988 lu->address_handler.callback_data = lu; 989 990 if (fw_core_add_address_handler(&lu->address_handler, 991 &fw_high_memory_region) < 0) { 992 kfree(lu); 993 return -ENOMEM; 994 } 995 996 lu->tgt = tgt; 997 lu->lun = lun_entry & 0xffff; 998 lu->login_id = INVALID_LOGIN_ID; 999 lu->retries = 0; 1000 lu->has_sdev = false; 1001 lu->blocked = false; 1002 ++tgt->dont_block; 1003 INIT_LIST_HEAD(&lu->orb_list); 1004 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1005 1006 list_add_tail(&lu->link, &tgt->lu_list); 1007 return 0; 1008 } 1009 1010 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1011 const u32 *directory) 1012 { 1013 struct fw_csr_iterator ci; 1014 int key, value; 1015 1016 fw_csr_iterator_init(&ci, directory); 1017 while (fw_csr_iterator_next(&ci, &key, &value)) 1018 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1019 sbp2_add_logical_unit(tgt, value) < 0) 1020 return -ENOMEM; 1021 return 0; 1022 } 1023 1024 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1025 u32 *model, u32 *firmware_revision) 1026 { 1027 struct fw_csr_iterator ci; 1028 int key, value; 1029 1030 fw_csr_iterator_init(&ci, directory); 1031 while (fw_csr_iterator_next(&ci, &key, &value)) { 1032 switch (key) { 1033 1034 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1035 tgt->management_agent_address = 1036 CSR_REGISTER_BASE + 4 * value; 1037 break; 1038 1039 case CSR_DIRECTORY_ID: 1040 tgt->directory_id = value; 1041 break; 1042 1043 case CSR_MODEL: 1044 *model = value; 1045 break; 1046 1047 case SBP2_CSR_FIRMWARE_REVISION: 1048 *firmware_revision = value; 1049 break; 1050 1051 case SBP2_CSR_UNIT_CHARACTERISTICS: 1052 /* the timeout value is stored in 500ms units */ 1053 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1054 break; 1055 1056 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1057 if (sbp2_add_logical_unit(tgt, value) < 0) 1058 return -ENOMEM; 1059 break; 1060 1061 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1062 /* Adjust for the increment in the iterator */ 1063 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1064 return -ENOMEM; 1065 break; 1066 } 1067 } 1068 return 0; 1069 } 1070 1071 /* 1072 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1073 * provided in the config rom. Most devices do provide a value, which 1074 * we'll use for login management orbs, but with some sane limits. 1075 */ 1076 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1077 { 1078 unsigned int timeout = tgt->mgt_orb_timeout; 1079 1080 if (timeout > 40000) 1081 fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n", 1082 tgt->bus_id, timeout / 1000); 1083 1084 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1085 } 1086 1087 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1088 u32 firmware_revision) 1089 { 1090 int i; 1091 unsigned int w = sbp2_param_workarounds; 1092 1093 if (w) 1094 fw_notify("Please notify linux1394-devel@lists.sourceforge.net " 1095 "if you need the workarounds parameter for %s\n", 1096 tgt->bus_id); 1097 1098 if (w & SBP2_WORKAROUND_OVERRIDE) 1099 goto out; 1100 1101 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1102 1103 if (sbp2_workarounds_table[i].firmware_revision != 1104 (firmware_revision & 0xffffff00)) 1105 continue; 1106 1107 if (sbp2_workarounds_table[i].model != model && 1108 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1109 continue; 1110 1111 w |= sbp2_workarounds_table[i].workarounds; 1112 break; 1113 } 1114 out: 1115 if (w) 1116 fw_notify("Workarounds for %s: 0x%x " 1117 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1118 tgt->bus_id, w, firmware_revision, model); 1119 tgt->workarounds = w; 1120 } 1121 1122 static struct scsi_host_template scsi_driver_template; 1123 1124 static int sbp2_probe(struct device *dev) 1125 { 1126 struct fw_unit *unit = fw_unit(dev); 1127 struct fw_device *device = fw_parent_device(unit); 1128 struct sbp2_target *tgt; 1129 struct sbp2_logical_unit *lu; 1130 struct Scsi_Host *shost; 1131 u32 model, firmware_revision; 1132 1133 