xref: /openbmc/linux/drivers/firewire/sbp2.c (revision 7fe2f639)
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20 
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30 
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53 
54 #include <asm/byteorder.h>
55 #include <asm/system.h>
56 
57 #include <scsi/scsi.h>
58 #include <scsi/scsi_cmnd.h>
59 #include <scsi/scsi_device.h>
60 #include <scsi/scsi_host.h>
61 
62 /*
63  * So far only bridges from Oxford Semiconductor are known to support
64  * concurrent logins. Depending on firmware, four or two concurrent logins
65  * are possible on OXFW911 and newer Oxsemi bridges.
66  *
67  * Concurrent logins are useful together with cluster filesystems.
68  */
69 static int sbp2_param_exclusive_login = 1;
70 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
71 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
72 		 "(default = Y, use N for concurrent initiators)");
73 
74 /*
75  * Flags for firmware oddities
76  *
77  * - 128kB max transfer
78  *   Limit transfer size. Necessary for some old bridges.
79  *
80  * - 36 byte inquiry
81  *   When scsi_mod probes the device, let the inquiry command look like that
82  *   from MS Windows.
83  *
84  * - skip mode page 8
85  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
86  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
87  *
88  * - fix capacity
89  *   Tell sd_mod to correct the last sector number reported by read_capacity.
90  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
91  *   Don't use this with devices which don't have this bug.
92  *
93  * - delay inquiry
94  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
95  *
96  * - power condition
97  *   Set the power condition field in the START STOP UNIT commands sent by
98  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
99  *   Some disks need this to spin down or to resume properly.
100  *
101  * - override internal blacklist
102  *   Instead of adding to the built-in blacklist, use only the workarounds
103  *   specified in the module load parameter.
104  *   Useful if a blacklist entry interfered with a non-broken device.
105  */
106 #define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
107 #define SBP2_WORKAROUND_INQUIRY_36	0x2
108 #define SBP2_WORKAROUND_MODE_SENSE_8	0x4
109 #define SBP2_WORKAROUND_FIX_CAPACITY	0x8
110 #define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
111 #define SBP2_INQUIRY_DELAY		12
112 #define SBP2_WORKAROUND_POWER_CONDITION	0x20
113 #define SBP2_WORKAROUND_OVERRIDE	0x100
114 
115 static int sbp2_param_workarounds;
116 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
117 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
118 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
119 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
120 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
121 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
122 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
123 	", set power condition in start stop unit = "
124 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
125 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
126 	", or a combination)");
127 
128 static const char sbp2_driver_name[] = "sbp2";
129 
130 /*
131  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
132  * and one struct scsi_device per sbp2_logical_unit.
133  */
134 struct sbp2_logical_unit {
135 	struct sbp2_target *tgt;
136 	struct list_head link;
137 	struct fw_address_handler address_handler;
138 	struct list_head orb_list;
139 
140 	u64 command_block_agent_address;
141 	u16 lun;
142 	int login_id;
143 
144 	/*
145 	 * The generation is updated once we've logged in or reconnected
146 	 * to the logical unit.  Thus, I/O to the device will automatically
147 	 * fail and get retried if it happens in a window where the device
148 	 * is not ready, e.g. after a bus reset but before we reconnect.
149 	 */
150 	int generation;
151 	int retries;
152 	struct delayed_work work;
153 	bool has_sdev;
154 	bool blocked;
155 };
156 
157 /*
158  * We create one struct sbp2_target per IEEE 1212 Unit Directory
159  * and one struct Scsi_Host per sbp2_target.
160  */
161 struct sbp2_target {
162 	struct kref kref;
163 	struct fw_unit *unit;
164 	const char *bus_id;
165 	struct list_head lu_list;
166 
167 	u64 management_agent_address;
168 	u64 guid;
169 	int directory_id;
170 	int node_id;
171 	int address_high;
172 	unsigned int workarounds;
173 	unsigned int mgt_orb_timeout;
174 	unsigned int max_payload;
175 
176 	int dont_block;	/* counter for each logical unit */
177 	int blocked;	/* ditto */
178 };
179 
180 static struct fw_device *target_device(struct sbp2_target *tgt)
181 {
182 	return fw_parent_device(tgt->unit);
183 }
184 
185 /* Impossible login_id, to detect logout attempt before successful login */
186 #define INVALID_LOGIN_ID 0x10000
187 
188 #define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
189 #define SBP2_ORB_NULL			0x80000000
190 #define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
191 #define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
192 
193 /*
194  * There is no transport protocol limit to the CDB length,  but we implement
195  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
196  */
197 #define SBP2_MAX_CDB_SIZE		16
198 
199 /*
200  * The default maximum s/g segment size of a FireWire controller is
201  * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
202  * be quadlet-aligned, we set the length limit to 0xffff & ~3.
