1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * SBP2 driver (SCSI over IEEE1394) 4 * 5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 6 */ 7 8 /* 9 * The basic structure of this driver is based on the old storage driver, 10 * drivers/ieee1394/sbp2.c, originally written by 11 * James Goodwin <jamesg@filanet.com> 12 * with later contributions and ongoing maintenance from 13 * Ben Collins <bcollins@debian.org>, 14 * Stefan Richter <stefanr@s5r6.in-berlin.de> 15 * and many others. 16 */ 17 18 #include <linux/blkdev.h> 19 #include <linux/bug.h> 20 #include <linux/completion.h> 21 #include <linux/delay.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/firewire.h> 25 #include <linux/firewire-constants.h> 26 #include <linux/init.h> 27 #include <linux/jiffies.h> 28 #include <linux/kernel.h> 29 #include <linux/kref.h> 30 #include <linux/list.h> 31 #include <linux/mod_devicetable.h> 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/scatterlist.h> 35 #include <linux/slab.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/stringify.h> 39 #include <linux/workqueue.h> 40 41 #include <asm/byteorder.h> 42 43 #include <scsi/scsi.h> 44 #include <scsi/scsi_cmnd.h> 45 #include <scsi/scsi_device.h> 46 #include <scsi/scsi_host.h> 47 48 /* 49 * So far only bridges from Oxford Semiconductor are known to support 50 * concurrent logins. Depending on firmware, four or two concurrent logins 51 * are possible on OXFW911 and newer Oxsemi bridges. 52 * 53 * Concurrent logins are useful together with cluster filesystems. 54 */ 55 static bool sbp2_param_exclusive_login = 1; 56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 58 "(default = Y, use N for concurrent initiators)"); 59 60 /* 61 * Flags for firmware oddities 62 * 63 * - 128kB max transfer 64 * Limit transfer size. Necessary for some old bridges. 65 * 66 * - 36 byte inquiry 67 * When scsi_mod probes the device, let the inquiry command look like that 68 * from MS Windows. 69 * 70 * - skip mode page 8 71 * Suppress sending of mode_sense for mode page 8 if the device pretends to 72 * support the SCSI Primary Block commands instead of Reduced Block Commands. 73 * 74 * - fix capacity 75 * Tell sd_mod to correct the last sector number reported by read_capacity. 76 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 77 * Don't use this with devices which don't have this bug. 78 * 79 * - delay inquiry 80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 81 * 82 * - power condition 83 * Set the power condition field in the START STOP UNIT commands sent by 84 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 85 * Some disks need this to spin down or to resume properly. 86 * 87 * - override internal blacklist 88 * Instead of adding to the built-in blacklist, use only the workarounds 89 * specified in the module load parameter. 90 * Useful if a blacklist entry interfered with a non-broken device. 91 */ 92 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 93 #define SBP2_WORKAROUND_INQUIRY_36 0x2 94 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 95 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 96 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 97 #define SBP2_INQUIRY_DELAY 12 98 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 99 #define SBP2_WORKAROUND_OVERRIDE 0x100 100 101 static int sbp2_param_workarounds; 102 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 103 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 104 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 105 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 106 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 107 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 108 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 109 ", set power condition in start stop unit = " 110 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 111 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 112 ", or a combination)"); 113 114 /* 115 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 116 * and one struct scsi_device per sbp2_logical_unit. 117 */ 118 struct sbp2_logical_unit { 119 struct sbp2_target *tgt; 120 struct list_head link; 121 struct fw_address_handler address_handler; 122 struct list_head orb_list; 123 124 u64 command_block_agent_address; 125 u16 lun; 126 int login_id; 127 128 /* 129 * The generation is updated once we've logged in or reconnected 130 * to the logical unit. Thus, I/O to the device will automatically 131 * fail and get retried if it happens in a window where the device 132 * is not ready, e.g. after a bus reset but before we reconnect. 