1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 56 #include <scsi/scsi.h> 57 #include <scsi/scsi_cmnd.h> 58 #include <scsi/scsi_device.h> 59 #include <scsi/scsi_host.h> 60 61 /* 62 * So far only bridges from Oxford Semiconductor are known to support 63 * concurrent logins. Depending on firmware, four or two concurrent logins 64 * are possible on OXFW911 and newer Oxsemi bridges. 65 * 66 * Concurrent logins are useful together with cluster filesystems. 67 */ 68 static bool sbp2_param_exclusive_login = 1; 69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 71 "(default = Y, use N for concurrent initiators)"); 72 73 /* 74 * Flags for firmware oddities 75 * 76 * - 128kB max transfer 77 * Limit transfer size. Necessary for some old bridges. 78 * 79 * - 36 byte inquiry 80 * When scsi_mod probes the device, let the inquiry command look like that 81 * from MS Windows. 82 * 83 * - skip mode page 8 84 * Suppress sending of mode_sense for mode page 8 if the device pretends to 85 * support the SCSI Primary Block commands instead of Reduced Block Commands. 86 * 87 * - fix capacity 88 * Tell sd_mod to correct the last sector number reported by read_capacity. 89 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 90 * Don't use this with devices which don't have this bug. 91 * 92 * - delay inquiry 93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 94 * 95 * - power condition 96 * Set the power condition field in the START STOP UNIT commands sent by 97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 98 * Some disks need this to spin down or to resume properly. 99 * 100 * - override internal blacklist 101 * Instead of adding to the built-in blacklist, use only the workarounds 102 * specified in the module load parameter. 103 * Useful if a blacklist entry interfered with a non-broken device. 104 */ 105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 106 #define SBP2_WORKAROUND_INQUIRY_36 0x2 107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 110 #define SBP2_INQUIRY_DELAY 12 111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 112 #define SBP2_WORKAROUND_OVERRIDE 0x100 113 114 static int sbp2_param_workarounds; 115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 122 ", set power condition in start stop unit = " 123 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 125 ", or a combination)"); 126 127 /* 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 129 * and one struct scsi_device per sbp2_logical_unit. 130 */ 131 struct sbp2_logical_unit { 132 struct sbp2_target *tgt; 133 struct list_head link; 134 struct fw_address_handler address_handler; 135 struct list_head orb_list; 136 137 u64 command_block_agent_address; 138 u16 lun; 139 int login_id; 140 141 /* 142 * The generation is updated once we've logged in or reconnected 143 * to the logical unit. Thus, I/O to the device will automatically 144 * fail and get retried if it happens in a window where the device 145 * is not ready, e.g. after a bus reset but before we reconnect. 146 */ 147 int generation; 148 int retries; 149 struct delayed_work work; 150 bool has_sdev; 151 bool blocked; 152 }; 153 154 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 155 { 156 queue_delayed_work(fw_workqueue, &lu->work, delay); 157 } 158 159 /* 160 * We create one struct sbp2_target per IEEE 1212 Unit Directory 161 * and one struct Scsi_Host per sbp2_target. 162 */ 163 struct sbp2_target { 164 struct fw_unit *unit; 165 struct list_head lu_list; 166 167 u64 management_agent_address; 168 u64 guid; 169 int directory_id; 170 int node_id; 171 int address_high; 172 unsigned int workarounds; 173 unsigned int mgt_orb_timeout; 174 unsigned int max_payload; 175 176 int dont_block; /* counter for each logical unit */ 177 int blocked; /* ditto */ 178 }; 179 180 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 181 { 182 return fw_parent_device(tgt->unit); 183 } 184 185 static const struct device *tgt_dev(const struct sbp2_target *tgt) 186 { 187 return &tgt->unit->device; 188 } 189 190 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 191 { 192 return &lu->tgt->unit->device; 193 } 194 195 /* Impossible login_id, to detect logout attempt before successful login */ 196 #define INVALID_LOGIN_ID 0x10000 197 198 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 199 #define SBP2_ORB_NULL 0x80000000 200 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 201 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 202 203 /* 204 * There is no transport protocol limit to the CDB length, but we implement 205 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 206 */ 207 #define SBP2_MAX_CDB_SIZE 16 208 209 /* 210 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 211 * for compatibility with earlier versions of this driver. 212 */ 213 #define SBP2_MAX_SEG_SIZE 0xfffc 214 215 /* Unit directory keys */ 216 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 217 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 218 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 219 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 220 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 221 222 /* Management orb opcodes */ 223 #define SBP2_LOGIN_REQUEST 0x0 224 #define SBP2_QUERY_LOGINS_REQUEST 0x1 225 #define SBP2_RECONNECT_REQUEST 0x3 226 #define SBP2_SET_PASSWORD_REQUEST 0x4 227 #define SBP2_LOGOUT_REQUEST 0x7 228 #define SBP2_ABORT_TASK_REQUEST 0xb 229 #define SBP2_ABORT_TASK_SET 0xc 230 #define SBP2_LOGICAL_UNIT_RESET 0xe 231 #define SBP2_TARGET_RESET_REQUEST 0xf 232 233 /* Offsets for command block agent registers */ 234 #define SBP2_AGENT_STATE 0x00 235 #define SBP2_AGENT_RESET 0x04 236 #define SBP2_ORB_POINTER 0x08 237 #define SBP2_DOORBELL 0x10 238 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 239 240 /* Status write response codes */ 241 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 242 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 243 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 244 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 245 246 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 247 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 248 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 