203  */
204 #define SBP2_MAX_SEG_SIZE		0xfffc
205 
206 /* Unit directory keys */
207 #define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
208 #define SBP2_CSR_FIRMWARE_REVISION	0x3c
209 #define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
211 
212 /* Management orb opcodes */
213 #define SBP2_LOGIN_REQUEST		0x0
214 #define SBP2_QUERY_LOGINS_REQUEST	0x1
215 #define SBP2_RECONNECT_REQUEST		0x3
216 #define SBP2_SET_PASSWORD_REQUEST	0x4
217 #define SBP2_LOGOUT_REQUEST		0x7
218 #define SBP2_ABORT_TASK_REQUEST		0xb
219 #define SBP2_ABORT_TASK_SET		0xc
220 #define SBP2_LOGICAL_UNIT_RESET		0xe
221 #define SBP2_TARGET_RESET_REQUEST	0xf
222 
223 /* Offsets for command block agent registers */
224 #define SBP2_AGENT_STATE		0x00
225 #define SBP2_AGENT_RESET		0x04
226 #define SBP2_ORB_POINTER		0x08
227 #define SBP2_DOORBELL			0x10
228 #define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
229 
230 /* Status write response codes */
231 #define SBP2_STATUS_REQUEST_COMPLETE	0x0
232 #define SBP2_STATUS_TRANSPORT_FAILURE	0x1
233 #define SBP2_STATUS_ILLEGAL_REQUEST	0x2
234 #define SBP2_STATUS_VENDOR_DEPENDENT	0x3
235 
236 #define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
237 #define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
238 #define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
239 #define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
240 #define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
241 #define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
242 #define STATUS_GET_ORB_LOW(v)		((v).orb_low)
243 #define STATUS_GET_DATA(v)		((v).data)
244 
245 struct sbp2_status {
246 	u32 status;
247 	u32 orb_low;
248 	u8 data[24];
249 };
250 
251 struct sbp2_pointer {
252 	__be32 high;
253 	__be32 low;
254 };
255 
256 struct sbp2_orb {
257 	struct fw_transaction t;
258 	struct kref kref;
259 	dma_addr_t request_bus;
260 	int rcode;
261 	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262 	struct list_head link;
263 };
264 
265 #define MANAGEMENT_ORB_LUN(v)			((v))
266 #define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
267 #define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
268 #define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
270 #define MANAGEMENT_ORB_NOTIFY			((1) << 31)
271 
272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
274 
275 struct sbp2_management_orb {
276 	struct sbp2_orb base;
277 	struct {
278 		struct sbp2_pointer password;
279 		struct sbp2_pointer response;
280 		__be32 misc;
281 		__be32 length;
282 		struct sbp2_pointer status_fifo;
283 	} request;
284 	__be32 response[4];
285 	dma_addr_t response_bus;
286 	struct completion done;
287 	struct sbp2_status status;
288 };
289 
290 struct sbp2_login_response {
291 	__be32 misc;
292 	struct sbp2_pointer command_block_agent;
293 	__be32 reconnect_hold;
294 };
295 #define COMMAND_ORB_DATA_SIZE(v)	((v))
296 #define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
297 #define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
298 #define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
299 #define COMMAND_ORB_SPEED(v)		((v) << 24)
300 #define COMMAND_ORB_DIRECTION		((1) << 27)
301 #define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
302 #define COMMAND_ORB_NOTIFY		((1) << 31)
303 
304 struct sbp2_command_orb {
305 	struct sbp2_orb base;
306 	struct {
307 		struct sbp2_pointer next;
308 		struct sbp2_pointer data_descriptor;
309 		__be32 misc;
310 		u8 command_block[SBP2_MAX_CDB_SIZE];
311 	} request;
312 	struct scsi_cmnd *cmd;
313 	struct sbp2_logical_unit *lu;
314 
315 	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316 	dma_addr_t page_table_bus;
317 };
318 
319 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
320 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
321 
322 /*
323  * List of devices with known bugs.
324  *
325  * The firmware_revision field, masked with 0xffff00, is the best
326  * indicator for the type of bridge chip of a device.  It yields a few
327  * false positives but this did not break correctly behaving devices
328  * so far.
329  */
330 static const struct {
331 	u32 firmware_revision;
332 	u32 model;
333 	unsigned int workarounds;
334 } sbp2_workarounds_table[] = {
335 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336 		.firmware_revision	= 0x002800,
337 		.model			= 0x001010,
338 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
339 					  SBP2_WORKAROUND_MODE_SENSE_8 |
340 					  SBP2_WORKAROUND_POWER_CONDITION,
341 	},
342 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343 		.firmware_revision	= 0x002800,
344 		.model			= 0x000000,
345 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
346 	},
347 	/* Initio bridges, actually only needed for some older ones */ {
348 		.firmware_revision	= 0x000200,
349 		.model			= SBP2_ROM_VALUE_WILDCARD,
350 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
351 	},
352 	/* PL-3507 bridge with Prolific firmware */ {
353 		.firmware_revision	= 0x012800,
354 		.model			= SBP2_ROM_VALUE_WILDCARD,
355 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
356 	},
357 	/* Symbios bridge */ {
358 		.firmware_revision	= 0xa0b800,
359 		.model			= SBP2_ROM_VALUE_WILDCARD,
360 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
361 	},
362 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363 		.firmware_revision	= 0x002600,
364 		.model			= SBP2_ROM_VALUE_WILDCARD,
365 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
366 	},
367 	/*
368 	 * iPod 2nd generation: needs 128k max transfer size workaround
369 	 * iPod 3rd generation: needs fix capacity workaround
370 	 */
371 	{
372 		.firmware_revision	= 0x0a2700,
373 		.model			= 0x000000,
374 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
375 					  SBP2_WORKAROUND_FIX_CAPACITY,
376 	},
377 	/* iPod 4th generation */ {
378 		.firmware_revision	= 0x0a2700,
379 		.model			= 0x000021,
380 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
381 	},
382 	/* iPod mini */ {
383 		.firmware_revision	= 0x0a2700,
384 		.model			= 0x000022,
385 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
386 	},
387 	/* iPod mini */ {
388 		.firmware_revision	= 0x0a2700,
389 		.model			= 0x000023,
390 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
391 	},
392 	/* iPod Photo */ {
393 		.firmware_revision	= 0x0a2700,
394 		.model			= 0x00007e,
395 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
396 	}
397 };
398 
399 static void free_orb(struct kref *kref)
400 {
401 	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
402 
403 	kfree(orb);
404 }
405 
406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407 			      int tcode, int destination, int source,
408 			      int generation, unsigned long long offset,
409 			      void *payload, size_t length, void *callback_data)
410 {
411 	struct sbp2_logical_unit *lu = callback_data;
412 	struct sbp2_orb *orb;
413 	struct sbp2_status status;
414 	unsigned long flags;
415 
416 	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417 	    length < 8 || length > sizeof(status)) {
418 		fw_send_response(card, request, RCODE_TYPE_ERROR);
419 		return;
420 	}
421 
422 	status.status  = be32_to_cpup(payload);
423 	status.orb_low = be32_to_cpup(payload + 4);
424 	memset(status.data, 0, sizeof(status.data));
425 	if (length > 8)
426 		memcpy(status.data, payload + 8, length - 8);
427 
428 	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429 		fw_notify("non-orb related status write, not handled\n");
430 		fw_send_response(card, request, RCODE_COMPLETE);
431 		return;
432 	}
433 
434 	/* Lookup the orb corresponding to this status write. */
435 	spin_lock_irqsave(&card->lock, flags);
436 	list_for_each_entry(orb, &lu->orb_list, link) {
437 		if (STATUS_GET_ORB_HIGH(status) == 0 &&
438 		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
439 			orb->rcode = RCODE_COMPLETE;
440 			list_del(&orb->link);
441 			break;
442 		}
443 	}
444 	spin_unlock_irqrestore(&card->lock, flags);
445 
446 	if (&orb->link != &lu->orb_list) {
447 		orb->callback(orb, &status);
448 		kref_put(&orb->kref, free_orb); /* orb callback reference */
449 	} else {
450 		fw_error("status write for unknown orb\n");
451 	}
452 
453 	fw_send_response(card, request, RCODE_COMPLETE);
454 }
455 
456 static void complete_transaction(struct fw_card *card, int rcode,
457 				 void *payload, size_t length, void *data)
458 {
459 	struct sbp2_orb *orb = data;
460 	unsigned long flags;
461 
462 	/*
463 	 * This is a little tricky.  We can get the status write for
464 	 * the orb before we get this callback.  The status write
465 	 * handler above will assume the orb pointer transaction was
466 	 * successful and set the rcode to RCODE_COMPLETE for the orb.