133 */ 134 int generation; 135 int retries; 136 work_func_t workfn; 137 struct delayed_work work; 138 bool has_sdev; 139 bool blocked; 140 }; 141 142 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 143 { 144 queue_delayed_work(fw_workqueue, &lu->work, delay); 145 } 146 147 /* 148 * We create one struct sbp2_target per IEEE 1212 Unit Directory 149 * and one struct Scsi_Host per sbp2_target. 150 */ 151 struct sbp2_target { 152 struct fw_unit *unit; 153 struct list_head lu_list; 154 155 u64 management_agent_address; 156 u64 guid; 157 int directory_id; 158 int node_id; 159 int address_high; 160 unsigned int workarounds; 161 unsigned int mgt_orb_timeout; 162 unsigned int max_payload; 163 164 spinlock_t lock; 165 int dont_block; /* counter for each logical unit */ 166 int blocked; /* ditto */ 167 }; 168 169 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 170 { 171 return fw_parent_device(tgt->unit); 172 } 173 174 static const struct device *tgt_dev(const struct sbp2_target *tgt) 175 { 176 return &tgt->unit->device; 177 } 178 179 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 180 { 181 return &lu->tgt->unit->device; 182 } 183 184 /* Impossible login_id, to detect logout attempt before successful login */ 185 #define INVALID_LOGIN_ID 0x10000 186 187 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 188 #define SBP2_ORB_NULL 0x80000000 189 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 190 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 191 192 /* 193 * There is no transport protocol limit to the CDB length, but we implement 194 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 195 */ 196 #define SBP2_MAX_CDB_SIZE 16 197 198 /* 199 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 200 * for compatibility with earlier versions of this driver. 201 */ 202 #define SBP2_MAX_SEG_SIZE 0xfffc 203 204 /* Unit directory keys */ 205 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 206 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 207 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 208 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 209 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 210 211 /* Management orb opcodes */ 212 #define SBP2_LOGIN_REQUEST 0x0 213 #define SBP2_QUERY_LOGINS_REQUEST 0x1 214 #define SBP2_RECONNECT_REQUEST 0x3 215 #define SBP2_SET_PASSWORD_REQUEST 0x4 216 #define SBP2_LOGOUT_REQUEST 0x7 217 #define SBP2_ABORT_TASK_REQUEST 0xb 218 #define SBP2_ABORT_TASK_SET 0xc 219 #define SBP2_LOGICAL_UNIT_RESET 0xe 220 #define SBP2_TARGET_RESET_REQUEST 0xf 221 222 /* Offsets for command block agent registers */ 223 #define SBP2_AGENT_STATE 0x00 224 #define SBP2_AGENT_RESET 0x04 225 #define SBP2_ORB_POINTER 0x08 226 #define SBP2_DOORBELL 0x10 227 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 228 229 /* Status write response codes */ 230 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 231 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 232 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 233 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 234 235 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 236 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 237 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 238 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 239 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 240 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 241 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 242 #define STATUS_GET_DATA(v) ((v).data) 243 244 struct sbp2_status { 245 u32 status; 246 u32 orb_low; 247 u8 data[24]; 248 }; 249 250 struct sbp2_pointer { 251 __be32 high; 252 __be32 low; 253 }; 254 255 struct sbp2_orb { 256 struct fw_transaction t; 257 struct kref kref; 258 dma_addr_t request_bus; 259 int rcode; 260 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 