1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SBP2 driver (SCSI over IEEE1394) 4 * 5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 /* 9 * The basic structure of this driver is based on the old storage driver, 10 * drivers/ieee1394/sbp2.c, originally written by 11 * James Goodwin <jamesg@filanet.com> 12 * with later contributions and ongoing maintenance from 13 * Ben Collins <bcollins@debian.org>, 14 * Stefan Richter <stefanr@s5r6.in-berlin.de> 15 * and many others. 16 */ 17 18 #include <linux/blkdev.h> 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/delay.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/kernel.h> 29 #include <linux/kref.h> 30 #include <linux/list.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/scatterlist.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/stringify.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/byteorder.h> 42 43 #include <scsi/scsi.h> 44 #include <scsi/scsi_cmnd.h> 45 #include <scsi/scsi_device.h> 46 #include <scsi/scsi_host.h> 47 48 /* 49 * So far only bridges from Oxford Semiconductor are known to support 50 * concurrent logins. Depending on firmware, four or two concurrent logins 51 * are possible on OXFW911 and newer Oxsemi bridges. 52 * 53 * Concurrent logins are useful together with cluster filesystems. 54 */ 55 static bool sbp2_param_exclusive_login = 1; 56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 58 "(default = Y, use N for concurrent initiators)"); 59 60 /* 61 * Flags for firmware oddities 62 * 63 * - 128kB max transfer 64 * Limit transfer size. Necessary for some old bridges. 65 * 66 * - 36 byte inquiry 67 * When scsi_mod probes the device, let the inquiry command look like that 68 * from MS Windows. 69 * 70 * - skip mode page 8 71 * Suppress sending of mode_sense for mode page 8 if the device pretends to 72 * support the SCSI Primary Block commands instead of Reduced Block Commands. 73 * 74 * - fix capacity 75 * Tell sd_mod to correct the last sector number reported by read_capacity. 76 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 77 * Don't use this with devices which don't have this bug. 78 * 79 * - delay inquiry 80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 81 * 82 * - power condition 83 * Set the power condition field in the START STOP UNIT commands sent by 84 * sd_mod on suspend, resume, and shutdown (if manage_system_start_stop or 85 * manage_runtime_start_stop is on). 86 * Some disks need this to spin down or to resume properly. 87 * 88 * - override internal blacklist 89 * Instead of adding to the built-in blacklist, use only the workarounds 90 * specified in the module load parameter. 91 * Useful if a blacklist entry interfered with a non-broken device. 92 */ 93 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 94 #define SBP2_WORKAROUND_INQUIRY_36 0x2 95 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 96 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 97 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 98 #define SBP2_INQUIRY_DELAY 12 99 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 100 #define SBP2_WORKAROUND_OVERRIDE 0x100 101 102 static int sbp2_param_workarounds; 103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 105 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 106 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 107 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 108 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 109 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 110 ", set power condition in start stop unit = " 111 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 112 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 113 ", or a combination)"); 114 115 /* 116 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 117 * and one struct scsi_device per sbp2_logical_unit. 118 */ 119 struct sbp2_logical_unit { 120 struct sbp2_target *tgt; 121 struct list_head link; 122 struct fw_address_handler address_handler; 123 struct list_head orb_list; 124 125 u64 command_block_agent_address; 126 u16 lun; 127 int login_id; 128 129 /* 130 * The generation is updated once we've logged in or reconnected 131 * to the logical unit. Thus, I/O to the device will automatically 132 * fail and get retried if it happens in a window where the device 133 * is not ready, e.g. after a bus reset but before we reconnect. 134 */ 135 int generation; 136 int retries; 137 work_func_t workfn; 138 struct delayed_work work; 139 bool has_sdev; 140 bool blocked; 141 }; 142 143 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 144 { 145 queue_delayed_work(fw_workqueue, &lu->work, delay); 146 } 147 148 /* 149 * We create one struct sbp2_target per IEEE 1212 Unit Directory 150 * and one struct Scsi_Host per sbp2_target. 151 */ 152 struct sbp2_target { 153 struct fw_unit *unit; 154 struct list_head lu_list; 155 156 u64 management_agent_address; 157 u64 guid; 158 int directory_id; 159 int node_id; 160 int address_high; 161 unsigned int workarounds; 162 unsigned int mgt_orb_timeout; 163 unsigned int max_payload; 164 165 spinlock_t lock; 166 int dont_block; /* counter for each logical unit */ 167 int blocked; /* ditto */ 168 }; 169 170 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 171 { 172 return fw_parent_device(tgt->unit); 173 } 174 175 static const struct device *tgt_dev(const struct sbp2_target *tgt) 176 { 177 return &tgt->unit->device; 178 } 179 180 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 181 { 182 return &lu->tgt->unit->device; 183 } 184 185 /* Impossible login_id, to detect logout attempt before successful login */ 186 #define INVALID_LOGIN_ID 0x10000 187 188 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 189 #define SBP2_ORB_NULL 0x80000000 190 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 191 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 192 193 /* 194 * There is no transport protocol limit to the CDB length, but we implement 195 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 196 */ 197 #define SBP2_MAX_CDB_SIZE 16 198 199 /* 200 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 201 * for compatibility with earlier versions of this driver. 