467 	 * So this callback only sets the rcode if it hasn't already
468 	 * been set and only does the cleanup if the transaction
469 	 * failed and we didn't already get a status write.
470 	 */
471 	spin_lock_irqsave(&card->lock, flags);
472 
473 	if (orb->rcode == -1)
474 		orb->rcode = rcode;
475 	if (orb->rcode != RCODE_COMPLETE) {
476 		list_del(&orb->link);
477 		spin_unlock_irqrestore(&card->lock, flags);
478 
479 		orb->callback(orb, NULL);
480 		kref_put(&orb->kref, free_orb); /* orb callback reference */
481 	} else {
482 		spin_unlock_irqrestore(&card->lock, flags);
483 	}
484 
485 	kref_put(&orb->kref, free_orb); /* transaction callback reference */
486 }
487 
488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
489 			  int node_id, int generation, u64 offset)
490 {
491 	struct fw_device *device = target_device(lu->tgt);
492 	struct sbp2_pointer orb_pointer;
493 	unsigned long flags;
494 
495 	orb_pointer.high = 0;
496 	orb_pointer.low = cpu_to_be32(orb->request_bus);
497 
498 	spin_lock_irqsave(&device->card->lock, flags);
499 	list_add_tail(&orb->link, &lu->orb_list);
500 	spin_unlock_irqrestore(&device->card->lock, flags);
501 
502 	kref_get(&orb->kref); /* transaction callback reference */
503 	kref_get(&orb->kref); /* orb callback reference */
504 
505 	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
506 			node_id, generation, device->max_speed, offset,
507 			&orb_pointer, 8, complete_transaction, orb);
508 }
509 
510 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
511 {
512 	struct fw_device *device = target_device(lu->tgt);
513 	struct sbp2_orb *orb, *next;
514 	struct list_head list;
515 	unsigned long flags;
516 	int retval = -ENOENT;
517 
518 	INIT_LIST_HEAD(&list);
519 	spin_lock_irqsave(&device->card->lock, flags);
520 	list_splice_init(&lu->orb_list, &list);
521 	spin_unlock_irqrestore(&device->card->lock, flags);
522 
523 	list_for_each_entry_safe(orb, next, &list, link) {
524 		retval = 0;
525 		if (fw_cancel_transaction(device->card, &orb->t) == 0)
526 			continue;
527 
528 		orb->rcode = RCODE_CANCELLED;
529 		orb->callback(orb, NULL);
530 		kref_put(&orb->kref, free_orb); /* orb callback reference */
531 	}
532 
533 	return retval;
534 }
535 
536 static void complete_management_orb(struct sbp2_orb *base_orb,
537 				    struct sbp2_status *status)
538 {
539 	struct sbp2_management_orb *orb =
540 		container_of(base_orb, struct sbp2_management_orb, base);
541 
542 	if (status)
543 		memcpy(&orb->status, status, sizeof(*status));
544 	complete(&orb->done);
545 }
546 
547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
548 				    int generation, int function,
549 				    int lun_or_login_id, void *response)
550 {
551 	struct fw_device *device = target_device(lu->tgt);
552 	struct sbp2_management_orb *orb;
553 	unsigned int timeout;
554 	int retval = -ENOMEM;
555 
556 	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
557 		return 0;
558 
559 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
560 	if (orb == NULL)
561 		return -ENOMEM;
562 
563 	kref_init(&orb->base.kref);
564 	orb->response_bus =
565 		dma_map_single(device->card->device, &orb->response,
566 			       sizeof(orb->response), DMA_FROM_DEVICE);
567 	if (dma_mapping_error(device->card->device, orb->response_bus))
568 		goto fail_mapping_response;
569 
570 	orb->request.response.high = 0;
571 	orb->request.response.low  = cpu_to_be32(orb->response_bus);
572 
573 	orb->request.misc = cpu_to_be32(
574 		MANAGEMENT_ORB_NOTIFY |
575 		MANAGEMENT_ORB_FUNCTION(function) |
576 		MANAGEMENT_ORB_LUN(lun_or_login_id));
577 	orb->request.length = cpu_to_be32(
578 		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
579 
580 	orb->request.status_fifo.high =
581 		cpu_to_be32(lu->address_handler.offset >> 32);
582 	orb->request.status_fifo.low  =
583 		cpu_to_be32(lu->address_handler.offset);
584 
585 	if (function == SBP2_LOGIN_REQUEST) {
586 		/* Ask for 2^2 == 4 seconds reconnect grace period */
587 		orb->request.misc |= cpu_to_be32(
588 			MANAGEMENT_ORB_RECONNECT(2) |
589 			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
590 		timeout = lu->tgt->mgt_orb_timeout;
591 	} else {
592 		timeout = SBP2_ORB_TIMEOUT;
593 	}
594 
595 	init_completion(&orb->done);
596 	orb->base.callback = complete_management_orb;
597 
598 	orb->base.request_bus =
599 		dma_map_single(device->card->device, &orb->request,
600 			       sizeof(orb->request), DMA_TO_DEVICE);
601 	if (dma_mapping_error(device->card->device, orb->base.request_bus))
602 		goto fail_mapping_request;
603 
604 	sbp2_send_orb(&orb->base, lu, node_id, generation,
605 		      lu->tgt->management_agent_address);
606 
607 	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
608 
609 	retval = -EIO;
610 	if (sbp2_cancel_orbs(lu) == 0) {
611 		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
612 			 lu->tgt->bus_id, orb->base.rcode);
613 		goto out;
614 	}
615 
616 	if (orb->base.rcode != RCODE_COMPLETE) {
617 		fw_error("%s: management write failed, rcode 0x%02x\n",
618 			 lu->tgt->bus_id, orb->base.rcode);
619 		goto out;
620 	}
621 
622 	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
623 	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
624 		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
625 			 STATUS_GET_RESPONSE(orb->status),
626 			 STATUS_GET_SBP_STATUS(orb->status));
627 		goto out;
628 	}
629 
630 	retval = 0;
631  out:
632 	dma_unmap_single(device->card->device, orb->base.request_bus,
633 			 sizeof(orb->request), DMA_TO_DEVICE);
634  fail_mapping_request:
635 	dma_unmap_single(device->card->device, orb->response_bus,
636 			 sizeof(orb->response), DMA_FROM_DEVICE);
637  fail_mapping_response:
638 	if (response)
639 		memcpy(response, orb->response, sizeof(orb->response));
640 	kref_put(&orb->base.kref, free_orb);
641 
642 	return retval;
643 }
644 
645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
646 {
647 	struct fw_device *device = target_device(lu->tgt);
648 	__be32 d = 0;
649 
650 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
651 			   lu->tgt->node_id, lu->generation, device->max_speed,
652 			   lu->command_block_agent_address + SBP2_AGENT_RESET,
653 			   &d, 4);
654 }
655 
656 static void complete_agent_reset_write_no_wait(struct fw_card *card,
657 		int rcode, void *payload, size_t length, void *data)
658 {
659 	kfree(data);
660 }
661 
662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
663 {
664 	struct fw_device *device = target_device(lu->tgt);
665 	struct fw_transaction *t;
666 	static __be32 d;
667 
668 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
669 	if (t == NULL)
670 		return;
671 
672 	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
673 			lu->tgt->node_id, lu->generation, device->max_speed,
674 			lu->command_block_agent_address + SBP2_AGENT_RESET,
675 			&d, 4, complete_agent_reset_write_no_wait, t);
676 }
677 
678 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
679 {
680 	/*
681 	 * We may access dont_block without taking card->lock here:
682 	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
683 	 * are currently serialized against each other.