249 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 250 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 251 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 252 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 253 #define STATUS_GET_DATA(v) ((v).data) 254 255 struct sbp2_status { 256 u32 status; 257 u32 orb_low; 258 u8 data[24]; 259 }; 260 261 struct sbp2_pointer { 262 __be32 high; 263 __be32 low; 264 }; 265 266 struct sbp2_orb { 267 struct fw_transaction t; 268 struct kref kref; 269 dma_addr_t request_bus; 270 int rcode; 271 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 272 struct list_head link; 273 }; 274 275 #define MANAGEMENT_ORB_LUN(v) ((v)) 276 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 277 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 278 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 279 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 280 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 281 282 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 283 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 284 285 struct sbp2_management_orb { 286 struct sbp2_orb base; 287 struct { 288 struct sbp2_pointer password; 289 struct sbp2_pointer response; 290 __be32 misc; 291 __be32 length; 292 struct sbp2_pointer status_fifo; 293 } request; 294 __be32 response[4]; 295 dma_addr_t response_bus; 296 struct completion done; 297 struct sbp2_status status; 298 }; 299 300 struct sbp2_login_response { 301 __be32 misc; 302 struct sbp2_pointer command_block_agent; 303 __be32 reconnect_hold; 304 }; 305 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 306 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 307 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 308 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 309 #define COMMAND_ORB_SPEED(v) ((v) << 24) 310 #define COMMAND_ORB_DIRECTION ((1) << 27) 311 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 312 #define COMMAND_ORB_NOTIFY ((1) << 31) 313 314 struct sbp2_command_orb { 315 struct sbp2_orb base; 316 struct { 317 struct sbp2_pointer next; 318 struct sbp2_pointer data_descriptor; 319 __be32 misc; 320 u8 command_block[SBP2_MAX_CDB_SIZE]; 321 } request; 322 struct scsi_cmnd *cmd; 323 struct sbp2_logical_unit *lu; 324 325 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 326 dma_addr_t page_table_bus; 327 }; 328 329 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 330 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 331 332 /* 333 * List of devices with known bugs. 334 * 335 * The firmware_revision field, masked with 0xffff00, is the best 336 * indicator for the type of bridge chip of a device. It yields a few 337 * false positives but this did not break correctly behaving devices 338 * so far. 339 */ 340 static const struct { 341 u32 firmware_revision; 342 u32 model; 343 unsigned int workarounds; 344 } sbp2_workarounds_table[] = { 345 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 346 .firmware_revision = 0x002800, 347 .model = 0x001010, 348 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 349 SBP2_WORKAROUND_MODE_SENSE_8 | 350 SBP2_WORKAROUND_POWER_CONDITION, 351 }, 352 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 353 .firmware_revision = 0x002800, 354 .model = 0x000000, 355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 356 }, 357 /* Initio bridges, actually only needed for some older ones */ { 358 .firmware_revision = 0x000200, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 361 }, 362 /* PL-3507 bridge with Prolific firmware */ { 363 .firmware_revision = 0x012800, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 366 }, 367 /* Symbios bridge */ { 368 .firmware_revision = 0xa0b800, 369 .model = SBP2_ROM_VALUE_WILDCARD, 370 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 371 }, 372 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 373 .firmware_revision = 0x002600, 374 .model = SBP2_ROM_VALUE_WILDCARD, 375 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 376 }, 377 /* 378 * iPod 2nd generation: needs 128k max transfer size workaround 379 * iPod 3rd generation: needs fix capacity workaround 380 */ 381 { 382 .firmware_revision = 0x0a2700, 383 .model = 0x000000, 384 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 385 SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod 4th generation */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000021, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod mini */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x000022, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 }, 397 /* iPod mini */ { 398 .firmware_revision = 0x0a2700, 399 .model = 0x000023, 400 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 401 }, 402 /* iPod Photo */ { 403 .firmware_revision = 0x0a2700, 404 .model = 0x00007e, 405 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 406 } 407 }; 408 409 static void free_orb(struct kref *kref) 410 { 411 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 412 413 kfree(orb); 414 } 415 416 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 417 int tcode, int destination, int source, 418 int generation, unsigned long long offset, 419 void *payload, size_t length, void *callback_data) 420 { 421 struct sbp2_logical_unit *lu = callback_data; 422 struct sbp2_orb *orb; 423 struct sbp2_status status; 424 unsigned long flags; 425 426 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 427 length < 8 || length > sizeof(status)) { 428 fw_send_response(card, request, RCODE_TYPE_ERROR); 429 return; 430 } 431 432 status.status = be32_to_cpup(payload); 433 status.orb_low = be32_to_cpup(payload + 4); 434 memset(status.data, 0, sizeof(status.data)); 435 if (length > 8) 436 memcpy(status.data, payload + 8, length - 8); 437 438 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 439 dev_notice(lu_dev(lu), 440 "non-ORB related status write, not handled\n"); 441 fw_send_response(card, request, RCODE_COMPLETE); 442 return; 443 } 444 445 /* Lookup the orb corresponding to this status write. */ 446 spin_lock_irqsave(&card->lock, flags); 447 list_for_each_entry(orb, &lu->orb_list, link) { 448 if (STATUS_GET_ORB_HIGH(status) == 0 && 449 