261 struct sbp2_logical_unit *lu; 262 struct list_head link; 263 }; 264 265 #define MANAGEMENT_ORB_LUN(v) ((v)) 266 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 267 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 268 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 269 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 270 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 271 272 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 273 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 274 275 struct sbp2_management_orb { 276 struct sbp2_orb base; 277 struct { 278 struct sbp2_pointer password; 279 struct sbp2_pointer response; 280 __be32 misc; 281 __be32 length; 282 struct sbp2_pointer status_fifo; 283 } request; 284 __be32 response[4]; 285 dma_addr_t response_bus; 286 struct completion done; 287 struct sbp2_status status; 288 }; 289 290 struct sbp2_login_response { 291 __be32 misc; 292 struct sbp2_pointer command_block_agent; 293 __be32 reconnect_hold; 294 }; 295 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 296 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 297 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 298 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 299 #define COMMAND_ORB_SPEED(v) ((v) << 24) 300 #define COMMAND_ORB_DIRECTION ((1) << 27) 301 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 302 #define COMMAND_ORB_NOTIFY ((1) << 31) 303 304 struct sbp2_command_orb { 305 struct sbp2_orb base; 306 struct { 307 struct sbp2_pointer next; 308 struct sbp2_pointer data_descriptor; 309 __be32 misc; 310 u8 command_block[SBP2_MAX_CDB_SIZE]; 311 } request; 312 struct scsi_cmnd *cmd; 313 314 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 315 dma_addr_t page_table_bus; 316 }; 317 318 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 319 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 320 321 /* 322 * List of devices with known bugs. 323 * 324 * The firmware_revision field, masked with 0xffff00, is the best 325 * indicator for the type of bridge chip of a device. It yields a few 326 * false positives but this did not break correctly behaving devices 327 * so far. 328 */ 329 static const struct { 330 u32 firmware_revision; 331 u32 model; 332 unsigned int workarounds; 333 } sbp2_workarounds_table[] = { 334 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 335 .firmware_revision = 0x002800, 336 .model = 0x001010, 337 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 338 SBP2_WORKAROUND_MODE_SENSE_8 | 339 SBP2_WORKAROUND_POWER_CONDITION, 340 }, 341 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 342 .firmware_revision = 0x002800, 343 .model = 0x000000, 344 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 345 }, 346 /* Initio bridges, actually only needed for some older ones */ { 347 .firmware_revision = 0x000200, 348 .model = SBP2_ROM_VALUE_WILDCARD, 349 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 350 }, 351 /* PL-3507 bridge with Prolific firmware */ { 352 .firmware_revision = 0x012800, 353 .model = SBP2_ROM_VALUE_WILDCARD, 354 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 355 }, 356 /* Symbios bridge */ { 357 .firmware_revision = 0xa0b800, 358 .model = SBP2_ROM_VALUE_WILDCARD, 359 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 360 }, 361 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 362 .firmware_revision = 0x002600, 363 .model = SBP2_ROM_VALUE_WILDCARD, 364 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 365 }, 366 /* 367 * iPod 2nd generation: needs 128k max transfer size workaround 368 * iPod 3rd generation: needs fix capacity workaround 369 */ 370 { 371 .firmware_revision = 0x0a2700, 372 .model = 0x000000, 373 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 374 SBP2_WORKAROUND_FIX_CAPACITY, 375 }, 376 /* iPod 4th generation */ { 377 .firmware_revision = 0x0a2700, 378 .model = 0x000021, 379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 380 }, 381 /* iPod mini */ { 382 .firmware_revision = 0x0a2700, 383 .model = 0x000022, 384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 385 }, 386 /* iPod mini */ { 387 .firmware_revision = 0x0a2700, 388 .model = 0x000023, 389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 