684 	 * And a wrong result in sbp2_conditionally_block()'s access of
685 	 * dont_block is rather harmless, it simply misses its first chance.
686 	 */
687 	--lu->tgt->dont_block;
688 }
689 
690 /*
691  * Blocks lu->tgt if all of the following conditions are met:
692  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
693  *     logical units have been finished (indicated by dont_block == 0).
694  *   - lu->generation is stale.
695  *
696  * Note, scsi_block_requests() must be called while holding card->lock,
697  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
698  * unblock the target.
699  */
700 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
701 {
702 	struct sbp2_target *tgt = lu->tgt;
703 	struct fw_card *card = target_device(tgt)->card;
704 	struct Scsi_Host *shost =
705 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
706 	unsigned long flags;
707 
708 	spin_lock_irqsave(&card->lock, flags);
709 	if (!tgt->dont_block && !lu->blocked &&
710 	    lu->generation != card->generation) {
711 		lu->blocked = true;
712 		if (++tgt->blocked == 1)
713 			scsi_block_requests(shost);
714 	}
715 	spin_unlock_irqrestore(&card->lock, flags);
716 }
717 
718 /*
719  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
720  * Note, it is harmless to run scsi_unblock_requests() outside the
721  * card->lock protected section.  On the other hand, running it inside
722  * the section might clash with shost->host_lock.
723  */
724 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
725 {
726 	struct sbp2_target *tgt = lu->tgt;
727 	struct fw_card *card = target_device(tgt)->card;
728 	struct Scsi_Host *shost =
729 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
730 	unsigned long flags;
731 	bool unblock = false;
732 
733 	spin_lock_irqsave(&card->lock, flags);
734 	if (lu->blocked && lu->generation == card->generation) {
735 		lu->blocked = false;
736 		unblock = --tgt->blocked == 0;
737 	}
738 	spin_unlock_irqrestore(&card->lock, flags);
739 
740 	if (unblock)
741 		scsi_unblock_requests(shost);
742 }
743 
744 /*
745  * Prevents future blocking of tgt and unblocks it.
746  * Note, it is harmless to run scsi_unblock_requests() outside the
747  * card->lock protected section.  On the other hand, running it inside
748  * the section might clash with shost->host_lock.
749  */
750 static void sbp2_unblock(struct sbp2_target *tgt)
751 {
752 	struct fw_card *card = target_device(tgt)->card;
753 	struct Scsi_Host *shost =
754 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
755 	unsigned long flags;
756 
757 	spin_lock_irqsave(&card->lock, flags);
758 	++tgt->dont_block;
759 	spin_unlock_irqrestore(&card->lock, flags);
760 
761 	scsi_unblock_requests(shost);
762 }
763 
764 static int sbp2_lun2int(u16 lun)
765 {
766 	struct scsi_lun eight_bytes_lun;
767 
768 	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
769 	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
770 	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
771 
772 	return scsilun_to_int(&eight_bytes_lun);
773 }
774 
775 static void sbp2_release_target(struct kref *kref)
776 {
777 	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
778 	struct sbp2_logical_unit *lu, *next;
779 	struct Scsi_Host *shost =
780 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
781 	struct scsi_device *sdev;
782 	struct fw_device *device = target_device(tgt);
783 
784 	/* prevent deadlocks */
785 	sbp2_unblock(tgt);
786 
787 	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
788 		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
789 		if (sdev) {
790 			scsi_remove_device(sdev);
791 			scsi_device_put(sdev);
792 		}
793 		if (lu->login_id != INVALID_LOGIN_ID) {
794 			int generation, node_id;
795 			/*
796 			 * tgt->node_id may be obsolete here if we failed
797 			 * during initial login or after a bus reset where
798 			 * the topology changed.
799 			 */
800 			generation = device->generation;
801 			smp_rmb(); /* node_id vs. generation */
802 			node_id    = device->node_id;
803 			sbp2_send_management_orb(lu, node_id, generation,
804 						 SBP2_LOGOUT_REQUEST,
805 						 lu->login_id, NULL);
806 		}
807 		fw_core_remove_address_handler(&lu->address_handler);
808 		list_del(&lu->link);
809 		kfree(lu);
810 	}
811 	scsi_remove_host(shost);
812 	fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
813 
814 	fw_unit_put(tgt->unit);
815 	scsi_host_put(shost);
816 	fw_device_put(device);
817 }
818 
819 static void sbp2_target_get(struct sbp2_target *tgt)
820 {
821 	kref_get(&tgt->kref);
822 }
823 
824 static void sbp2_target_put(struct sbp2_target *tgt)
825 {
826 	kref_put(&tgt->kref, sbp2_release_target);
827 }
828 
829 /*
830  * Always get the target's kref when scheduling work on one its units.
831  * Each workqueue job is responsible to call sbp2_target_put() upon return.
832  */
833 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
834 {
835 	sbp2_target_get(lu->tgt);
836 	if (!queue_delayed_work(fw_workqueue, &lu->work, delay))
837 		sbp2_target_put(lu->tgt);
838 }
839 
840 /*
841  * Write retransmit retry values into the BUSY_TIMEOUT register.
842  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
843  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
844  *   saner value after logging into the device.
845  * - The dual-phase retry protocol is optional to implement, and if not
846  *   supported, writes to the dual-phase portion of the register will be
847  *   ignored. We try to write the original 1394-1995 default here.