202 */ 203 #define SBP2_MAX_SEG_SIZE 0xfffc 204 205 /* Unit directory keys */ 206 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 207 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 208 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 209 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 211 212 /* Management orb opcodes */ 213 #define SBP2_LOGIN_REQUEST 0x0 214 #define SBP2_QUERY_LOGINS_REQUEST 0x1 215 #define SBP2_RECONNECT_REQUEST 0x3 216 #define SBP2_SET_PASSWORD_REQUEST 0x4 217 #define SBP2_LOGOUT_REQUEST 0x7 218 #define SBP2_ABORT_TASK_REQUEST 0xb 219 #define SBP2_ABORT_TASK_SET 0xc 220 #define SBP2_LOGICAL_UNIT_RESET 0xe 221 #define SBP2_TARGET_RESET_REQUEST 0xf 222 223 /* Offsets for command block agent registers */ 224 #define SBP2_AGENT_STATE 0x00 225 #define SBP2_AGENT_RESET 0x04 226 #define SBP2_ORB_POINTER 0x08 227 #define SBP2_DOORBELL 0x10 228 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 229 230 /* Status write response codes */ 231 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 232 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 233 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 234 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 235 236 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 237 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 238 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 239 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 240 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 241 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 242 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 243 #define STATUS_GET_DATA(v) ((v).data) 244 245 struct sbp2_status { 246 u32 status; 247 u32 orb_low; 248 u8 data[24]; 249 }; 250 251 struct sbp2_pointer { 252 __be32 high; 253 __be32 low; 254 }; 255 256 struct sbp2_orb { 257 struct fw_transaction t; 258 struct kref kref; 259 dma_addr_t request_bus; 260 int rcode; 261 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 262 struct sbp2_logical_unit *lu; 263 struct list_head link; 264 }; 265 266 #define MANAGEMENT_ORB_LUN(v) ((v)) 267 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 268 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 269 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 270 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 271 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 272 273 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 274 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 275 276 struct sbp2_management_orb { 277 struct sbp2_orb base; 278 struct { 279 struct sbp2_pointer password; 280 struct sbp2_pointer response; 281 __be32 misc; 282 __be32 length; 283 struct sbp2_pointer status_fifo; 284 } request; 285 __be32 response[4]; 286 dma_addr_t response_bus; 287 struct completion done; 288 struct sbp2_status status; 289 }; 290 291 struct sbp2_login_response { 292 __be32 misc; 293 struct sbp2_pointer command_block_agent; 294 __be32 reconnect_hold; 295 }; 296 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 297 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 298 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 299 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 300 #define COMMAND_ORB_SPEED(v) ((v) << 24) 301 #define COMMAND_ORB_DIRECTION ((1) << 27) 302 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 303 #define COMMAND_ORB_NOTIFY ((1) << 31) 304 305 struct sbp2_command_orb { 306 struct sbp2_orb base; 307 struct { 308 struct sbp2_pointer next; 309 struct sbp2_pointer data_descriptor; 310 __be32 misc; 311 u8 command_block[SBP2_MAX_CDB_SIZE]; 312 } request; 313 struct scsi_cmnd *cmd; 314 315 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 316 dma_addr_t page_table_bus; 317 }; 318 319 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 320 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 321 322 /* 323 * List of devices with known bugs. 324 * 325 * The firmware_revision field, masked with 0xffff00, is the best 326 * indicator for the type of bridge chip of a device. It yields a few 327 * false positives but this did not break correctly behaving devices 328 * so far. 329 */ 330 static const struct { 331 u32 firmware_revision; 332 u32 model; 333 unsigned int workarounds; 334 } sbp2_workarounds_table[] = { 335 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 336 .firmware_revision = 0x002800, 337 .model = 0x001010, 338 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 339 SBP2_WORKAROUND_MODE_SENSE_8 | 340 SBP2_WORKAROUND_POWER_CONDITION, 341 }, 342 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 343 .firmware_revision = 0x002800, 344 .model = 0x000000, 345 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 346 }, 347 /* Initio bridges, actually only needed for some older ones */ { 348 .firmware_revision = 0x000200, 349 .model = SBP2_ROM_VALUE_WILDCARD, 350 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 351 }, 352 /* PL-3507 bridge with Prolific firmware */ { 353 .firmware_revision = 0x012800, 354 .model = SBP2_ROM_VALUE_WILDCARD, 355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 356 }, 357 /* Symbios bridge */ { 358 .firmware_revision = 0xa0b800, 359 .model = SBP2_ROM_VALUE_WILDCARD, 360 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 361 }, 362 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 363 .firmware_revision = 0x002600, 364 .model = SBP2_ROM_VALUE_WILDCARD, 365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 366 }, 367 /* 368 * iPod 2nd generation: needs 128k max transfer size workaround 369 * iPod 3rd generation: needs fix capacity workaround 370 */ 371 { 372 .firmware_revision = 0x0a2700, 373 .model = 0x000000, 374 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 375 SBP2_WORKAROUND_FIX_CAPACITY, 376 }, 377 /* iPod 4th generation */ { 378 .firmware_revision = 0x0a2700, 379 .model = 0x000021, 380 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 381 }, 382 /* iPod mini */ { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000022, 385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 386 }, 387 /* iPod mini */ { 388 .firmware_revision = 0x0a2700, 389 .model = 0x000023, 390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 391 }, 392 /* iPod Photo */ { 393 .firmware_revision = 0x0a2700, 394 .model = 0x00007e, 395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 396 } 397 }; 398 399 static void