390 }, 391 /* iPod Photo */ { 392 .firmware_revision = 0x0a2700, 393 .model = 0x00007e, 394 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 395 } 396 }; 397 398 static void free_orb(struct kref *kref) 399 { 400 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 401 402 kfree(orb); 403 } 404 405 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 406 int tcode, int destination, int source, 407 int generation, unsigned long long offset, 408 void *payload, size_t length, void *callback_data) 409 { 410 struct sbp2_logical_unit *lu = callback_data; 411 struct sbp2_orb *orb; 412 struct sbp2_status status; 413 unsigned long flags; 414 415 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 416 length < 8 || length > sizeof(status)) { 417 fw_send_response(card, request, RCODE_TYPE_ERROR); 418 return; 419 } 420 421 status.status = be32_to_cpup(payload); 422 status.orb_low = be32_to_cpup(payload + 4); 423 memset(status.data, 0, sizeof(status.data)); 424 if (length > 8) 425 memcpy(status.data, payload + 8, length - 8); 426 427 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 428 dev_notice(lu_dev(lu), 429 "non-ORB related status write, not handled\n"); 430 fw_send_response(card, request, RCODE_COMPLETE); 431 return; 432 } 433 434 /* Lookup the orb corresponding to this status write. */ 435 spin_lock_irqsave(&lu->tgt->lock, flags); 436 list_for_each_entry(orb, &lu->orb_list, link) { 437 if (STATUS_GET_ORB_HIGH(status) == 0 && 438 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 439 orb->rcode = RCODE_COMPLETE; 440 list_del(&orb->link); 441 break; 442 } 443 } 444 spin_unlock_irqrestore(&lu->tgt->lock, flags); 445 446 if (&orb->link != &lu->orb_list) { 447 orb->callback(orb, &status); 448 kref_put(&orb->kref, free_orb); /* orb callback reference */ 449 } else { 450 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 451 } 452 453 fw_send_response(card, request, RCODE_COMPLETE); 454 } 455 456 static void complete_transaction(struct fw_card *card, int rcode, 457 void *payload, size_t length, void *data) 458 { 459 struct sbp2_orb *orb = data; 460 unsigned long flags; 461 462 /* 463 * This is a little tricky. We can get the status write for 464 * the orb before we get this callback. The status write 465 * handler above will assume the orb pointer transaction was 466 * successful and set the rcode to RCODE_COMPLETE for the orb. 467 * So this callback only sets the rcode if it hasn't already 468 * been set and only does the cleanup if the transaction 469 * failed and we didn't already get a status write. 470 */ 471 spin_lock_irqsave(&orb->lu->tgt->lock, flags); 472 473 if (orb->rcode == -1) 474 orb->rcode = rcode; 475 if (orb->rcode != RCODE_COMPLETE) { 476 list_del(&orb->link); 477 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 478 479 orb->callback(orb, NULL); 480 kref_put(&orb->kref, free_orb); /* orb callback reference */ 481 } else { 482 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags); 483 } 484 485 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 486 } 487 488 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 489 int node_id, int generation, u64 offset) 490 { 491 struct fw_device *device = target_parent_device(lu->tgt); 492 struct sbp2_pointer orb_pointer; 493 unsigned long flags; 494 495 orb_pointer.high = 0; 496 orb_pointer.low = cpu_to_be32(orb->request_bus); 497 498 orb->lu = lu; 499 spin_lock_irqsave(&lu->tgt->lock, flags); 500 list_add_tail(&orb->link, &lu->orb_list); 501 spin_unlock_irqrestore(&lu->tgt->lock, flags); 502 503 kref_get(&orb->kref); /* transaction callback reference */ 504 kref_get(&orb->kref); /* orb callback reference */ 505 506 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 507 node_id, generation, device->max_speed, offset, 508 &orb_pointer, 8, complete_transaction, orb); 509 } 510 511 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 512 { 513 struct fw_device *device = target_parent_device(lu->tgt); 514 struct sbp2_orb *orb, *next; 515 struct list_head list; 516 int retval = -ENOENT; 517 518 INIT_LIST_HEAD(&list); 519 spin_lock_irq(&lu->tgt->lock); 520 list_splice_init(&lu->orb_list, &list); 521 spin_unlock_irq(&lu->tgt->lock); 522 523 list_for_each_entry_safe(orb, next, &list, link) { 