848  * - In the case of devices that are also SBP-3-compliant, all writes are
849  *   ignored, as the register is read-only, but contains single-phase retry of
850  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
851  *   write attempt is safe and yields more consistent behavior for all devices.
852  *
853  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
854  * and section 6.4 of the SBP-3 spec for further details.
855  */
856 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
857 {
858 	struct fw_device *device = target_device(lu->tgt);
859 	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
860 
861 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
862 			   lu->tgt->node_id, lu->generation, device->max_speed,
863 			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
864 }
865 
866 static void sbp2_reconnect(struct work_struct *work);
867 
868 static void sbp2_login(struct work_struct *work)
869 {
870 	struct sbp2_logical_unit *lu =
871 		container_of(work, struct sbp2_logical_unit, work.work);
872 	struct sbp2_target *tgt = lu->tgt;
873 	struct fw_device *device = target_device(tgt);
874 	struct Scsi_Host *shost;
875 	struct scsi_device *sdev;
876 	struct sbp2_login_response response;
877 	int generation, node_id, local_node_id;
878 
879 	if (fw_device_is_shutdown(device))
880 		goto out;
881 
882 	generation    = device->generation;
883 	smp_rmb();    /* node IDs must not be older than generation */
884 	node_id       = device->node_id;
885 	local_node_id = device->card->node_id;
886 
887 	/* If this is a re-login attempt, log out, or we might be rejected. */
888 	if (lu->has_sdev)
889 		sbp2_send_management_orb(lu, device->node_id, generation,
890 				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
891 
892 	if (sbp2_send_management_orb(lu, node_id, generation,
893 				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
894 		if (lu->retries++ < 5) {
895 			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
896 		} else {
897 			fw_error("%s: failed to login to LUN %04x\n",
898 				 tgt->bus_id, lu->lun);
899 			/* Let any waiting I/O fail from now on. */
900 			sbp2_unblock(lu->tgt);
901 		}
902 		goto out;
903 	}
904 
905 	tgt->node_id	  = node_id;
906 	tgt->address_high = local_node_id << 16;
907 	smp_wmb();	  /* node IDs must not be older than generation */
908 	lu->generation	  = generation;
909 
910 	lu->command_block_agent_address =
911 		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
912 		      << 32) | be32_to_cpu(response.command_block_agent.low);
913 	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
914 
915 	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
916 		  tgt->bus_id, lu->lun, lu->retries);
917 
918 	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
919 	sbp2_set_busy_timeout(lu);
920 
921 	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
922 	sbp2_agent_reset(lu);
923 
924 	/* This was a re-login. */
925 	if (lu->has_sdev) {
926 		sbp2_cancel_orbs(lu);
927 		sbp2_conditionally_unblock(lu);
928 		goto out;
929 	}
930 
931 	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
932 		ssleep(SBP2_INQUIRY_DELAY);
933 
934 	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
935 	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
936 	/*
937 	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
938 	 * Therefore __scsi_add_device() will get into trouble if a bus reset
939 	 * happens in parallel.  It will either fail or leave us with an
940 	 * unusable sdev.  As a workaround we check for this and retry the
941 	 * whole login and SCSI probing.
942 	 */
943 
944 	/* Reported error during __scsi_add_device() */
945 	if (IS_ERR(sdev))
946 		goto out_logout_login;
947 
948 	/* Unreported error during __scsi_add_device() */
949 	smp_rmb(); /* get current card generation */
950 	if (generation != device->card->generation) {
951 		scsi_remove_device(sdev);
952 		scsi_device_put(sdev);
953 		goto out_logout_login;
954 	}
955 
956 	/* No error during __scsi_add_device() */
957 	lu->has_sdev = true;
958 	scsi_device_put(sdev);
959 	sbp2_allow_block(lu);
960 	goto out;
961 
962  out_logout_login:
963 	smp_rmb(); /* generation may have changed */
964 	generation = device->generation;
965 	smp_rmb(); /* node_id must not be older than generation */
966 
967 	sbp2_send_management_orb(lu, device->node_id, generation,
968 				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
969 	/*
970 	 * If a bus reset happened, sbp2_update will have requeued
971 	 * lu->work already.  Reset the work from reconnect to login.
972 	 */
973 	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
974  out:
975 	sbp2_target_put(tgt);
976 }
977 
978 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
979 {
980 	struct sbp2_logical_unit *lu;
981 
982 	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
983 	if (!lu)
984 		return -ENOMEM;
985 
986 	lu->address_handler.length           = 0x100;
987 	lu->address_handler.address_callback = sbp2_status_write;
988 	lu->address_handler.callback_data    = lu;
989 
990 	if (fw_core_add_address_handler(&lu->address_handler,
991 					&fw_high_memory_region) < 0) {
992 		kfree(lu);
993 		return -ENOMEM;
994 	}
995 
996 	lu->tgt      = tgt;
997 	lu->lun      = lun_entry & 0xffff;
998 	lu->login_id = INVALID_LOGIN_ID;
999 	lu->retries  = 0;
1000 	lu->has_sdev = false;
1001 	lu->blocked  = false;
1002 	++tgt->dont_block;
1003 	INIT_LIST_HEAD(&lu->orb_list);
1004 	INIT_DELAYED_WORK(&lu->work, sbp2_login);
1005 
1006 	list_add_tail(&lu->link, &tgt->lu_list);
1007 	return 0;
1008 }
1009 
1010 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1011 				      const u32 *directory)
1012 {
1013 	struct fw_csr_iterator ci;
1014 	int key, value;
1015 
1016 	fw_csr_iterator_init(&ci, directory);
1017 	while (fw_csr_iterator_next(&ci, &key, &value))
1018 		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1019 		    sbp2_add_logical_unit(tgt, value) < 0)
1020 			return -ENOMEM;
1021 	return 0;
1022 }
1023 
1024 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1025 			      u32 *model, u32 *firmware_revision)
1026 {
1027 	struct fw_csr_iterator ci;
1028 	int key, value;
1029 
1030 	fw_csr_iterator_init(&ci, directory);
1031 	while (fw_csr_iterator_next(&ci, &key, &value)) {
1032 		switch (key) {
1033 
1034 		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1035 			tgt->management_agent_address =
1036 					CSR_REGISTER_BASE + 4 * value;
1037 			break;
1038 
1039 		case CSR_DIRECTORY_ID:
1040 			tgt->directory_id = value;
1041 			break;
1042 
1043 		case CSR_MODEL:
1044 			*model = value;
1045 			break;
1046 
1047 		case SBP2_CSR_FIRMWARE_REVISION:
1048 			*firmware_revision = value;
1049 			break;
1050 
1051 		case SBP2_CSR_UNIT_CHARACTERISTICS:
1052 			/* the timeout value is stored in 500ms units */
1053 			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1054 			break;
1055 
1056 		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1057 			if (sbp2_add_logical_unit(tgt, value) < 0)
1058 				return -ENOMEM;
1059 			break;
1060 
1061 		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1062 			/* Adjust for the increment in the iterator */
1063 			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1064 				return -ENOMEM;
1065 			break;
1066 		}
1067 	}
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1073  * provided in the config rom. Most devices do provide a value, which
1074  * we'll use for login management orbs, but with some sane limits.