free_orb(struct kref *kref) 400 { 401 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 402 403 kfree(orb); 404 } 405 406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 407 int tcode, int destination, int source, 408 int generation, unsigned long long offset, 409 void *payload, size_t length, void *callback_data) 410 { 411 struct sbp2_logical_unit *lu = callback_data; 412 struct sbp2_orb *orb = NULL, *iter; 413 struct sbp2_status status; 414 unsigned long flags; 415 416 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 417 length < 8 || length > sizeof(status)) { 418 fw_send_response(card, request, RCODE_TYPE_ERROR); 419 return; 420 } 421 422 status.status = be32_to_cpup(payload); 423 status.orb_low = be32_to_cpup(payload + 4); 424 memset(status.data, 0, sizeof(status.data)); 425 if (length > 8) 426 memcpy(status.data, payload + 8, length - 8); 427 428 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 429 dev_notice(lu_dev(lu), 430 "non-ORB related status write, not handled\n"); 431 fw_send_response(card, request, RCODE_COMPLETE); 432 return; 433 } 434 435 /* Lookup the orb corresponding to this status write. */ 436 spin_lock_irqsave(&lu->tgt->lock, flags); 437 list_for_each_entry(iter, &lu->orb_list, link) { 438 if (STATUS_GET_ORB_HIGH(status) == 0 && 439 STATUS_GET_ORB_LOW(status) == iter->request_bus) { 440 iter->rcode = RCODE_COMPLETE; 441 list_del(&iter->link); 442 orb = iter; 443 break; 444 } 445 } 446 spin_unlock_irqrestore(&lu->tgt->lock, flags); 447 448 if (orb) { 449 orb->callback(orb, &status); 450 kref_put(&orb->kref, free_orb); /* orb callback reference */ 451 } else { 452 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 453 } 454 455 fw_send_response(card, request, RCODE_COMPLETE); 456 } 457 458 static void complete_transaction(struct fw_card *card, int rcode, 459 void *payload, size_t length, void *data) 460 { 461 struct sbp2_orb *orb = data; 462 unsigned long flags; 463 464 /* 465 * This is a little tricky. We can get the status write for 466 * the orb before we get this callback. The status write 467 * handler above will assume the orb pointer transaction was 468 * successful and set the rcode to RCODE_COMPLETE for the orb. 469 * So this callback only sets the rcode if it hasn't already 470 * been set and only does the cleanup if the transaction 471 * failed and we didn't already get a status write. 472 */ 473 spin_lock_irqsave(&orb->lu->tgt->lock, flags); 474 475 if (orb->rcode == -1) 476 orb->rcode = rcode; 477 if (orb->rcode != RCODE_COMPLETE) { 478 list_del(&orb->link); 479 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 480 481 orb->callback(orb, NULL); 482 kref_put(&orb->kref, free_orb); /* orb callback reference */ 483 } else { 484 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 485 } 486 487 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 488 } 489 490 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 491 int node_id, int generation, u64 offset) 492 { 493 struct fw_device *device = target_parent_device(lu->tgt); 494 struct sbp2_pointer orb_pointer; 495 unsigned long flags; 496 497 orb_pointer.high = 0; 498 orb_pointer.low = cpu_to_be32(orb->request_bus); 499 500 orb->lu = lu; 501 spin_lock_irqsave(&lu->tgt->lock, flags); 502 list_add_tail(&orb->link, &lu->orb_list); 503 spin_unlock_irqrestore(&lu->tgt->lock, flags); 504 505 kref_get(&orb->kref); /* transaction callback reference */ 506 kref_get(&orb->kref); /* orb callback reference */ 507 508 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 509 node_id, generation, device->max_speed, offset, 510 &orb_pointer, 8, complete_transaction, orb); 511 } 512 513 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 514 { 515 struct fw_device *device = target_parent_device(lu->tgt); 516 struct sbp2_orb *orb, *next; 517 struct list_head list; 518 int retval = -ENOENT; 519 520 INIT_LIST_HEAD(&list); 521 spin_lock_irq(&lu->tgt->lock); 522 list_splice_init(&lu->orb_list, &list); 523 spin_unlock_irq(&lu->tgt->lock); 524 525 list_for_each_entry_safe(orb, next, &list, link) { 526 retval = 0; 527 if (fw_cancel_transaction(device->card, &orb->t) == 0) 528 continue; 529 530 orb->rcode = RCODE_CANCELLED; 531 orb->callback(orb, NULL); 532 kref_put(&orb->kref, free_orb); /* orb callback reference */ 533 } 534 535 return retval; 536 } 537 538 static void complete_management_orb(struct sbp2_orb *base_orb, 539 struct sbp2_status *status) 540 { 541 struct sbp2_management_orb *orb = 542 container_of(base_orb, struct sbp2_management_orb, base); 543 544 if (status) 545 memcpy(&orb->status, status, sizeof(*status)); 546 complete(&orb->done); 547 } 548 549 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 550 int generation, int function, 551 int lun_or_login_id, void *response) 552 { 553 struct fw_device *device = target_parent_device(lu->tgt); 554 struct sbp2_management_orb *orb; 555 unsigned int timeout; 556 int retval = -ENOMEM; 557 558 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 559 return 0; 560 561 orb = kzalloc(sizeof(*orb), GFP_NOIO); 562 if (orb == NULL) 563 return -ENOMEM; 564 565 kref_init(&orb->base.kref); 566 orb->response_bus = 567 dma_map_single(device->card->device, &orb->response, 568 sizeof(orb->response), DMA_FROM_DEVICE); 569 if (dma_mapping_error(device->card->device, orb->response_bus)) 570 goto fail_mapping_response; 571 572 orb->request.response.high = 0; 573 orb->request.response.low = cpu_to_be32(orb->response_bus); 574 575 orb->request.misc = cpu_to_be32( 576 MANAGEMENT_ORB_NOTIFY | 577 MANAGEMENT_ORB_FUNCTION(function) | 578 MANAGEMENT_ORB_LUN(lun_or_login_id)); 579 orb->request.length = cpu_to_be32( 580 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 581 582 orb->request.status_fifo.high = 583 cpu_to_be32(lu->address_handler.offset >> 32); 584 orb->request.status_fifo.low = 585 cpu_to_be32(lu->address_handler.offset); 586 587 if (function == SBP2_LOGIN_REQUEST) { 588 /* Ask for 2^2 == 4 seconds reconnect grace period */ 589 orb->request.misc |= cpu_to_be32( 590 MANAGEMENT_ORB_RECONNECT(2) | 591 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 592 timeout = lu->tgt->mgt_orb_timeout; 593 } else { 594 timeout = SBP2_ORB_TIMEOUT; 595 } 596 597 init_completion(&orb->done); 598 orb->base.callback = complete_management_orb; 599 600 orb->base.request_bus = 601 dma_map_single(device->card->device, &orb->request, 602 sizeof(orb->request), DMA_TO_DEVICE); 603 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 604 goto fail_mapping_request; 605 606 sbp2_send_orb(&orb->base, lu, node_id, generation, 607 lu->tgt->management_agent_address); 608 609 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 610 611 retval = -EIO; 612 if (sbp2_cancel_orbs(lu) == 0) { 613 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 614 orb->base.rcode); 615 goto out; 616 } 617 618 if (orb->base.rcode != RCODE_COMPLETE) { 619 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 620 orb->base.rcode); 621 goto out; 622 } 623 624 if (STATUS_GET_RESPONSE(orb->status) != 0 || 625 STATUS_GET_SBP_STATUS(orb->status) != 0) { 626 dev_err(lu_dev(lu), "error status: %d:%d\n", 627 STATUS_GET_RESPONSE(orb->status), 628 STATUS_GET_SBP_STATUS(orb->status)); 629 goto out; 630 } 631 632 retval = 0; 633 out: 634 dma_unmap_single(device->card->device, orb->base.request_bus, 635 sizeof(orb->request), DMA_TO_DEVICE); 636 fail_mapping_request: 637 dma_unmap_single(device->card->device, orb->response_bus, 638 sizeof(orb->response), DMA_FROM_DEVICE); 639 fail_mapping_response: 640 if (response) 641 memcpy(response, orb->response, sizeof(orb->response)); 642 kref_put(&orb->base.kref, free_orb); 643 644 return retval; 645 } 646 647 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 648 { 649 struct fw_device *device = target_parent_device(lu->tgt); 650 __be32 d = 0; 651 652 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 653 lu->tgt->node_id, lu->generation, device->max_speed, 654 lu->command_block_agent_address + SBP2_AGENT_RESET, 655 &d, 4); 656 } 657 658 static void complete_agent_reset_write_no_wait(struct fw_card *card, 659 int rcode, void *payload, size_t length, void *data) 660 { 661 kfree(data); 662 } 663 664 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 665 { 666 struct fw_device *device = target_parent_device(lu->tgt); 667 struct fw_transaction *t; 668 static __be32 d; 669 670 t = kmalloc(sizeof(*t), GFP_ATOMIC); 671 if (t == NULL) 672 return; 673 674 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 675 lu->tgt->node_id, lu->generation, device->max_speed, 676 lu->command_block_agent_address + SBP2_AGENT_RESET, 677 &d, 4, complete_agent_reset_write_no_wait, t); 678 } 679 680 static inline void sbp2_allow_block(struct sbp2_target *tgt) 681 { 682 spin_lock_irq(&tgt->lock); 683 --tgt->dont_block; 684 spin_unlock_irq(&tgt->lock); 685 } 686 687 /* 688 * Blocks lu->tgt if all of the following conditions are met: 689 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 690 * logical units have been finished (indicated by dont_block == 0). 691 * - lu->generation is stale. 692 * 693 * Note, scsi_block_requests() must be called while holding tgt->lock, 694 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 695 * unblock the target. 696 */ 697 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 698 { 699 struct sbp2_target *tgt = lu->tgt; 700 struct fw_card *card = target_parent_device(tgt)->card; 701 struct Scsi_Host *shost = 702 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 703 unsigned long flags; 704 705 spin_lock_irqsave(&tgt->lock, flags); 706 if (!tgt->dont_block && !lu->blocked && 707 lu->generation != card->generation) { 708 lu->blocked = true; 709 if (++tgt->blocked == 1) 710 scsi_block_requests(shost); 711 } 712 spin_unlock_irqrestore(&tgt->lock, flags); 713 } 714 715 /* 716 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 717 * Note, it is harmless to run scsi_unblock_requests() outside the 718 * tgt->lock protected section. On the other hand, running it inside 719 * the section might clash with shost->host_lock. 720 */ 721 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 722 { 723 struct sbp2_target *tgt = lu->tgt; 724 struct fw_card *card = target_parent_device(tgt)->card; 725 struct Scsi_Host *shost = 726 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 727 bool unblock = false; 728 729 spin_lock_irq(&tgt->lock); 730 if (lu->blocked && lu->generation == card->generation) { 731 lu->blocked = false; 732 unblock = --tgt->blocked == 0; 733 } 734 spin_unlock_irq(&tgt->lock); 735 736 if (unblock) 737 scsi_unblock_requests(shost); 738 } 739 740 /* 741 * Prevents future blocking of tgt and unblocks it. 742 * Note, it is harmless to run scsi_unblock_requests() outside the 743 * tgt->lock protected section. On the other hand, running it inside 744 * the section might clash with shost->host_lock. 745 */ 746 static void sbp2_unblock(struct sbp2_target *tgt) 747 { 748 struct Scsi_Host *shost = 749 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 750 751 spin_lock_irq(&tgt->lock); 752 ++tgt->dont_block; 753 spin_unlock_irq(&tgt->lock); 754 755 scsi_unblock_requests(shost); 756 } 757 758 static int sbp2_lun2int(u16 lun) 759 { 760 struct scsi_lun eight_bytes_lun; 761 762 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 763 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 764 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 765 766 return scsilun_to_int(&eight_bytes_lun); 767 } 768 769 /* 770 * Write retransmit retry values into the BUSY_TIMEOUT register. 771 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 772 * default retry_limit value is 0 (i.e. never retry transmission). We write a 773 * saner value after logging into the device. 774 * - The dual-phase retry protocol is optional to implement, and if not 775 * supported, writes to the dual-phase portion of the register will be 776 * ignored. We try to write the original 1394-1995 default here. 777 * - In the case of devices that are also SBP-3-compliant, all writes are 778 * ignored, as the register is read-only, but contains single-phase retry of 779 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 780 * write attempt is safe and yields more consistent behavior for all devices. 781 * 782 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 783 * and section 6.4 of the SBP-3 spec for further details. 