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1134 BUG_ON(dma_set_max_seg_size(device->card->device, 1135 SBP2_MAX_SEG_SIZE)); 1136 1137 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1138 if (shost == NULL) 1139 return -ENOMEM; 1140 1141 tgt = (struct sbp2_target *)shost->hostdata; 1142 dev_set_drvdata(&unit->device, tgt); 1143 tgt->unit = unit; 1144 kref_init(&tgt->kref); 1145 INIT_LIST_HEAD(&tgt->lu_list); 1146 tgt->bus_id = dev_name(&unit->device); 1147 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1148 1149 if (fw_device_enable_phys_dma(device) < 0) 1150 goto fail_shost_put; 1151 1152 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1153 1154 if (scsi_add_host(shost, &unit->device) < 0) 1155 goto fail_shost_put; 1156 1157 fw_device_get(device); 1158 fw_unit_get(unit); 1159 1160 /* implicit directory ID */ 1161 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1162 + CSR_CONFIG_ROM) & 0xffffff; 1163 1164 firmware_revision = SBP2_ROM_VALUE_MISSING; 1165 model = SBP2_ROM_VALUE_MISSING; 1166 1167 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1168 &firmware_revision) < 0) 1169 goto fail_tgt_put; 1170 1171 sbp2_clamp_management_orb_timeout(tgt); 1172 sbp2_init_workarounds(tgt, model, firmware_revision); 1173 1174 /* 1175 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1176 * and so on up to 4096 bytes. The SBP-2 max_payload field 1177 * specifies the max payload size as 2 ^ (max_payload + 2), so 1178 * if we set this to max_speed + 7, we get the right value. 1179 */ 1180 tgt->max_payload = min(device->max_speed + 7, 10U); 1181 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1); 1182 1183 /* Do the login in a workqueue so we can easily reschedule retries. */ 1184 list_for_each_entry(lu, &tgt->lu_list, link) 1185 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1186 return 0; 1187 1188 fail_tgt_put: 1189 sbp2_target_put(tgt); 1190 return -ENOMEM; 1191 1192 fail_shost_put: 1193 scsi_host_put(shost); 1194 return -ENOMEM; 1195 } 1196 1197 static int sbp2_remove(struct device *dev) 1198 { 1199 struct fw_unit *unit = fw_unit(dev); 1200 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1201 struct sbp2_logical_unit *lu; 1202 1203 list_for_each_entry(lu, &tgt->lu_list, link) 1204 cancel_delayed_work_sync(&lu->work); 1205 1206 sbp2_target_put(tgt); 1207 return 0; 1208 } 1209 1210 static void sbp2_reconnect(struct work_struct *work) 1211 { 1212 struct sbp2_logical_unit *lu = 1213 container_of(work, struct sbp2_logical_unit, work.work); 1214 struct sbp2_target *tgt = lu->tgt; 1215 struct fw_device *device = target_device(tgt); 1216 int generation, node_id, local_node_id; 1217 1218 if (fw_device_is_shutdown(device)) 1219 goto out; 1220 1221 generation = device->generation; 1222 smp_rmb(); /* node IDs must not be older than generation */ 1223 node_id = device->node_id; 1224 local_node_id = device->card->node_id; 1225 1226 if (sbp2_send_management_orb(lu, node_id, generation, 1227 SBP2_RECONNECT_REQUEST, 1228 lu->login_id, NULL) < 0) { 1229 /* 1230 * If reconnect was impossible even though we are in the 1231 * current generation, fall back and try to log in again. 1232 * 1233 * We could check for "Function rejected" status, but 1234 * looking at the bus generation as simpler and more general. 1235 */ 1236 smp_rmb(); /* get current card generation */ 1237 if (generation == device->card->generation || 1238 lu->retries++ >= 5) { 1239 fw_error("%s: failed to reconnect\n", tgt->bus_id); 1240 lu->retries = 0; 1241 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 1242 } 1243 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1244 goto out; 1245 } 1246 1247 tgt->node_id = node_id; 1248 tgt->address_high = local_node_id << 16; 1249 smp_wmb(); /* node IDs must not be older than generation */ 1250 lu->generation = generation; 1251 1252 fw_notify("%s: reconnected to LUN %04x (%d retries)\n", 1253 tgt->bus_id, lu->lun, lu->retries); 1254 1255 sbp2_agent_reset(lu); 1256 sbp2_cancel_orbs(lu); 1257 sbp2_conditionally_unblock(lu); 1258 out: 1259 sbp2_target_put(tgt); 1260 } 1261 1262 static void sbp2_update(struct fw_unit *unit) 1263 { 1264 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1265 struct sbp2_logical_unit *lu; 1266 1267 fw_device_enable_phys_dma(fw_parent_device(unit)); 1268 1269 /* 1270 * Fw-core serializes sbp2_update() against sbp2_remove(). 