1075  */
1076 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1077 {
1078 	unsigned int timeout = tgt->mgt_orb_timeout;
1079 
1080 	if (timeout > 40000)
1081 		fw_notify("%s: %ds mgt_ORB_timeout limited to 40s\n",
1082 			  tgt->bus_id, timeout / 1000);
1083 
1084 	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1085 }
1086 
1087 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1088 				  u32 firmware_revision)
1089 {
1090 	int i;
1091 	unsigned int w = sbp2_param_workarounds;
1092 
1093 	if (w)
1094 		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1095 			  "if you need the workarounds parameter for %s\n",
1096 			  tgt->bus_id);
1097 
1098 	if (w & SBP2_WORKAROUND_OVERRIDE)
1099 		goto out;
1100 
1101 	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1102 
1103 		if (sbp2_workarounds_table[i].firmware_revision !=
1104 		    (firmware_revision & 0xffffff00))
1105 			continue;
1106 
1107 		if (sbp2_workarounds_table[i].model != model &&
1108 		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1109 			continue;
1110 
1111 		w |= sbp2_workarounds_table[i].workarounds;
1112 		break;
1113 	}
1114  out:
1115 	if (w)
1116 		fw_notify("Workarounds for %s: 0x%x "
1117 			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1118 			  tgt->bus_id, w, firmware_revision, model);
1119 	tgt->workarounds = w;
1120 }
1121 
1122 static struct scsi_host_template scsi_driver_template;
1123 
1124 static int sbp2_probe(struct device *dev)
1125 {
1126 	struct fw_unit *unit = fw_unit(dev);
1127 	struct fw_device *device = fw_parent_device(unit);
1128 	struct sbp2_target *tgt;
1129 	struct sbp2_logical_unit *lu;
1130 	struct Scsi_Host *shost;
1131 	u32 model, firmware_revision;
1132 
1133 	if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1134 		BUG_ON(dma_set_max_seg_size(device->card->device,
1135 					    SBP2_MAX_SEG_SIZE));
1136 
1137 	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1138 	if (shost == NULL)
1139 		return -ENOMEM;
1140 
1141 	tgt = (struct sbp2_target *)shost->hostdata;
1142 	dev_set_drvdata(&unit->device, tgt);
1143 	tgt->unit = unit;
1144 	kref_init(&tgt->kref);
1145 	INIT_LIST_HEAD(&tgt->lu_list);
1146 	tgt->bus_id = dev_name(&unit->device);
1147 	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1148 
1149 	if (fw_device_enable_phys_dma(device) < 0)
1150 		goto fail_shost_put;
1151 
1152 	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1153 
1154 	if (scsi_add_host(shost, &unit->device) < 0)
1155 		goto fail_shost_put;
1156 
1157 	fw_device_get(device);
1158 	fw_unit_get(unit);
1159 
1160 	/* implicit directory ID */
1161 	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1162 			     + CSR_CONFIG_ROM) & 0xffffff;
1163 
1164 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1165 	model		  = SBP2_ROM_VALUE_MISSING;
1166 
1167 	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1168 			       &firmware_revision) < 0)
1169 		goto fail_tgt_put;
1170 
1171 	sbp2_clamp_management_orb_timeout(tgt);
1172 	sbp2_init_workarounds(tgt, model, firmware_revision);
1173 
1174 	/*
1175 	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1176 	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1177 	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1178 	 * if we set this to max_speed + 7, we get the right value.
1179 	 */
1180 	tgt->max_payload = min(device->max_speed + 7, 10U);
1181 	tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1182 
1183 	/* Do the login in a workqueue so we can easily reschedule retries. */
1184 	list_for_each_entry(lu, &tgt->lu_list, link)
1185 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1186 	return 0;
1187 
1188  fail_tgt_put:
1189 	sbp2_target_put(tgt);
1190 	return -ENOMEM;
1191 
1192  fail_shost_put:
1193 	scsi_host_put(shost);
1194 	return -ENOMEM;
1195 }
1196 
1197 static int sbp2_remove(struct device *dev)
1198 {
1199 	struct fw_unit *unit = fw_unit(dev);
1200 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1201 
1202 	sbp2_target_put(tgt);
1203 	return 0;
1204 }
1205 
1206 static void sbp2_reconnect(struct work_struct *work)
1207 {
1208 	struct sbp2_logical_unit *lu =
1209 		container_of(work, struct sbp2_logical_unit, work.work);
1210 	struct sbp2_target *tgt = lu->tgt;
1211 	struct fw_device *device = target_device(tgt);
1212 	int generation, node_id, local_node_id;
1213 
1214 	if (fw_device_is_shutdown(device))
1215 		goto out;
1216 
1217 	generation    = device->generation;
1218 	smp_rmb();    /* node IDs must not be older than generation */
1219 	node_id       = device->node_id;
1220 	local_node_id = device->card->node_id;
1221 
1222 	if (sbp2_send_management_orb(lu, node_id, generation,
1223 				     SBP2_RECONNECT_REQUEST,
1224 				     lu->login_id, NULL) < 0) {
1225 		/*
1226 		 * If reconnect was impossible even though we are in the
1227 		 * current generation, fall back and try to log in again.
1228 		 *
1229 		 * We could check for "Function rejected" status, but
1230 		 * looking at the bus generation as simpler and more general.
1231 		 */
1232 		smp_rmb(); /* get current card generation */
1233 		if (generation == device->card->generation ||
1234 		    lu->retries++ >= 5) {
1235 			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1236 			lu->retries = 0;
1237 			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1238 		}
1239 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1240 		goto out;
1241 	}
1242 
1243 	tgt->node_id      = node_id;
1244 	tgt->address_high = local_node_id << 16;
1245 	smp_wmb();	  /* node IDs must not be older than generation */
1246 	lu->generation	  = generation;
1247 
1248 	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1249 		  tgt->bus_id, lu->lun, lu->retries);
1250 
1251 	sbp2_agent_reset(lu);
1252 	sbp2_cancel_orbs(lu);
1253 	sbp2_conditionally_unblock(lu);
1254  out:
1255 	sbp2_target_put(tgt);
1256 }
1257 
1258 static void sbp2_update(struct fw_unit *unit)
1259 {
1260 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1261 	struct sbp2_logical_unit *lu;
1262 
1263 	fw_device_enable_phys_dma(fw_parent_device(unit));
1264 
1265 	/*
1266 	 * Fw-core serializes sbp2_update() against sbp2_remove().