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 450 orb->rcode = RCODE_COMPLETE; 451 list_del(&orb->link); 452 break; 453 } 454 } 455 spin_unlock_irqrestore(&card->lock, flags); 456 457 if (&orb->link != &lu->orb_list) { 458 orb->callback(orb, &status); 459 kref_put(&orb->kref, free_orb); /* orb callback reference */ 460 } else { 461 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 462 } 463 464 fw_send_response(card, request, RCODE_COMPLETE); 465 } 466 467 static void complete_transaction(struct fw_card *card, int rcode, 468 void *payload, size_t length, void *data) 469 { 470 struct sbp2_orb *orb = data; 471 unsigned long flags; 472 473 /* 474 * This is a little tricky. We can get the status write for 475 * the orb before we get this callback. The status write 476 * handler above will assume the orb pointer transaction was 477 * successful and set the rcode to RCODE_COMPLETE for the orb. 478 * So this callback only sets the rcode if it hasn't already 479 * been set and only does the cleanup if the transaction 480 * failed and we didn't already get a status write. 481 */ 482 spin_lock_irqsave(&card->lock, flags); 483 484 if (orb->rcode == -1) 485 orb->rcode = rcode; 486 if (orb->rcode != RCODE_COMPLETE) { 487 list_del(&orb->link); 488 spin_unlock_irqrestore(&card->lock, flags); 489 490 orb->callback(orb, NULL); 491 kref_put(&orb->kref, free_orb); /* orb callback reference */ 492 } else { 493 spin_unlock_irqrestore(&card->lock, flags); 494 } 495 496 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 497 } 498 499 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 500 int node_id, int generation, u64 offset) 501 { 502 struct fw_device *device = target_parent_device(lu->tgt); 503 struct sbp2_pointer orb_pointer; 504 unsigned long flags; 505 506 orb_pointer.high = 0; 507 orb_pointer.low = cpu_to_be32(orb->request_bus); 508 509 spin_lock_irqsave(&device->card->lock, flags); 510 list_add_tail(&orb->link, &lu->orb_list); 511 spin_unlock_irqrestore(&device->card->lock, flags); 512 513 kref_get(&orb->kref); /* transaction callback reference */ 514 kref_get(&orb->kref); /* orb callback reference */ 515 516 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 517 node_id, generation, device->max_speed, offset, 518 &orb_pointer, 8, complete_transaction, orb); 519 } 520 521 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 522 { 523 struct fw_device *device = target_parent_device(lu->tgt); 524 struct sbp2_orb *orb, *next; 525 struct list_head list; 526 unsigned long flags; 527 int retval = -ENOENT; 528 529 INIT_LIST_HEAD(&list); 530 spin_lock_irqsave(&device->card->lock, flags); 531 list_splice_init(&lu->orb_list, &list); 532 spin_unlock_irqrestore(&device->card->lock, flags); 533 534 list_for_each_entry_safe(orb, next, &list, link) { 535 retval = 0; 536 if (fw_cancel_transaction(device->card, &orb->t) == 0) 537 continue; 538 539 orb->rcode = RCODE_CANCELLED; 540 orb->callback(orb, NULL); 541 kref_put(&orb->kref, free_orb); /* orb callback reference */ 542 } 543 544 return retval; 545 } 546 547 static void complete_management_orb(struct sbp2_orb *base_orb, 548 struct sbp2_status *status) 549 { 550 struct sbp2_management_orb *orb = 551 container_of(base_orb, struct sbp2_management_orb, base); 552 553 if (status) 554 memcpy(&orb->status, status, sizeof(*status)); 555 complete(&orb->done); 556 } 557 558 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 559 int generation, int function, 560 int lun_or_login_id, void *response) 561 { 562 struct fw_device *device = target_parent_device(lu->tgt); 563 struct sbp2_management_orb *orb; 564 unsigned int timeout; 565 int retval = -ENOMEM; 566 567 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 568 return 0; 569 570 orb = kzalloc(sizeof(*orb), GFP_NOIO); 571 if (orb == NULL) 572 return -ENOMEM; 573 574 kref_init(&orb->base.kref); 575 orb->response_bus = 576 dma_map_single(device->card->device, &orb->response, 577 sizeof(orb->response), DMA_FROM_DEVICE); 578 if (dma_mapping_error(device->card->device, orb->response_bus)) 579 goto fail_mapping_response; 580 581 orb->request.response.high = 0; 582 orb->request.response.low = cpu_to_be32(orb->response_bus); 583 584 orb->request.misc = cpu_to_be32( 585 MANAGEMENT_ORB_NOTIFY | 586 MANAGEMENT_ORB_FUNCTION(function) | 587 MANAGEMENT_ORB_LUN(lun_or_login_id)); 588 orb->request.length = cpu_to_be32( 589 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 590 591 orb->request.status_fifo.high = 592 cpu_to_be32(lu->address_handler.offset >> 32); 593 orb->request.status_fifo.low = 594 cpu_to_be32(lu->address_handler.offset); 595 596 if (function == SBP2_LOGIN_REQUEST) { 597 /* Ask for 2^2 == 4 seconds reconnect grace period */ 598 orb->request.misc |= cpu_to_be32( 599 MANAGEMENT_ORB_RECONNECT(2) | 600 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 601 timeout = lu->tgt->mgt_orb_timeout; 602 } else { 603 timeout = SBP2_ORB_TIMEOUT; 604 } 605 606 init_completion(&orb->done); 607 orb->base.callback = complete_management_orb; 608 609 orb->base.request_bus = 610 dma_map_single(device->card->device, &orb->request, 611 sizeof(orb->request), DMA_TO_DEVICE); 612 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 613 goto fail_mapping_request; 614 615 sbp2_send_orb(&orb->base, lu, node_id, generation, 616 lu->tgt->management_agent_address); 617 618 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 619 620 retval = -EIO; 621 if (sbp2_cancel_orbs(lu) == 0) { 622 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 623 orb->base.rcode); 624 goto out; 625 } 626 627 if (orb->base.rcode != RCODE_COMPLETE) { 628 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 629 orb->base.rcode); 630 goto out; 631 } 632 633 if (STATUS_GET_RESPONSE(orb->status) != 0 || 634 STATUS_GET_SBP_STATUS(orb->status) != 0) { 635 dev_err(lu_dev(lu), "error status: %d:%d\n", 636 STATUS_GET_RESPONSE(orb->status), 637 STATUS_GET_SBP_STATUS(orb->status)); 638 goto out; 639 } 640 641 retval = 0; 642 out: 643 dma_unmap_single(device->card->device, orb->base.request_bus, 644 sizeof(orb->request), DMA_TO_DEVICE); 645 fail_mapping_request: 646 dma_unmap_single(device->card->device, orb->response_bus, 647 sizeof(orb->response), DMA_FROM_DEVICE); 648 fail_mapping_response: 