1271 * Iteration over tgt->lu_list is therefore safe here. 1272 */ 1273 list_for_each_entry(lu, &tgt->lu_list, link) { 1274 sbp2_conditionally_block(lu); 1275 lu->retries = 0; 1276 sbp2_queue_work(lu, 0); 1277 } 1278 } 1279 1280 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1281 #define SBP2_SW_VERSION_ENTRY 0x00010483 1282 1283 static const struct ieee1394_device_id sbp2_id_table[] = { 1284 { 1285 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1286 IEEE1394_MATCH_VERSION, 1287 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1288 .version = SBP2_SW_VERSION_ENTRY, 1289 }, 1290 { } 1291 }; 1292 1293 static struct fw_driver sbp2_driver = { 1294 .driver = { 1295 .owner = THIS_MODULE, 1296 .name = sbp2_driver_name, 1297 .bus = &fw_bus_type, 1298 .probe = sbp2_probe, 1299 .remove = sbp2_remove, 1300 }, 1301 .update = sbp2_update, 1302 .id_table = sbp2_id_table, 1303 }; 1304 1305 static void sbp2_unmap_scatterlist(struct device *card_device, 1306 struct sbp2_command_orb *orb) 1307 { 1308 if (scsi_sg_count(orb->cmd)) 1309 dma_unmap_sg(card_device, scsi_sglist(orb->cmd), 1310 scsi_sg_count(orb->cmd), 1311 orb->cmd->sc_data_direction); 1312 1313 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1314 dma_unmap_single(card_device, orb->page_table_bus, 1315 sizeof(orb->page_table), DMA_TO_DEVICE); 1316 } 1317 1318 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1319 { 1320 int sam_status; 1321 1322 sense_data[0] = 0x70; 1323 sense_data[1] = 0x0; 1324 sense_data[2] = sbp2_status[1]; 1325 sense_data[3] = sbp2_status[4]; 1326 sense_data[4] = sbp2_status[5]; 1327 sense_data[5] = sbp2_status[6]; 1328 sense_data[6] = sbp2_status[7]; 1329 sense_data[7] = 10; 1330 sense_data[8] = sbp2_status[8]; 1331 sense_data[9] = sbp2_status[9]; 1332 sense_data[10] = sbp2_status[10]; 1333 sense_data[11] = sbp2_status[11]; 1334 sense_data[12] = sbp2_status[2]; 1335 sense_data[13] = sbp2_status[3]; 1336 sense_data[14] = sbp2_status[12]; 1337 sense_data[15] = sbp2_status[13]; 1338 1339 sam_status = sbp2_status[0] & 0x3f; 1340 1341 switch (sam_status) { 1342 case SAM_STAT_GOOD: 1343 case SAM_STAT_CHECK_CONDITION: 1344 case SAM_STAT_CONDITION_MET: 1345 case SAM_STAT_BUSY: 1346 case SAM_STAT_RESERVATION_CONFLICT: 1347 case SAM_STAT_COMMAND_TERMINATED: 1348 return DID_OK << 16 | sam_status; 1349 1350 default: 1351 return DID_ERROR << 16; 1352 } 1353 } 1354 1355 static void complete_command_orb(struct sbp2_orb *base_orb, 1356 struct sbp2_status *status) 1357 { 1358 struct sbp2_command_orb *orb = 1359 container_of(base_orb, struct sbp2_command_orb, base); 1360 struct fw_device *device = target_device(orb->lu->tgt); 1361 int result; 1362 1363 if (status != NULL) { 1364 if (STATUS_GET_DEAD(*status)) 1365 sbp2_agent_reset_no_wait(orb->lu); 1366 1367 switch (STATUS_GET_RESPONSE(*status)) { 1368 case SBP2_STATUS_REQUEST_COMPLETE: 1369 result = DID_OK << 16; 1370 break; 1371 case SBP2_STATUS_TRANSPORT_FAILURE: 1372 result = DID_BUS_BUSY << 16; 1373 break; 1374 case SBP2_STATUS_ILLEGAL_REQUEST: 1375 case SBP2_STATUS_VENDOR_DEPENDENT: 1376 default: 1377 result = DID_ERROR << 16; 1378 break; 1379 } 1380 1381 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1382 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1383 orb->cmd->sense_buffer); 1384 } else { 1385 /* 1386 * If the orb completes with status == NULL, something 1387 * went wrong, typically a bus reset happened mid-orb 1388 * or when sending the write (less likely). 