1267 	 * Iteration over tgt->lu_list is therefore safe here.
1268 	 */
1269 	list_for_each_entry(lu, &tgt->lu_list, link) {
1270 		sbp2_conditionally_block(lu);
1271 		lu->retries = 0;
1272 		sbp2_queue_work(lu, 0);
1273 	}
1274 }
1275 
1276 #define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1277 #define SBP2_SW_VERSION_ENTRY	0x00010483
1278 
1279 static const struct ieee1394_device_id sbp2_id_table[] = {
1280 	{
1281 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1282 				IEEE1394_MATCH_VERSION,
1283 		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1284 		.version      = SBP2_SW_VERSION_ENTRY,
1285 	},
1286 	{ }
1287 };
1288 
1289 static struct fw_driver sbp2_driver = {
1290 	.driver   = {
1291 		.owner  = THIS_MODULE,
1292 		.name   = sbp2_driver_name,
1293 		.bus    = &fw_bus_type,
1294 		.probe  = sbp2_probe,
1295 		.remove = sbp2_remove,
1296 	},
1297 	.update   = sbp2_update,
1298 	.id_table = sbp2_id_table,
1299 };
1300 
1301 static void sbp2_unmap_scatterlist(struct device *card_device,
1302 				   struct sbp2_command_orb *orb)
1303 {
1304 	if (scsi_sg_count(orb->cmd))
1305 		dma_unmap_sg(card_device, scsi_sglist(orb->cmd),
1306 			     scsi_sg_count(orb->cmd),
1307 			     orb->cmd->sc_data_direction);
1308 
1309 	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1310 		dma_unmap_single(card_device, orb->page_table_bus,
1311 				 sizeof(orb->page_table), DMA_TO_DEVICE);
1312 }
1313 
1314 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1315 {
1316 	int sam_status;
1317 
1318 	sense_data[0] = 0x70;
1319 	sense_data[1] = 0x0;
1320 	sense_data[2] = sbp2_status[1];
1321 	sense_data[3] = sbp2_status[4];
1322 	sense_data[4] = sbp2_status[5];
1323 	sense_data[5] = sbp2_status[6];
1324 	sense_data[6] = sbp2_status[7];
1325 	sense_data[7] = 10;
1326 	sense_data[8] = sbp2_status[8];
1327 	sense_data[9] = sbp2_status[9];
1328 	sense_data[10] = sbp2_status[10];
1329 	sense_data[11] = sbp2_status[11];
1330 	sense_data[12] = sbp2_status[2];
1331 	sense_data[13] = sbp2_status[3];
1332 	sense_data[14] = sbp2_status[12];
1333 	sense_data[15] = sbp2_status[13];
1334 
1335 	sam_status = sbp2_status[0] & 0x3f;
1336 
1337 	switch (sam_status) {
1338 	case SAM_STAT_GOOD:
1339 	case SAM_STAT_CHECK_CONDITION:
1340 	case SAM_STAT_CONDITION_MET:
1341 	case SAM_STAT_BUSY:
1342 	case SAM_STAT_RESERVATION_CONFLICT:
1343 	case SAM_STAT_COMMAND_TERMINATED:
1344 		return DID_OK << 16 | sam_status;
1345 
1346 	default:
1347 		return DID_ERROR << 16;
1348 	}
1349 }
1350 
1351 static void complete_command_orb(struct sbp2_orb *base_orb,
1352 				 struct sbp2_status *status)
1353 {
1354 	struct sbp2_command_orb *orb =
1355 		container_of(base_orb, struct sbp2_command_orb, base);
1356 	struct fw_device *device = target_device(orb->lu->tgt);
1357 	int result;
1358 
1359 	if (status != NULL) {
1360 		if (STATUS_GET_DEAD(*status))
1361 			sbp2_agent_reset_no_wait(orb->lu);
1362 
1363 		switch (STATUS_GET_RESPONSE(*status)) {
1364 		case SBP2_STATUS_REQUEST_COMPLETE:
1365 			result = DID_OK << 16;
1366 			break;
1367 		case SBP2_STATUS_TRANSPORT_FAILURE:
1368 			result = DID_BUS_BUSY << 16;
1369 			break;
1370 		case SBP2_STATUS_ILLEGAL_REQUEST:
1371 		case SBP2_STATUS_VENDOR_DEPENDENT:
1372 		default:
1373 			result = DID_ERROR << 16;
1374 			break;
1375 		}
1376 
1377 		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1378 			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1379 							   orb->cmd->sense_buffer);
1380 	} else {
1381 		/*
1382 		 * If the orb completes with status == NULL, something
1383 		 * went wrong, typically a bus reset happened mid-orb
1384 		 * or when sending the write (less likely).
1385 		 */
1386 		result = DID_BUS_BUSY << 16;
1387 		sbp2_conditionally_block(orb->lu);
1388 	}
1389 
1390 	dma_unmap_single(device->card->device, orb->base.request_bus,
1391 			 sizeof(orb->request), DMA_TO_DEVICE);
1392 	sbp2_unmap_scatterlist(device->card->device, orb);
1393 
1394 	orb->cmd->result = result;
1395 	orb->cmd->scsi_done(orb->cmd);
1396 }
1397 
1398 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1399 		struct fw_device *device, struct sbp2_logical_unit *lu)
1400 {
1401 	struct scatterlist *sg = scsi_sglist(orb->cmd);
1402 	int i, n;
1403 
1404 	n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1405 		       orb->cmd->sc_data_direction);
1406 	if (n == 0)
1407 		goto fail;
1408 
1409 	/*
1410 	 * Handle the special case where there is only one element in
1411 	 * the scatter list by converting it to an immediate block
1412 	 * request. This is also a workaround for broken devices such
1413 	 * as the second generation iPod which doesn't support page
1414 	 * tables.