649 if (response) 650 memcpy(response, orb->response, sizeof(orb->response)); 651 kref_put(&orb->base.kref, free_orb); 652 653 return retval; 654 } 655 656 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 657 { 658 struct fw_device *device = target_parent_device(lu->tgt); 659 __be32 d = 0; 660 661 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 662 lu->tgt->node_id, lu->generation, device->max_speed, 663 lu->command_block_agent_address + SBP2_AGENT_RESET, 664 &d, 4); 665 } 666 667 static void complete_agent_reset_write_no_wait(struct fw_card *card, 668 int rcode, void *payload, size_t length, void *data) 669 { 670 kfree(data); 671 } 672 673 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 674 { 675 struct fw_device *device = target_parent_device(lu->tgt); 676 struct fw_transaction *t; 677 static __be32 d; 678 679 t = kmalloc(sizeof(*t), GFP_ATOMIC); 680 if (t == NULL) 681 return; 682 683 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 684 lu->tgt->node_id, lu->generation, device->max_speed, 685 lu->command_block_agent_address + SBP2_AGENT_RESET, 686 &d, 4, complete_agent_reset_write_no_wait, t); 687 } 688 689 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 690 { 691 /* 692 * We may access dont_block without taking card->lock here: 693 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 694 * are currently serialized against each other. 695 * And a wrong result in sbp2_conditionally_block()'s access of 696 * dont_block is rather harmless, it simply misses its first chance. 697 */ 698 --lu->tgt->dont_block; 699 } 700 701 /* 702 * Blocks lu->tgt if all of the following conditions are met: 703 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 704 * logical units have been finished (indicated by dont_block == 0). 705 * - lu->generation is stale. 706 * 707 * Note, scsi_block_requests() must be called while holding card->lock, 708 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 709 * unblock the target. 710 */ 711 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 712 { 713 struct sbp2_target *tgt = lu->tgt; 714 struct fw_card *card = target_parent_device(tgt)->card; 715 struct Scsi_Host *shost = 716 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 717 unsigned long flags; 718 719 spin_lock_irqsave(&card->lock, flags); 720 if (!tgt->dont_block && !lu->blocked && 721 lu->generation != card->generation) { 722 lu->blocked = true; 723 if (++tgt->blocked == 1) 724 scsi_block_requests(shost); 725 } 726 spin_unlock_irqrestore(&card->lock, flags); 727 } 728 729 /* 730 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 731 * Note, it is harmless to run scsi_unblock_requests() outside the 732 * card->lock protected section. On the other hand, running it inside 733 * the section might clash with shost->host_lock. 734 */ 735 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 736 { 737 struct sbp2_target *tgt = lu->tgt; 738 struct fw_card *card = target_parent_device(tgt)->card; 739 struct Scsi_Host *shost = 740 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 741 unsigned long flags; 742 bool unblock = false; 743 744 spin_lock_irqsave(&card->lock, flags); 745 if (lu->blocked && lu->generation == card->generation) { 746 lu->blocked = false; 747 unblock = --tgt->blocked == 0; 748 } 749 spin_unlock_irqrestore(&card->lock, flags); 750 751 if (unblock) 752 scsi_unblock_requests(shost); 753 } 754 755 /* 756 * Prevents future blocking of tgt and unblocks it. 757 * Note, it is harmless to run scsi_unblock_requests() outside the 758 * card->lock protected section. On the other hand, running it inside 759 * the section might clash with shost->host_lock. 760 */ 761 static void sbp2_unblock(struct sbp2_target *tgt) 762 { 763 struct fw_card *card = target_parent_device(tgt)->card; 764 struct Scsi_Host *shost = 765 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 766 unsigned long flags; 767 768 spin_lock_irqsave(&card->lock, flags); 769 ++tgt->dont_block; 770 spin_unlock_irqrestore(&card->lock, flags); 771 772 scsi_unblock_requests(shost); 773 } 774 775 static int sbp2_lun2int(u16 lun) 776 { 777 struct scsi_lun eight_bytes_lun; 778 779 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 780 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 781 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 782 783 return scsilun_to_int(&eight_bytes_lun); 784 } 785 786 /* 787 * Write retransmit retry values into the BUSY_TIMEOUT register. 788 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 789 * default retry_limit value is 0 (i.e. never retry transmission). We write a 790 * saner value after logging into the device. 791 * - The dual-phase retry protocol is optional to implement, and if not 792 * supported, writes to the dual-phase portion of the register will be 793 * ignored. We try to write the original 1394-1995 default here. 794 * - In the case of devices that are also SBP-3-compliant, all writes are 795 * ignored, as the register is read-only, but contains single-phase retry of 796 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 797 * write attempt is safe and yields more consistent behavior for all devices. 798 * 799 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 800 * and section 6.4 of the SBP-3 spec for further details. 801 */ 802 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 803 { 804 struct fw_device *device = target_parent_device(lu->tgt); 805 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 806 807 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 808 lu->tgt->node_id, lu->generation, device->max_speed, 809 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 810 } 811 812 static void sbp2_reconnect(struct work_struct *work); 813 814 static void sbp2_login(struct work_struct *work) 815 { 816 struct sbp2_logical_unit *lu = 817 container_of(work, struct sbp2_logical_unit, work.work); 818 struct sbp2_target *tgt = lu->tgt; 819 struct fw_device *device = target_parent_device(tgt); 820 struct Scsi_Host *shost; 821 struct scsi_device *sdev; 822 struct sbp2_login_response response; 823 int generation, node_id, local_node_id; 824 825 if (fw_device_is_shutdown(device)) 826 return; 827 828 generation = device->generation; 829 