1389 */ 1390 result = DID_BUS_BUSY << 16; 1391 sbp2_conditionally_block(orb->lu); 1392 } 1393 1394 dma_unmap_single(device->card->device, orb->base.request_bus, 1395 sizeof(orb->request), DMA_TO_DEVICE); 1396 sbp2_unmap_scatterlist(device->card->device, orb); 1397 1398 orb->cmd->result = result; 1399 orb->cmd->scsi_done(orb->cmd); 1400 } 1401 1402 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1403 struct fw_device *device, struct sbp2_logical_unit *lu) 1404 { 1405 struct scatterlist *sg = scsi_sglist(orb->cmd); 1406 int i, n; 1407 1408 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd), 1409 orb->cmd->sc_data_direction); 1410 if (n == 0) 1411 goto fail; 1412 1413 /* 1414 * Handle the special case where there is only one element in 1415 * the scatter list by converting it to an immediate block 1416 * request. This is also a workaround for broken devices such 1417 * as the second generation iPod which doesn't support page 1418 * tables. 1419 */ 1420 if (n == 1) { 1421 orb->request.data_descriptor.high = 1422 cpu_to_be32(lu->tgt->address_high); 1423 orb->request.data_descriptor.low = 1424 cpu_to_be32(sg_dma_address(sg)); 1425 orb->request.misc |= 1426 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1427 return 0; 1428 } 1429 1430 for_each_sg(sg, sg, n, i) { 1431 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1432 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1433 } 1434 1435 orb->page_table_bus = 1436 dma_map_single(device->card->device, orb->page_table, 1437 sizeof(orb->page_table), DMA_TO_DEVICE); 1438 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1439 goto fail_page_table; 1440 1441 /* 1442 * The data_descriptor pointer is the one case where we need 1443 * to fill in the node ID part of the address. All other 1444 * pointers assume that the data referenced reside on the 1445 * initiator (i.e. us), but data_descriptor can refer to data 1446 * on other nodes so we need to put our ID in descriptor.high. 1447 */ 1448 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1449 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1450 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1451 COMMAND_ORB_DATA_SIZE(n)); 1452 1453 return 0; 1454 1455 fail_page_table: 1456 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd), 1457 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction); 1458 fail: 1459 return -ENOMEM; 1460 } 1461 1462 /* SCSI stack integration */ 1463 1464 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1465 struct scsi_cmnd *cmd) 1466 { 1467 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1468 struct fw_device *device = target_device(lu->tgt); 1469 struct sbp2_command_orb *orb; 1470 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1471 1472 /* 1473 * Bidirectional commands are not yet implemented, and unknown 1474 * transfer direction not handled. 1475 */ 1476 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1477 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n"); 1478 cmd->result = DID_ERROR << 16; 1479 cmd->scsi_done(cmd); 1480 return 0; 1481 } 1482 1483 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1484 if (orb == NULL) { 1485 fw_notify("failed to alloc orb\n"); 1486 return SCSI_MLQUEUE_HOST_BUSY; 1487 } 1488 1489 /* Initialize rcode to something not RCODE_COMPLETE. */ 1490 orb->base.rcode = -1; 1491 kref_init(&orb->base.kref); 1492 orb->lu = lu; 1493 orb->cmd = cmd; 1494 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1495 orb->request.misc = cpu_to_be32( 1496 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1497 COMMAND_ORB_SPEED(device->max_speed) | 1498 COMMAND_ORB_NOTIFY); 1499 1500 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1501 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1502 1503 generation = device->generation; 1504 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1505 1506 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1507 goto out; 1508 1509 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1510 1511 orb->base.callback = complete_command_orb; 1512 orb->base.request_bus = 1513 dma_map_single(device->card->device, &orb->request, 1514 sizeof(orb->request), DMA_TO_DEVICE); 1515 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1516 sbp2_unmap_scatterlist(device->card->device, orb); 1517 goto