1415 	 */
1416 	if (n == 1) {
1417 		orb->request.data_descriptor.high =
1418 			cpu_to_be32(lu->tgt->address_high);
1419 		orb->request.data_descriptor.low  =
1420 			cpu_to_be32(sg_dma_address(sg));
1421 		orb->request.misc |=
1422 			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1423 		return 0;
1424 	}
1425 
1426 	for_each_sg(sg, sg, n, i) {
1427 		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1428 		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1429 	}
1430 
1431 	orb->page_table_bus =
1432 		dma_map_single(device->card->device, orb->page_table,
1433 			       sizeof(orb->page_table), DMA_TO_DEVICE);
1434 	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1435 		goto fail_page_table;
1436 
1437 	/*
1438 	 * The data_descriptor pointer is the one case where we need
1439 	 * to fill in the node ID part of the address.  All other
1440 	 * pointers assume that the data referenced reside on the
1441 	 * initiator (i.e. us), but data_descriptor can refer to data
1442 	 * on other nodes so we need to put our ID in descriptor.high.
1443 	 */
1444 	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1445 	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1446 	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1447 					 COMMAND_ORB_DATA_SIZE(n));
1448 
1449 	return 0;
1450 
1451  fail_page_table:
1452 	dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1453 		     scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1454  fail:
1455 	return -ENOMEM;
1456 }
1457 
1458 /* SCSI stack integration */
1459 
1460 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1461 				  struct scsi_cmnd *cmd)
1462 {
1463 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1464 	struct fw_device *device = target_device(lu->tgt);
1465 	struct sbp2_command_orb *orb;
1466 	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1467 
1468 	/*
1469 	 * Bidirectional commands are not yet implemented, and unknown
1470 	 * transfer direction not handled.
1471 	 */
1472 	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1473 		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1474 		cmd->result = DID_ERROR << 16;
1475 		cmd->scsi_done(cmd);
1476 		return 0;
1477 	}
1478 
1479 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1480 	if (orb == NULL) {
1481 		fw_notify("failed to alloc orb\n");
1482 		return SCSI_MLQUEUE_HOST_BUSY;
1483 	}
1484 
1485 	/* Initialize rcode to something not RCODE_COMPLETE. */
1486 	orb->base.rcode = -1;
1487 	kref_init(&orb->base.kref);
1488 	orb->lu = lu;
1489 	orb->cmd = cmd;
1490 	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1491 	orb->request.misc = cpu_to_be32(
1492 		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1493 		COMMAND_ORB_SPEED(device->max_speed) |
1494 		COMMAND_ORB_NOTIFY);
1495 
1496 	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1497 		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1498 
1499 	generation = device->generation;
1500 	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1501 
1502 	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1503 		goto out;
1504 
1505 	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1506 
1507 	orb->base.callback = complete_command_orb;
1508 	orb->base.request_bus =
1509 		dma_map_single(device->card->device, &orb->request,
1510 			       sizeof(orb->request), DMA_TO_DEVICE);
1511 	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1512 		sbp2_unmap_scatterlist(device->card->device, orb);
1513 		goto out;
1514 	}
1515 
1516 	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1517 		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1518 	retval = 0;
1519  out:
1520 	kref_put(&orb->base.kref, free_orb);
1521 	return retval;
1522 }
1523 
1524 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1525 {
1526 	struct sbp2_logical_unit *lu = sdev->hostdata;
1527 
1528 	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1529 	if (!lu)
1530 		return -ENOSYS;
1531 
1532 	sdev->allow_restart = 1;
1533 
1534 	/* SBP-2 requires quadlet alignment of the data buffers. */
1535 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1536 
1537 	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1538 		sdev->inquiry_len = 36;
1539 
1540 	return 0;
1541 }
1542 
1543 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1544 {
1545 	struct sbp2_logical_unit *lu = sdev->hostdata;
1546 
1547 	sdev->use_10_for_rw = 1;
1548 
1549 	if (sbp2_param_exclusive_login)
1550 		sdev->manage_start_stop = 1;
1551 
1552 	if (sdev->type == TYPE_ROM)
1553 		sdev->use_10_for_ms = 1;
1554 
1555 	if (sdev->type == TYPE_DISK &&
1556 	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1557 		sdev->skip_ms_page_8 = 1;
1558 
1559 	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1560 		sdev->fix_capacity = 1;
1561 
1562 	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1563 		sdev->start_stop_pwr_cond = 1;
1564 
1565 	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1566 		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1567 
1568 	blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1569 
1570 	return 0;
1571 }
1572 
1573 /*
1574  * Called by scsi stack when something has really gone wrong.  Usually
1575  * called when a command has timed-out for some reason.
1576  */
1577 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1578 {
1579 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1580 
1581 	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1582 	sbp2_agent_reset(lu);
1583 	sbp2_cancel_orbs(lu);
1584 
1585 	return SUCCESS;
1586 }
1587 
1588 /*
1589  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1590  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1591  *
1592  * This is the concatenation of target port identifier and logical unit
1593  * identifier as per SAM-2...SAM-4 annex A.
1594  */
1595 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1596 			struct device_attribute *attr, char *buf)
1597 {
1598 	struct scsi_device *sdev = to_scsi_device(dev);
1599 	struct sbp2_logical_unit *lu;
1600 
1601 	if (!sdev)
1602 		return 0;
1603 
1604 	lu = sdev->hostdata;
1605 
1606 	return sprintf(buf, "%016llx:%06x:%04x\n",
1607 			(unsigned long long)lu->tgt->guid,
1608 			lu->tgt->directory_id, lu->lun);
1609 }
1610 
1611 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1612 
1613 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1614 	&dev_attr_ieee1394_id,
1615 	NULL
1616 };
1617 
1618 static struct scsi_host_template scsi_driver_template = {
1619 	.module			= THIS_MODULE,
1620 	.name			= "SBP-2 IEEE-1394",
1621 	.proc_name		= sbp2_driver_name,
1622 	.queuecommand		= sbp2_scsi_queuecommand,
1623 	.slave_alloc		= sbp2_scsi_slave_alloc,
1624 	.slave_configure	= sbp2_scsi_slave_configure,
1625 	.eh_abort_handler	= sbp2_scsi_abort,
1626 	.this_id		= -1,
1627 	.sg_tablesize		= SG_ALL,
1628 	.use_clustering		= ENABLE_CLUSTERING,
1629 	.cmd_per_lun		= 1,
1630 	.can_queue		= 1,
1631 	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1632 };
1633 
1634 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1635 MODULE_DESCRIPTION("SCSI over IEEE1394");
1636 MODULE_LICENSE("GPL");
1637 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1638 
1639 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1640 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1641 MODULE_ALIAS("sbp2");
1642 #endif
1643 
1644 static int __init sbp2_init(void)
1645 {
1646 	return driver_register(&sbp2_driver.driver);
1647 }
1648 
1649 static void __exit sbp2_cleanup(void)
1650 {
1651 	driver_unregister(&sbp2_driver.driver);
1652 }
1653 
1654 module_init(sbp2_init);
1655 module_exit(sbp2_cleanup);
1656