smp_rmb(); /* node IDs must not be older than generation */ 830 node_id = device->node_id; 831 local_node_id = device->card->node_id; 832 833 /* If this is a re-login attempt, log out, or we might be rejected. */ 834 if (lu->has_sdev) 835 sbp2_send_management_orb(lu, device->node_id, generation, 836 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 837 838 if (sbp2_send_management_orb(lu, node_id, generation, 839 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 840 if (lu->retries++ < 5) { 841 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 842 } else { 843 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 844 lu->lun); 845 /* Let any waiting I/O fail from now on. */ 846 sbp2_unblock(lu->tgt); 847 } 848 return; 849 } 850 851 tgt->node_id = node_id; 852 tgt->address_high = local_node_id << 16; 853 smp_wmb(); /* node IDs must not be older than generation */ 854 lu->generation = generation; 855 856 lu->command_block_agent_address = 857 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 858 << 32) | be32_to_cpu(response.command_block_agent.low); 859 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 860 861 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 862 lu->lun, lu->retries); 863 864 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 865 sbp2_set_busy_timeout(lu); 866 867 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect); 868 sbp2_agent_reset(lu); 869 870 /* This was a re-login. */ 871 if (lu->has_sdev) { 872 sbp2_cancel_orbs(lu); 873 sbp2_conditionally_unblock(lu); 874 875 return; 876 } 877 878 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 879 ssleep(SBP2_INQUIRY_DELAY); 880 881 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 882 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 883 /* 884 * FIXME: We are unable to perform reconnects while in sbp2_login(). 885 * Therefore __scsi_add_device() will get into trouble if a bus reset 886 * happens in parallel. It will either fail or leave us with an 887 * unusable sdev. As a workaround we check for this and retry the 888 * whole login and SCSI probing. 889 */ 890 891 /* Reported error during __scsi_add_device() */ 892 if (IS_ERR(sdev)) 893 goto out_logout_login; 894 895 /* Unreported error during __scsi_add_device() */ 896 smp_rmb(); /* get current card generation */ 897 if (generation != device->card->generation) { 898 scsi_remove_device(sdev); 899 scsi_device_put(sdev); 900 goto out_logout_login; 901 } 902 903 /* No error during __scsi_add_device() */ 904 lu->has_sdev = true; 905 scsi_device_put(sdev); 906 sbp2_allow_block(lu); 907 908 return; 909 910 out_logout_login: 911 smp_rmb(); /* generation may have changed */ 912 generation = device->generation; 913 smp_rmb(); /* node_id must not be older than generation */ 914 915 sbp2_send_management_orb(lu, device->node_id, generation, 916 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 917 /* 918 * If a bus reset happened, sbp2_update will have requeued 919 * lu->work already. Reset the work from reconnect to login. 920 */ 921 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 922 } 923 924 static void sbp2_reconnect(struct work_struct *work) 925 { 926 struct sbp2_logical_unit *lu = 927 container_of(work, struct sbp2_logical_unit, work.work); 928 struct sbp2_target *tgt = lu->tgt; 929 struct fw_device *device = target_parent_device(tgt); 930 int generation, node_id, local_node_id; 931 932 if (fw_device_is_shutdown(device)) 933 return; 934 935 generation = device->generation; 936 smp_rmb(); /* node IDs must not be older than generation */ 937 node_id = device->node_id; 938 local_node_id = device->card->node_id; 939 940 if (sbp2_send_management_orb(lu, node_id, generation, 941 SBP2_RECONNECT_REQUEST, 942 lu->login_id, NULL) < 0) { 943 /* 944 * If reconnect was impossible even though we are in the 945 * current generation, fall back and try to log in again. 946 * 947 * We could check for "Function rejected" status, but 948 * looking at the bus generation as simpler and more general. 949 */ 950 smp_rmb(); /* get current card generation */ 951 if (generation == device->card->generation || 952 lu->retries++ >= 5) { 953 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 954 lu->retries = 0; 955 PREPARE_DELAYED_WORK(&lu->work, sbp2_login); 956 } 957 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 958 959 return; 960 } 961 962 tgt->node_id = node_id; 963 tgt->address_high = local_node_id << 16; 964 smp_wmb(); /* node IDs must not be older than generation */ 965 lu->generation = generation; 966 967 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 968 lu->lun, lu->retries); 969 970 sbp2_agent_reset(lu); 971 sbp2_cancel_orbs(lu); 972 sbp2_conditionally_unblock(lu); 973 } 974 975 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 976 { 977 struct sbp2_logical_unit *lu; 978 979 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 980 if (!lu) 981 return -ENOMEM; 982 983 lu->address_handler.length = 0x100; 984 lu->address_handler.address_callback = sbp2_status_write; 985 lu->address_handler.callback_data = lu; 986 987 if (fw_core_add_address_handler(&lu->address_handler, 988 &fw_high_memory_region) < 0) { 989 kfree(lu); 990 return -ENOMEM; 991 } 992 993 lu->tgt = tgt; 994 lu->lun = lun_entry & 0xffff; 995 lu->login_id = INVALID_LOGIN_ID; 996 lu->retries = 0; 997 lu->has_sdev = false; 998 lu->blocked = false; 999 ++tgt->dont_block; 1000 INIT_LIST_HEAD(&lu->orb_list); 1001 INIT_DELAYED_WORK(&lu->work, sbp2_login); 1002 1003 list_add_tail(&lu->link, &tgt->lu_list); 1004 return 0; 1005 } 1006 1007 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 1008 const u32 *leaf) 1009 { 1010 if ((leaf[0] & 0xffff0000) == 0x00020000) 1011 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1012 } 1013 1014 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1015 const u32 *directory) 1016 { 1017 struct fw_csr_iterator ci; 1018 int key, value; 1019 1020 fw_csr_iterator_init(&ci, directory); 1021 while (fw_csr_iterator_next(&ci, &key, &value)) 1022 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1023 sbp2_add_logical_unit(tgt, value) < 0) 1024 return -ENOMEM; 1025 return 0; 1026 } 1027 1028 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1029 u32 *model, u32 *firmware_revision) 1030 { 1031 struct fw_csr_iterator ci; 1032 int key, value; 1033 1034 fw_csr_iterator_init(&ci, directory); 1035 while (fw_csr_iterator_next(&ci, &key, &value)) { 1036 switch (key) { 1037 1038 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1039 tgt->management_agent_address = 1040 CSR_REGISTER_BASE + 4 * value; 1041 break; 1042 1043 case CSR_DIRECTORY_ID: 1044 tgt->directory_id = value; 1045 break; 1046 1047 case CSR_MODEL: 1048 *model = value; 1049 break; 1050 1051 case SBP2_CSR_FIRMWARE_REVISION: 1052 *firmware_revision = value; 1053 break; 1054 1055 case SBP2_CSR_UNIT_CHARACTERISTICS: 1056 /* the timeout value is stored in 500ms units */ 1057 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1058 break; 1059 1060 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1061 if (sbp2_add_logical_unit(tgt, value) < 0) 1062 return -ENOMEM; 1063 break; 1064 1065 case SBP2_CSR_UNIT_UNIQUE_ID: 1066 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1067 break; 1068 1069 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1070 /* Adjust for the increment in the iterator */ 1071 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1072 return -ENOMEM; 1073 break; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 /* 1080 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1081 * provided in the config rom. Most devices do provide a value, which 1082 * we'll use for login management orbs, but with some sane limits. 1083 */ 1084 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1085 { 1086 unsigned int timeout = tgt->mgt_orb_timeout; 1087 1088 if (timeout > 40000) 1089 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1090 timeout / 1000); 1091 1092 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1093 } 1094 1095 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1096 u32 firmware_revision) 1097 { 1098 int i; 1099 unsigned int w = sbp2_param_workarounds; 1100 1101 if (w) 1102 dev_notice(tgt_dev(tgt), 1103 "Please notify linux1394-devel@lists.sf.net " 1104 "if you need the workarounds parameter\n"); 1105 1106 if (w & SBP2_WORKAROUND_OVERRIDE) 1107 goto out; 1108 1109 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1110 1111 if (sbp2_workarounds_table[i].firmware_revision != 1112 (firmware_revision & 0xffffff00)) 1113 continue; 1114 1115 if (sbp2_workarounds_table[i].model != model && 1116 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1117 continue; 1118 1119 w |= sbp2_workarounds_table[i].workarounds; 1120 break; 1121 } 1122 out: 1123 if (w) 1124 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1125 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1126 w, firmware_revision, model); 1127 tgt->workarounds = w; 1128 } 1129 1130 static struct scsi_host_template scsi_driver_template; 1131 static int sbp2_remove(struct device *dev); 1132 1133 static int sbp2_probe(struct device *dev) 1134 { 1135 struct fw_unit *unit = fw_unit(dev); 1136 struct fw_device *device = fw_parent_device(unit); 1137 struct sbp2_target *tgt; 1138 struct sbp2_logical_unit *lu; 1139 struct Scsi_Host *shost; 1140 u32 model, firmware_revision; 1141 1142 /* cannot (or should not) handle targets on the local node */ 1143 if (device->is_local) 1144 return -ENODEV; 1145 1146 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1147 BUG_ON(dma_set_max_seg_size(device->card->device, 1148 SBP2_MAX_SEG_SIZE)); 1149 1150 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1151 if (shost == NULL) 1152 return -ENOMEM; 1153 1154 tgt = (struct sbp2_target *)shost->hostdata; 1155 dev_set_drvdata(&unit->device, tgt); 1156 tgt->unit = unit; 1157 INIT_LIST_HEAD(&tgt->lu_list); 1158 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1159 1160 if (fw_device_enable_phys_dma(device) < 0) 1161 goto fail_shost_put; 1162 1163 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1164 1165 if (scsi_add_host_with_dma(shost, &unit->device, 1166 device->card->device) < 0) 1167 goto fail_shost_put; 1168 1169 /* implicit directory ID */ 1170 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1171 + CSR_CONFIG_ROM) & 0xffffff; 1172 1173 firmware_revision = SBP2_ROM_VALUE_MISSING; 1174 model = SBP2_ROM_VALUE_MISSING; 1175 1176 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1177 &firmware_revision) < 0) 1178 goto fail_remove; 1179 1180 sbp2_clamp_management_orb_timeout(tgt); 1181 sbp2_init_workarounds(tgt, model, firmware_revision); 1182 1183 /* 1184 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1185 * and so on up to 4096 bytes. The SBP-2 max_payload field 1186 * specifies the max payload size as 2 ^ (max_payload + 2), so 1187 * if we set this to max_speed + 7, we get the right value. 1188 */ 1189 tgt->max_payload = min3(device->max_speed + 7, 10U, 1190 device->card->max_receive - 1); 1191 1192 /* Do the login in a workqueue so we can easily reschedule retries. */ 1193 list_for_each_entry(lu, &tgt->lu_list, link) 1194 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1195 1196 return 0; 1197 1198 fail_remove: 1199 sbp2_remove(dev); 1200 return -ENOMEM; 1201 1202 fail_shost_put: 1203 scsi_host_put(shost); 1204 return -ENOMEM; 1205 } 1206 1207 static void sbp2_update(struct fw_unit *unit) 1208 { 1209 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1210 struct sbp2_logical_unit *lu; 1211 1212 fw_device_enable_phys_dma(fw_parent_device(unit)); 1213 1214 /* 1215 * Fw-core serializes sbp2_update() against sbp2_remove(). 1216 * Iteration over tgt->lu_list is therefore safe here. 1217 */ 1218 list_for_each_entry(lu, &tgt->lu_list, link) { 1219 sbp2_conditionally_block(lu); 1220 lu->retries = 0; 1221 sbp2_queue_work(lu, 0); 1222 } 1223 } 1224 1225 static int sbp2_remove(struct device *dev) 1226 { 1227 struct fw_unit *unit = fw_unit(dev); 1228 struct fw_device *device = fw_parent_device(unit); 1229 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1230 struct sbp2_logical_unit *lu, *next; 1231 struct Scsi_Host *shost = 1232 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1233 struct scsi_device *sdev; 1234 1235 /* prevent deadlocks */ 1236 sbp2_unblock(tgt); 1237 1238 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1239 cancel_delayed_work_sync(&lu->work); 1240 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1241 if (sdev) { 1242 scsi_remove_device(sdev); 1243 scsi_device_put(sdev); 1244 } 1245 if (lu->login_id != INVALID_LOGIN_ID) { 1246 int generation, node_id; 1247 /* 1248 * tgt->node_id may be obsolete here if we failed 1249 * during initial login or after a bus reset where 1250 * the topology changed. 