784 */ 785 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 786 { 787 struct fw_device *device = target_parent_device(lu->tgt); 788 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 789 790 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 791 lu->tgt->node_id, lu->generation, device->max_speed, 792 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 793 } 794 795 static void sbp2_reconnect(struct work_struct *work); 796 797 static void sbp2_login(struct work_struct *work) 798 { 799 struct sbp2_logical_unit *lu = 800 container_of(work, struct sbp2_logical_unit, work.work); 801 struct sbp2_target *tgt = lu->tgt; 802 struct fw_device *device = target_parent_device(tgt); 803 struct Scsi_Host *shost; 804 struct scsi_device *sdev; 805 struct sbp2_login_response response; 806 int generation, node_id, local_node_id; 807 808 if (fw_device_is_shutdown(device)) 809 return; 810 811 generation = device->generation; 812 smp_rmb(); /* node IDs must not be older than generation */ 813 node_id = device->node_id; 814 local_node_id = device->card->node_id; 815 816 /* If this is a re-login attempt, log out, or we might be rejected. */ 817 if (lu->has_sdev) 818 sbp2_send_management_orb(lu, device->node_id, generation, 819 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 820 821 if (sbp2_send_management_orb(lu, node_id, generation, 822 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 823 if (lu->retries++ < 5) { 824 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 825 } else { 826 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 827 lu->lun); 828 /* Let any waiting I/O fail from now on. */ 829 sbp2_unblock(lu->tgt); 830 } 831 return; 832 } 833 834 tgt->node_id = node_id; 835 tgt->address_high = local_node_id << 16; 836 smp_wmb(); /* node IDs must not be older than generation */ 837 lu->generation = generation; 838 839 lu->command_block_agent_address = 840 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 841 << 32) | be32_to_cpu(response.command_block_agent.low); 842 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 843 844 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 845 lu->lun, lu->retries); 846 847 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 848 sbp2_set_busy_timeout(lu); 849 850 lu->workfn = sbp2_reconnect; 851 sbp2_agent_reset(lu); 852 853 /* This was a re-login. */ 854 if (lu->has_sdev) { 855 sbp2_cancel_orbs(lu); 856 sbp2_conditionally_unblock(lu); 857 858 return; 859 } 860 861 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 862 ssleep(SBP2_INQUIRY_DELAY); 863 864 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 865 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 866 /* 867 * FIXME: We are unable to perform reconnects while in sbp2_login(). 868 * Therefore __scsi_add_device() will get into trouble if a bus reset 869 * happens in parallel. It will either fail or leave us with an 870 * unusable sdev. As a workaround we check for this and retry the 871 * whole login and SCSI probing. 872 */ 873 874 /* Reported error during __scsi_add_device() */ 875 if (IS_ERR(sdev)) 876 goto out_logout_login; 877 878 /* Unreported error during __scsi_add_device() */ 879 smp_rmb(); /* get current card generation */ 880 if (generation != device->card->generation) { 881 scsi_remove_device(sdev); 882 scsi_device_put(sdev); 883 goto out_logout_login; 884 } 885 886 /* No error during __scsi_add_device() */ 887 lu->has_sdev = true; 888 scsi_device_put(sdev); 889 sbp2_allow_block(tgt); 890 891 return; 892 893 out_logout_login: 894 smp_rmb(); /* generation may have changed */ 895 generation = device->generation; 896 smp_rmb(); /* node_id must not be older than generation */ 897 898 sbp2_send_management_orb(lu, device->node_id, generation, 899 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 900 /* 901 * If a bus reset happened, sbp2_update will have requeued 902 * lu->work already. Reset the work from reconnect to login. 903 */ 904 lu->workfn = sbp2_login; 905 } 906 907 static void sbp2_reconnect(struct work_struct *work) 908 { 909 struct sbp2_logical_unit *lu = 910 container_of(work, struct sbp2_logical_unit, work.work); 911 struct sbp2_target *tgt = lu->tgt; 912 struct fw_device *device = target_parent_device(tgt); 913 int generation, node_id, local_node_id; 914 915 if (fw_device_is_shutdown(device)) 916 return; 917 918 generation = device->generation; 919 smp_rmb(); /* node IDs must not be older than generation */ 920 node_id = device->node_id; 921 local_node_id = device->card->node_id; 922 923 if (sbp2_send_management_orb(lu, node_id, generation, 924 SBP2_RECONNECT_REQUEST, 925 lu->login_id, NULL) < 0) { 926 /* 927 * If reconnect was impossible even though we are in the 928 * current generation, fall back and try to log in again. 929 * 930 * We could check for "Function rejected" status, but 931 * looking at the bus generation as simpler and more general. 932 */ 933 smp_rmb(); /* get current card generation */ 934 if (generation == device->card->generation || 935 lu->retries++ >= 5) { 936 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 937 lu->retries = 0; 938 lu->workfn = sbp2_login; 939 } 940 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 941 942 return; 943 } 944 945 tgt->node_id = node_id; 946 tgt->address_high = local_node_id << 16; 947 smp_wmb(); /* node IDs must not be older than generation */ 948 lu->generation = generation; 949 950 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 951 lu->lun, lu->retries); 952 953 sbp2_agent_reset(lu); 954 sbp2_cancel_orbs(lu); 955 sbp2_conditionally_unblock(lu); 956 } 957 958 static void sbp2_lu_workfn(struct work_struct *work) 959 { 960 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work), 961 struct sbp2_logical_unit, work); 962 lu->workfn(work); 963 } 964 965 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 966 { 967 struct sbp2_logical_unit *lu; 968 969 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 970 if (!lu) 971 return -ENOMEM; 972 973 lu->address_handler.length = 0x100; 974 lu->address_handler.address_callback = sbp2_status_write; 975 lu->address_handler.callback_data = lu; 976 977 if (fw_core_add_address_handler(&lu->address_handler, 978 &fw_high_memory_region) < 0) { 979 kfree(lu); 980 return -ENOMEM; 981 } 982 983 lu->tgt = tgt; 984 lu->lun = lun_entry & 0xffff; 985 lu->login_id = INVALID_LOGIN_ID; 986 lu->retries = 0; 987 lu->has_sdev = false; 988 lu->blocked = false; 989 ++tgt->dont_block; 990 INIT_LIST_HEAD(&lu->orb_list); 991 lu->workfn = sbp2_login; 992 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn); 