out; 1518 } 1519 1520 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1521 lu->command_block_agent_address + SBP2_ORB_POINTER); 1522 retval = 0; 1523 out: 1524 kref_put(&orb->base.kref, free_orb); 1525 return retval; 1526 } 1527 1528 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1529 { 1530 struct sbp2_logical_unit *lu = sdev->hostdata; 1531 1532 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1533 if (!lu) 1534 return -ENOSYS; 1535 1536 sdev->allow_restart = 1; 1537 1538 /* SBP-2 requires quadlet alignment of the data buffers. */ 1539 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1540 1541 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1542 sdev->inquiry_len = 36; 1543 1544 return 0; 1545 } 1546 1547 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1548 { 1549 struct sbp2_logical_unit *lu = sdev->hostdata; 1550 1551 sdev->use_10_for_rw = 1; 1552 1553 if (sbp2_param_exclusive_login) 1554 sdev->manage_start_stop = 1; 1555 1556 if (sdev->type == TYPE_ROM) 1557 sdev->use_10_for_ms = 1; 1558 1559 if (sdev->type == TYPE_DISK && 1560 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1561 sdev->skip_ms_page_8 = 1; 1562 1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1564 sdev->fix_capacity = 1; 1565 1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1567 sdev->start_stop_pwr_cond = 1; 1568 1569 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1570 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1571 1572 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE); 1573 1574 return 0; 1575 } 1576 1577 /* 1578 * Called by scsi stack when something has really gone wrong. Usually 1579 * called when a command has timed-out for some reason. 1580 */ 1581 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1582 { 1583 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1584 1585 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id); 1586 sbp2_agent_reset(lu); 1587 sbp2_cancel_orbs(lu); 1588 1589 return SUCCESS; 1590 } 1591 1592 /* 1593 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1594 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1595 * 1596 * This is the concatenation of target port identifier and logical unit 1597 * identifier as per SAM-2...SAM-4 annex A. 1598 */ 1599 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1600 struct device_attribute *attr, char *buf) 1601 { 1602 struct scsi_device *sdev = to_scsi_device(dev); 1603 struct sbp2_logical_unit *lu; 1604 1605 if (!sdev) 1606 return 0; 1607 1608 lu = sdev->hostdata; 1609 1610 return sprintf(buf, "%016llx:%06x:%04x\n", 1611 (unsigned long long)lu->tgt->guid, 1612 lu->tgt->directory_id, lu->lun); 1613 } 1614 1615 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1616 1617 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1618 &dev_attr_ieee1394_id, 1619 NULL 1620 }; 1621 1622 static struct scsi_host_template scsi_driver_template = { 1623 .module = THIS_MODULE, 1624 .name = "SBP-2 IEEE-1394", 1625 .proc_name = sbp2_driver_name, 1626 .queuecommand = sbp2_scsi_queuecommand, 1627 .slave_alloc = sbp2_scsi_slave_alloc, 1628 .slave_configure = sbp2_scsi_slave_configure, 1629 .eh_abort_handler = sbp2_scsi_abort, 1630 .this_id = -1, 1631 .sg_tablesize = SG_ALL, 1632 .use_clustering = ENABLE_CLUSTERING, 1633 .cmd_per_lun = 1, 1634 .can_queue = 1, 1635 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1636 }; 1637 1638 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1639 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1640 MODULE_LICENSE("GPL"); 1641 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1642 1643 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1644 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1645 MODULE_ALIAS("sbp2"); 1646 #endif 1647 1648 static int __init sbp2_init(void) 1649 { 1650 return driver_register(&sbp2_driver.driver); 1651 } 1652 1653 static void __exit sbp2_cleanup(void) 1654 { 1655 driver_unregister(&sbp2_driver.driver); 1656 } 1657 1658 module_init(sbp2_init); 1659 module_exit(sbp2_cleanup); 1660