1251 */ 1252 generation = device->generation; 1253 smp_rmb(); /* node_id vs. generation */ 1254 node_id = device->node_id; 1255 sbp2_send_management_orb(lu, node_id, generation, 1256 SBP2_LOGOUT_REQUEST, 1257 lu->login_id, NULL); 1258 } 1259 fw_core_remove_address_handler(&lu->address_handler); 1260 list_del(&lu->link); 1261 kfree(lu); 1262 } 1263 scsi_remove_host(shost); 1264 dev_notice(dev, "released target %d:0:0\n", shost->host_no); 1265 1266 scsi_host_put(shost); 1267 return 0; 1268 } 1269 1270 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1271 #define SBP2_SW_VERSION_ENTRY 0x00010483 1272 1273 static const struct ieee1394_device_id sbp2_id_table[] = { 1274 { 1275 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1276 IEEE1394_MATCH_VERSION, 1277 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1278 .version = SBP2_SW_VERSION_ENTRY, 1279 }, 1280 { } 1281 }; 1282 1283 static struct fw_driver sbp2_driver = { 1284 .driver = { 1285 .owner = THIS_MODULE, 1286 .name = KBUILD_MODNAME, 1287 .bus = &fw_bus_type, 1288 .probe = sbp2_probe, 1289 .remove = sbp2_remove, 1290 }, 1291 .update = sbp2_update, 1292 .id_table = sbp2_id_table, 1293 }; 1294 1295 static void sbp2_unmap_scatterlist(struct device *card_device, 1296 struct sbp2_command_orb *orb) 1297 { 1298 scsi_dma_unmap(orb->cmd); 1299 1300 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1301 dma_unmap_single(card_device, orb->page_table_bus, 1302 sizeof(orb->page_table), DMA_TO_DEVICE); 1303 } 1304 1305 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1306 { 1307 int sam_status; 1308 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1309 1310 if (sfmt == 2 || sfmt == 3) { 1311 /* 1312 * Reserved for future standardization (2) or 1313 * Status block format vendor-dependent (3) 1314 */ 1315 return DID_ERROR << 16; 1316 } 1317 1318 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1319 sense_data[1] = 0x0; 1320 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1321 sense_data[3] = sbp2_status[4]; 1322 sense_data[4] = sbp2_status[5]; 1323 sense_data[5] = sbp2_status[6]; 1324 sense_data[6] = sbp2_status[7]; 1325 sense_data[7] = 10; 1326 sense_data[8] = sbp2_status[8]; 1327 sense_data[9] = sbp2_status[9]; 1328 sense_data[10] = sbp2_status[10]; 1329 sense_data[11] = sbp2_status[11]; 1330 sense_data[12] = sbp2_status[2]; 1331 sense_data[13] = sbp2_status[3]; 1332 sense_data[14] = sbp2_status[12]; 1333 sense_data[15] = sbp2_status[13]; 1334 1335 sam_status = sbp2_status[0] & 0x3f; 1336 1337 switch (sam_status) { 1338 case SAM_STAT_GOOD: 1339 case SAM_STAT_CHECK_CONDITION: 1340 case SAM_STAT_CONDITION_MET: 1341 case SAM_STAT_BUSY: 1342 case SAM_STAT_RESERVATION_CONFLICT: 1343 case SAM_STAT_COMMAND_TERMINATED: 1344 return DID_OK << 16 | sam_status; 1345 1346 default: 1347 return DID_ERROR << 16; 1348 } 1349 } 1350 1351 static void complete_command_orb(struct sbp2_orb *base_orb, 1352 struct sbp2_status *status) 1353 { 1354 struct sbp2_command_orb *orb = 1355 container_of(base_orb, struct sbp2_command_orb, base); 1356 struct fw_device *device = target_parent_device(orb->lu->tgt); 1357 int result; 1358 1359 if (status != NULL) { 1360 if (STATUS_GET_DEAD(*status)) 1361 sbp2_agent_reset_no_wait(orb->lu); 1362 1363 switch (STATUS_GET_RESPONSE(*status)) { 1364 case SBP2_STATUS_REQUEST_COMPLETE: 1365 result = DID_OK << 16; 1366 break; 1367 case SBP2_STATUS_TRANSPORT_FAILURE: 1368 result = DID_BUS_BUSY << 16; 1369 break; 1370 case SBP2_STATUS_ILLEGAL_REQUEST: 1371 case SBP2_STATUS_VENDOR_DEPENDENT: 1372 default: 1373 result = DID_ERROR << 16; 1374 break; 1375 } 1376 1377 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1378 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1379 orb->cmd->sense_buffer); 1380 } else { 1381 /* 1382 * If the orb completes with status == NULL, something 1383 * went wrong, typically a bus reset happened mid-orb 1384 * or when sending the write (less likely). 1385 */ 1386 result = DID_BUS_BUSY << 16; 1387 sbp2_conditionally_block(orb->lu); 1388 } 1389 1390 dma_unmap_single(device->card->device, orb->base.request_bus, 1391 sizeof(orb->request), DMA_TO_DEVICE); 1392 sbp2_unmap_scatterlist(device->card->device, orb); 1393 1394 orb->cmd->result = result; 1395 orb->cmd->scsi_done(orb->cmd); 1396 } 1397 1398 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1399 struct fw_device *device, struct sbp2_logical_unit *lu) 1400 { 1401 struct scatterlist *sg = scsi_sglist(orb->cmd); 1402 int i, n; 1403 1404 n = scsi_dma_map(orb->cmd); 1405 if (n <= 0) 1406 goto fail; 1407 1408 /* 1409 * Handle the special case where there is only one element in 1410 * the scatter list by converting it to an immediate block 1411 * request. This is also a workaround for broken devices such 1412 * as the second generation iPod which doesn't support page 1413 * tables. 1414 */ 1415 if (n == 1) { 1416 orb->request.data_descriptor.high = 1417 cpu_to_be32(lu->tgt->address_high); 1418 orb->request.data_descriptor.low = 1419 cpu_to_be32(sg_dma_address(sg)); 1420 orb->request.misc |= 1421 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1422 return 0; 1423 } 1424 1425 for_each_sg(sg, sg, n, i) { 1426 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1427 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1428 } 1429 1430 orb->page_table_bus = 1431 dma_map_single(device->card->device, orb->page_table, 1432 sizeof(orb->page_table), DMA_TO_DEVICE); 1433 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1434 goto fail_page_table; 1435 1436 /* 1437 * The data_descriptor pointer is the one case where we need 1438 * to fill in the node ID part of the address. All other 1439 * pointers assume that the data referenced reside on the 1440 * initiator (i.e. us), but data_descriptor can refer to data 1441 * on other nodes so we need to put our ID in descriptor.high. 1442 */ 1443 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1444 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1445 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1446 COMMAND_ORB_DATA_SIZE(n)); 1447 1448 return 0; 1449 1450 fail_page_table: 1451 scsi_dma_unmap(orb->cmd); 1452 fail: 1453 return -ENOMEM; 1454 } 1455 1456 /* SCSI stack integration */ 1457 1458 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1459 struct scsi_cmnd *cmd) 1460 { 1461 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1462 struct fw_device *device = target_parent_device(lu->tgt); 1463 struct sbp2_command_orb *orb; 1464 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1465 1466 /* 1467 * Bidirectional commands are not yet implemented, and unknown 1468 * transfer direction not handled. 