993 994 list_add_tail(&lu->link, &tgt->lu_list); 995 return 0; 996 } 997 998 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 999 const u32 *leaf) 1000 { 1001 if ((leaf[0] & 0xffff0000) == 0x00020000) 1002 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1003 } 1004 1005 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1006 const u32 *directory) 1007 { 1008 struct fw_csr_iterator ci; 1009 int key, value; 1010 1011 fw_csr_iterator_init(&ci, directory); 1012 while (fw_csr_iterator_next(&ci, &key, &value)) 1013 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1014 sbp2_add_logical_unit(tgt, value) < 0) 1015 return -ENOMEM; 1016 return 0; 1017 } 1018 1019 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1020 u32 *model, u32 *firmware_revision) 1021 { 1022 struct fw_csr_iterator ci; 1023 int key, value; 1024 1025 fw_csr_iterator_init(&ci, directory); 1026 while (fw_csr_iterator_next(&ci, &key, &value)) { 1027 switch (key) { 1028 1029 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1030 tgt->management_agent_address = 1031 CSR_REGISTER_BASE + 4 * value; 1032 break; 1033 1034 case CSR_DIRECTORY_ID: 1035 tgt->directory_id = value; 1036 break; 1037 1038 case CSR_MODEL: 1039 *model = value; 1040 break; 1041 1042 case SBP2_CSR_FIRMWARE_REVISION: 1043 *firmware_revision = value; 1044 break; 1045 1046 case SBP2_CSR_UNIT_CHARACTERISTICS: 1047 /* the timeout value is stored in 500ms units */ 1048 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1049 break; 1050 1051 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1052 if (sbp2_add_logical_unit(tgt, value) < 0) 1053 return -ENOMEM; 1054 break; 1055 1056 case SBP2_CSR_UNIT_UNIQUE_ID: 1057 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1058 break; 1059 1060 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1061 /* Adjust for the increment in the iterator */ 1062 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1063 return -ENOMEM; 1064 break; 1065 } 1066 } 1067 return 0; 1068 } 1069 1070 /* 1071 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1072 * provided in the config rom. Most devices do provide a value, which 1073 * we'll use for login management orbs, but with some sane limits. 1074 */ 1075 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1076 { 1077 unsigned int timeout = tgt->mgt_orb_timeout; 1078 1079 if (timeout > 40000) 1080 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1081 timeout / 1000); 1082 1083 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1084 } 1085 1086 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1087 u32 firmware_revision) 1088 { 1089 int i; 1090 unsigned int w = sbp2_param_workarounds; 1091 1092 if (w) 1093 dev_notice(tgt_dev(tgt), 1094 "Please notify linux1394-devel@lists.sf.net " 1095 "if you need the workarounds parameter\n"); 1096 1097 if (w & SBP2_WORKAROUND_OVERRIDE) 1098 goto out; 1099 1100 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1101 1102 if (sbp2_workarounds_table[i].firmware_revision != 1103 (firmware_revision & 0xffffff00)) 1104 continue; 1105 1106 if (sbp2_workarounds_table[i].model != model && 1107 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1108 continue; 1109 1110 w |= sbp2_workarounds_table[i].workarounds; 1111 break; 1112 } 1113 out: 1114 if (w) 1115 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1116 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1117 w, firmware_revision, model); 1118 tgt->workarounds = w; 1119 } 1120 1121 static const struct scsi_host_template scsi_driver_template; 1122 static void sbp2_remove(struct fw_unit *unit); 1123 1124 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) 1125 { 1126 struct fw_device *device = fw_parent_device(unit); 1127 struct sbp2_target *tgt; 1128 struct sbp2_logical_unit *lu; 1129 struct Scsi_Host *shost; 1130 u32 model, firmware_revision; 1131 1132 /* cannot (or should not) handle targets on the local node */ 1133 if (device->is_local) 1134 return -ENODEV; 1135 1136 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1137 if (shost == NULL) 1138 return -ENOMEM; 1139 1140 tgt = (struct sbp2_target *)shost->hostdata; 1141 dev_set_drvdata(&unit->device, tgt); 1142 tgt->unit = unit; 1143 INIT_LIST_HEAD(&tgt->lu_list); 1144 spin_lock_init(&tgt->lock); 1145 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1146 1147 if (fw_device_enable_phys_dma(device) < 0) 1148 goto fail_shost_put; 1149 1150 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1151 1152 if (scsi_add_host_with_dma(shost, &unit->device, 1153 device->card->device) < 0) 1154 goto fail_shost_put; 1155 1156 /* implicit directory ID */ 1157 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1158 + CSR_CONFIG_ROM) & 0xffffff; 1159 1160 firmware_revision = SBP2_ROM_VALUE_MISSING; 1161 model = SBP2_ROM_VALUE_MISSING; 1162 1163 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1164 &firmware_revision) < 0) 1165 goto fail_remove; 1166 1167 sbp2_clamp_management_orb_timeout(tgt); 1168 sbp2_init_workarounds(tgt, model, firmware_revision); 1169 1170 /* 1171 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1172 * and so on up to 4096 bytes. The SBP-2 max_payload field 1173 * specifies the max payload size as 2 ^ (max_payload + 2), so 1174 * if we set this to max_speed + 7, we get the right value. 1175 */ 1176 tgt->max_payload = min3(device->max_speed + 7, 10U, 1177 device->card->max_receive - 1); 1178 1179 /* Do the login in a workqueue so we can easily reschedule retries. */ 1180 list_for_each_entry(lu, &tgt->lu_list, link) 1181 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1182 1183 return 0; 1184 1185 fail_remove: 1186 sbp2_remove(unit); 1187 return -ENOMEM; 1188 1189 fail_shost_put: 1190 scsi_host_put(shost); 1191 return -ENOMEM; 1192 } 1193 1194 static void sbp2_update(struct fw_unit *unit) 1195 { 1196 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1197 struct sbp2_logical_unit *lu; 1198 1199 fw_device_enable_phys_dma(fw_parent_device(unit)); 1200 1201 /* 1202 * Fw-core serializes sbp2_update() against sbp2_remove(). 1203 * Iteration over tgt->lu_list is therefore safe here. 1204 */ 1205 list_for_each_entry(lu, &tgt->lu_list, link) { 1206 sbp2_conditionally_block(lu); 1207 lu->retries = 0; 1208 sbp2_queue_work(lu, 0); 1209 } 1210 } 1211 1212 static void sbp2_remove(struct fw_unit *unit) 1213 { 1214 struct fw_device *device = fw_parent_device(unit); 1215 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1216 struct sbp2_logical_unit *lu, *next; 1217 struct Scsi_Host *shost = 1218 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1219 struct scsi_device *sdev; 1220 1221 /* prevent deadlocks */ 1222 sbp2_unblock(tgt); 1223 1224 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1225 cancel_delayed_work_sync(&lu->work); 1226 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1227 if (sdev) { 1228 scsi_remove_device(sdev); 1229 scsi_device_put(sdev); 1230 } 1231 if (lu->login_id != INVALID_LOGIN_ID) { 1232 int generation, node_id; 1233 /* 1234 * tgt->node_id may be obsolete here if we failed 1235 * during initial login or after a bus reset where 1236 * the topology changed. 1237 */ 1238 generation = device->generation; 1239 smp_rmb(); /* node_id vs. generation */ 1240 node_id = device->node_id; 1241 sbp2_send_management_orb(lu, node_id, generation, 1242 SBP2_LOGOUT_REQUEST, 1243 lu->login_id, NULL); 1244 } 1245 fw_core_remove_address_handler(&lu->address_handler); 1246 list_del(&lu->link); 1247 kfree(lu); 1248 } 1249 scsi_remove_host(shost); 1250 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no); 1251 1252 scsi_host_put(shost); 1253 } 1254 1255 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1256 #define SBP2_SW_VERSION_ENTRY 0x00010483 1257 1258 static const struct ieee1394_device_id sbp2_id_table[] = { 1259 { 1260 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1261 IEEE1394_MATCH_VERSION, 1262 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1263 .version = SBP2_SW_VERSION_ENTRY, 1264 }, 1265 { } 1266 }; 1267 1268 static struct fw_driver sbp2_driver = { 1269 .driver = { 1270 .owner = THIS_MODULE, 1271 .name = KBUILD_MODNAME, 1272 .bus = &fw_bus_type, 1273 }, 1274 .probe = sbp2_probe, 1275 .update = sbp2_update, 1276 .remove = sbp2_remove, 1277 .id_table = sbp2_id_table, 1278 }; 1279 1280 static void sbp2_unmap_scatterlist(struct device *card_device, 1281 struct sbp2_command_orb *orb) 1282 { 1283 scsi_dma_unmap(orb->cmd); 1284 1285 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1286 dma_unmap_single(card_device, orb->page_table_bus, 1287 sizeof(orb->page_table), DMA_TO_DEVICE); 1288 } 1289 1290 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1291 { 1292 int sam_status; 1293 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1294 1295 if (sfmt == 2 || sfmt == 3) { 1296 /* 1297 * Reserved for future standardization (2) or 1298 * Status block format vendor-dependent (3) 1299 */ 1300 return DID_ERROR << 16; 1301 } 1302 1303 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1304 sense_data[1] = 0x0; 1305 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1306 sense_data[3] = sbp2_status[4]; 1307 sense_data[4] = sbp2_status[5]; 1308 sense_data[5] = sbp2_status[6]; 1309 sense_data[6] = sbp2_status[7]; 1310 sense_data[7] = 10; 1311 sense_data[8] = sbp2_status[8]; 1312 sense_data[9] = sbp2_status[9]; 1313 sense_data[10] = sbp2_status[10]; 1314 sense_data[11] = sbp2_status[11]; 1315 sense_data[12] = sbp2_status[2]; 1316 sense_data[13] = sbp2_status[3]; 1317 sense_data[14] = sbp2_status[12]; 1318 sense_data[15] = sbp2_status[13]; 1319 1320 sam_status = sbp2_status[0] & 0x3f; 1321 1322 switch (sam_status) { 1323 case SAM_STAT_GOOD: 1324 case SAM_STAT_CHECK_CONDITION: 1325 case SAM_STAT_CONDITION_MET: 1326 case SAM_STAT_BUSY: 1327 case SAM_STAT_RESERVATION_CONFLICT: 1328 case SAM_STAT_COMMAND_TERMINATED: 1329 return DID_OK << 16 | sam_status; 1330 1331 default: 1332 return DID_ERROR << 16; 1333 } 1334 } 1335 1336 static void complete_command_orb(struct sbp2_orb *base_orb, 1337 struct sbp2_status *status) 1338 { 1339 struct sbp2_command_orb *orb = 1340 container_of(base_orb, struct sbp2_command_orb, base); 1341 struct fw_device *device = target_parent_device(base_orb->lu->tgt); 1342 int result; 1343 1344 if (status != NULL) { 1345 if (STATUS_GET_DEAD(*status)) 1346 sbp2_agent_reset_no_wait(base_orb->lu); 1347 1348 switch (STATUS_GET_RESPONSE(*status)) { 1349 case SBP2_STATUS_REQUEST_COMPLETE: 1350 result = DID_OK << 16; 1351 break; 1352 case SBP2_STATUS_TRANSPORT_FAILURE: 1353 result = DID_BUS_BUSY << 16; 1354 break; 1355 case SBP2_STATUS_ILLEGAL_REQUEST: 1356 case SBP2_STATUS_VENDOR_DEPENDENT: 1357 default: 1358 result = DID_ERROR << 16; 1359 break; 1360 } 1361 1362 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1363 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1364 orb->cmd->sense_buffer); 1365 } else { 1366 /* 1367 * If the orb completes with status == NULL, something 1368 * went wrong, typically a bus reset happened mid-orb 1369 * or when sending the write (less likely). 1370 */ 1371 result = DID_BUS_BUSY << 16; 1372 sbp2_conditionally_block(base_orb->lu); 1373 } 1374 1375 dma_unmap_single(device->card->device, orb->base.request_bus, 1376 sizeof(orb->request), DMA_TO_DEVICE); 1377 sbp2_unmap_scatterlist(device->card->device, orb); 1378 1379 orb->cmd->result = result; 1380 scsi_done(orb->cmd); 1381 } 1382 1383 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1384 struct fw_device *device, struct sbp2_logical_unit *lu) 1385 { 1386 struct scatterlist *sg = scsi_sglist(orb->cmd); 1387 int i, n; 1388 1389 n = scsi_dma_map(orb->cmd); 1390 if (n <= 0) 1391 goto fail; 1392 1393 /* 1394 * Handle the special case where there is only one element in 1395 * the scatter list by converting it to an immediate block 1396 * request. This is also a workaround for broken devices such 1397 * as the second generation iPod which doesn't support page 1398 * tables. 