1469 */ 1470 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1471 dev_err(lu_dev(lu), "cannot handle bidirectional command\n"); 1472 cmd->result = DID_ERROR << 16; 1473 cmd->scsi_done(cmd); 1474 return 0; 1475 } 1476 1477 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1478 if (orb == NULL) { 1479 dev_notice(lu_dev(lu), "failed to alloc ORB\n"); 1480 return SCSI_MLQUEUE_HOST_BUSY; 1481 } 1482 1483 /* Initialize rcode to something not RCODE_COMPLETE. */ 1484 orb->base.rcode = -1; 1485 kref_init(&orb->base.kref); 1486 orb->lu = lu; 1487 orb->cmd = cmd; 1488 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1489 orb->request.misc = cpu_to_be32( 1490 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1491 COMMAND_ORB_SPEED(device->max_speed) | 1492 COMMAND_ORB_NOTIFY); 1493 1494 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1495 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1496 1497 generation = device->generation; 1498 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1499 1500 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1501 goto out; 1502 1503 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1504 1505 orb->base.callback = complete_command_orb; 1506 orb->base.request_bus = 1507 dma_map_single(device->card->device, &orb->request, 1508 sizeof(orb->request), DMA_TO_DEVICE); 1509 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1510 sbp2_unmap_scatterlist(device->card->device, orb); 1511 goto out; 1512 } 1513 1514 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1515 lu->command_block_agent_address + SBP2_ORB_POINTER); 1516 retval = 0; 1517 out: 1518 kref_put(&orb->base.kref, free_orb); 1519 return retval; 1520 } 1521 1522 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1523 { 1524 struct sbp2_logical_unit *lu = sdev->hostdata; 1525 1526 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1527 if (!lu) 1528 return -ENOSYS; 1529 1530 sdev->allow_restart = 1; 1531 1532 /* 1533 * SBP-2 does not require any alignment, but we set it anyway 1534 * for compatibility with earlier versions of this driver. 1535 */ 1536 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1537 1538 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1539 sdev->inquiry_len = 36; 1540 1541 return 0; 1542 } 1543 1544 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1545 { 1546 struct sbp2_logical_unit *lu = sdev->hostdata; 1547 1548 sdev->use_10_for_rw = 1; 1549 1550 if (sbp2_param_exclusive_login) 1551 sdev->manage_start_stop = 1; 1552 1553 if (sdev->type == TYPE_ROM) 1554 sdev->use_10_for_ms = 1; 1555 1556 if (sdev->type == TYPE_DISK && 1557 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1558 sdev->skip_ms_page_8 = 1; 1559 1560 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1561 sdev->fix_capacity = 1; 1562 1563 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1564 sdev->start_stop_pwr_cond = 1; 1565 1566 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1567 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1568 1569 return 0; 1570 } 1571 1572 /* 1573 * Called by scsi stack when something has really gone wrong. Usually 1574 * called when a command has timed-out for some reason. 1575 */ 1576 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1577 { 1578 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1579 1580 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1581 sbp2_agent_reset(lu); 1582 sbp2_cancel_orbs(lu); 1583 1584 return SUCCESS; 1585 } 1586 1587 /* 1588 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1589 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1590 * 1591 * This is the concatenation of target port identifier and logical unit 1592 * identifier as per SAM-2...SAM-4 annex A. 1593 */ 1594 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1595 struct device_attribute *attr, char *buf) 1596 { 1597 struct scsi_device *sdev = to_scsi_device(dev); 1598 struct sbp2_logical_unit *lu; 1599 1600 if (!sdev) 1601 return 0; 1602 1603 lu = sdev->hostdata; 1604 1605 return sprintf(buf, "%016llx:%06x:%04x\n", 1606 (unsigned long long)lu->tgt->guid, 1607 lu->tgt->directory_id, lu->lun); 1608 } 1609 1610 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1611 1612 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1613 &dev_attr_ieee1394_id, 1614 NULL 1615 }; 1616 1617 static struct scsi_host_template scsi_driver_template = { 1618 .module = THIS_MODULE, 1619 .name = "SBP-2 IEEE-1394", 1620 .proc_name = "sbp2", 1621 .queuecommand = sbp2_scsi_queuecommand, 1622 .slave_alloc = sbp2_scsi_slave_alloc, 1623 .slave_configure = sbp2_scsi_slave_configure, 1624 .eh_abort_handler = sbp2_scsi_abort, 1625 .this_id = -1, 1626 .sg_tablesize = SG_ALL, 1627 .use_clustering = ENABLE_CLUSTERING, 1628 .cmd_per_lun = 1, 1629 .can_queue = 1, 1630 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1631 }; 1632 1633 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1634 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1635 MODULE_LICENSE("GPL"); 1636 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1637 1638 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1639 #ifndef CONFIG_IEEE1394_SBP2_MODULE 1640 MODULE_ALIAS("sbp2"); 1641 #endif 1642 1643 static int __init sbp2_init(void) 1644 { 1645 return driver_register(&sbp2_driver.driver); 1646 } 1647 1648 static void __exit sbp2_cleanup(void) 1649 { 1650 driver_unregister(&sbp2_driver.driver); 1651 } 1652 1653 module_init(sbp2_init); 1654 module_exit(sbp2_cleanup); 1655