1399 */ 1400 if (n == 1) { 1401 orb->request.data_descriptor.high = 1402 cpu_to_be32(lu->tgt->address_high); 1403 orb->request.data_descriptor.low = 1404 cpu_to_be32(sg_dma_address(sg)); 1405 orb->request.misc |= 1406 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1407 return 0; 1408 } 1409 1410 for_each_sg(sg, sg, n, i) { 1411 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1412 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1413 } 1414 1415 orb->page_table_bus = 1416 dma_map_single(device->card->device, orb->page_table, 1417 sizeof(orb->page_table), DMA_TO_DEVICE); 1418 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1419 goto fail_page_table; 1420 1421 /* 1422 * The data_descriptor pointer is the one case where we need 1423 * to fill in the node ID part of the address. All other 1424 * pointers assume that the data referenced reside on the 1425 * initiator (i.e. us), but data_descriptor can refer to data 1426 * on other nodes so we need to put our ID in descriptor.high. 1427 */ 1428 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1429 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1430 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1431 COMMAND_ORB_DATA_SIZE(n)); 1432 1433 return 0; 1434 1435 fail_page_table: 1436 scsi_dma_unmap(orb->cmd); 1437 fail: 1438 return -ENOMEM; 1439 } 1440 1441 /* SCSI stack integration */ 1442 1443 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1444 struct scsi_cmnd *cmd) 1445 { 1446 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1447 struct fw_device *device = target_parent_device(lu->tgt); 1448 struct sbp2_command_orb *orb; 1449 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1450 1451 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1452 if (orb == NULL) 1453 return SCSI_MLQUEUE_HOST_BUSY; 1454 1455 /* Initialize rcode to something not RCODE_COMPLETE. */ 1456 orb->base.rcode = -1; 1457 kref_init(&orb->base.kref); 1458 orb->cmd = cmd; 1459 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1460 orb->request.misc = cpu_to_be32( 1461 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1462 COMMAND_ORB_SPEED(device->max_speed) | 1463 COMMAND_ORB_NOTIFY); 1464 1465 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1466 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1467 1468 generation = device->generation; 1469 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1470 1471 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1472 goto out; 1473 1474 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1475 1476 orb->base.callback = complete_command_orb; 1477 orb->base.request_bus = 1478 dma_map_single(device->card->device, &orb->request, 1479 sizeof(orb->request), DMA_TO_DEVICE); 1480 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1481 sbp2_unmap_scatterlist(device->card->device, orb); 1482 goto out; 1483 } 1484 1485 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1486 lu->command_block_agent_address + SBP2_ORB_POINTER); 1487 retval = 0; 1488 out: 1489 kref_put(&orb->base.kref, free_orb); 1490 return retval; 1491 } 1492 1493 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1494 { 1495 struct sbp2_logical_unit *lu = sdev->hostdata; 1496 1497 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1498 if (!lu) 1499 return -ENOSYS; 1500 1501 sdev->allow_restart = 1; 1502 1503 /* 1504 * SBP-2 does not require any alignment, but we set it anyway 1505 * for compatibility with earlier versions of this driver. 1506 */ 1507 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1508 1509 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1510 sdev->inquiry_len = 36; 1511 1512 return 0; 1513 } 1514 1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1516 { 1517 struct sbp2_logical_unit *lu = sdev->hostdata; 1518 1519 sdev->use_10_for_rw = 1; 1520 1521 if (sbp2_param_exclusive_login) { 1522 sdev->manage_system_start_stop = true; 1523 sdev->manage_runtime_start_stop = true; 1524 sdev->manage_shutdown = true; 1525 } 1526 1527 if (sdev->type == TYPE_ROM) 1528 sdev->use_10_for_ms = 1; 1529 1530 if (sdev->type == TYPE_DISK && 1531 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1532 sdev->skip_ms_page_8 = 1; 1533 1534 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1535 sdev->fix_capacity = 1; 1536 1537 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1538 sdev->start_stop_pwr_cond = 1; 1539 1540 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1541 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1542 1543 return 0; 1544 } 1545 1546 /* 1547 * Called by scsi stack when something has really gone wrong. Usually 1548 * called when a command has timed-out for some reason. 1549 */ 1550 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1551 { 1552 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1553 1554 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1555 sbp2_agent_reset(lu); 1556 sbp2_cancel_orbs(lu); 1557 1558 return SUCCESS; 1559 } 1560 1561 /* 1562 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1563 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1564 * 1565 * This is the concatenation of target port identifier and logical unit 1566 * identifier as per SAM-2...SAM-4 annex A. 1567 */ 1568 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1569 struct device_attribute *attr, char *buf) 1570 { 1571 struct scsi_device *sdev = to_scsi_device(dev); 1572 struct sbp2_logical_unit *lu; 1573 1574 if (!sdev) 1575 return 0; 1576 1577 lu = sdev->hostdata; 1578 1579 return sprintf(buf, "%016llx:%06x:%04x\n", 1580 (unsigned long long)lu->tgt->guid, 1581 lu->tgt->directory_id, lu->lun); 1582 } 1583 1584 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1585 1586 static struct attribute *sbp2_scsi_sysfs_attrs[] = { 1587 &dev_attr_ieee1394_id.attr, 1588 NULL 1589 }; 1590 1591 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs); 1592 1593 static const struct scsi_host_template scsi_driver_template = { 1594 .module = THIS_MODULE, 1595 .name = "SBP-2 IEEE-1394", 1596 .proc_name = "sbp2", 1597 .queuecommand = sbp2_scsi_queuecommand, 1598 .slave_alloc = sbp2_scsi_slave_alloc, 1599 .slave_configure = sbp2_scsi_slave_configure, 1600 .eh_abort_handler = sbp2_scsi_abort, 1601 .this_id = -1, 1602 .sg_tablesize = SG_ALL, 1603 .max_segment_size = SBP2_MAX_SEG_SIZE, 1604 .can_queue = 1, 1605 .sdev_groups = sbp2_scsi_sysfs_groups, 1606 }; 1607 1608 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1609 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1610 MODULE_LICENSE("GPL"); 1611 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1612 1613 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1614 MODULE_ALIAS("sbp2"); 1615 1616 static int __init sbp2_init(void) 1617 { 1618 return driver_register(&sbp2_driver.driver); 1619 } 1620 1621 static void __exit sbp2_cleanup(void) 1622 { 1623 driver_unregister(&sbp2_driver.driver); 1624 } 1625 1626 module_init(sbp2_init); 1627 module_exit(sbp2_cleanup); 1628