524 retval = 0; 525 if (fw_cancel_transaction(device->card, &orb->t) == 0) 526 continue; 527 528 orb->rcode = RCODE_CANCELLED; 529 orb->callback(orb, NULL); 530 kref_put(&orb->kref, free_orb); /* orb callback reference */ 531 } 532 533 return retval; 534 } 535 536 static void complete_management_orb(struct sbp2_orb *base_orb, 537 struct sbp2_status *status) 538 { 539 struct sbp2_management_orb *orb = 540 container_of(base_orb, struct sbp2_management_orb, base); 541 542 if (status) 543 memcpy(&orb->status, status, sizeof(*status)); 544 complete(&orb->done); 545 } 546 547 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 548 int generation, int function, 549 int lun_or_login_id, void *response) 550 { 551 struct fw_device *device = target_parent_device(lu->tgt); 552 struct sbp2_management_orb *orb; 553 unsigned int timeout; 554 int retval = -ENOMEM; 555 556 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 557 return 0; 558 559 orb = kzalloc(sizeof(*orb), GFP_NOIO); 560 if (orb == NULL) 561 return -ENOMEM; 562 563 kref_init(&orb->base.kref); 564 orb->response_bus = 565 dma_map_single(device->card->device, &orb->response, 566 sizeof(orb->response), DMA_FROM_DEVICE); 567 if (dma_mapping_error(device->card->device, orb->response_bus)) 568 goto fail_mapping_response; 569 570 orb->request.response.high = 0; 571 orb->request.response.low = cpu_to_be32(orb->response_bus); 572 573 orb->request.misc = cpu_to_be32( 574 MANAGEMENT_ORB_NOTIFY | 575 MANAGEMENT_ORB_FUNCTION(function) | 576 MANAGEMENT_ORB_LUN(lun_or_login_id)); 577 orb->request.length = cpu_to_be32( 578 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 579 580 orb->request.status_fifo.high = 581 cpu_to_be32(lu->address_handler.offset >> 32); 582 orb->request.status_fifo.low = 583 cpu_to_be32(lu->address_handler.offset); 584 585 if (function == SBP2_LOGIN_REQUEST) { 586 /* Ask for 2^2 == 4 seconds reconnect grace period */ 587 orb->request.misc |= cpu_to_be32( 588 MANAGEMENT_ORB_RECONNECT(2) | 589 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 590 timeout = lu->tgt->mgt_orb_timeout; 591 } else { 592 timeout = SBP2_ORB_TIMEOUT; 593 } 594 595 init_completion(&orb->done); 596 orb->base.callback = complete_management_orb; 597 598 orb->base.request_bus = 599 dma_map_single(device->card->device, &orb->request, 600 sizeof(orb->request), DMA_TO_DEVICE); 601 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 602 goto fail_mapping_request; 603 604 sbp2_send_orb(&orb->base, lu, node_id, generation, 605 lu->tgt->management_agent_address); 606 607 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 608 609 retval = -EIO; 610 if (sbp2_cancel_orbs(lu) == 0) { 611 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 612 orb->base.rcode); 613 goto out; 614 } 615 616 if (orb->base.rcode != RCODE_COMPLETE) { 617 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 618 orb->base.rcode); 619 goto out; 620 } 621 622 if (STATUS_GET_RESPONSE(orb->status) != 0 || 623 STATUS_GET_SBP_STATUS(orb->status) != 0) { 624 dev_err(lu_dev(lu), "error status: %d:%d\n", 625 STATUS_GET_RESPONSE(orb->status), 626 STATUS_GET_SBP_STATUS(orb->status)); 627 goto out; 628 } 629 630 retval = 0; 631 out: 632 dma_unmap_single(device->card->device, orb->base.request_bus, 633 sizeof(orb->request), DMA_TO_DEVICE); 634 fail_mapping_request: 635 dma_unmap_single(device->card->device, orb->response_bus, 636 sizeof(orb->response), DMA_FROM_DEVICE); 637 fail_mapping_response: 638 if (response) 639 memcpy(response, orb->response, sizeof(orb->response)); 640 kref_put(&orb->base.kref, free_orb); 641 642 return retval; 643 } 644 645 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 646 { 647 struct fw_device *device = target_parent_device(lu->tgt); 648 __be32 d = 0; 649 650 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 651 lu->tgt->node_id, lu->generation, device->max_speed, 652 lu->command_block_agent_address + SBP2_AGENT_RESET, 653 &d, 4); 654 } 655 656 static void complete_agent_reset_write_no_wait(struct fw_card *card, 657 int rcode, void *payload, size_t length, void *data) 658 { 659 kfree(data); 660 } 661 662 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 663 { 664 struct fw_device *device = target_parent_device(lu->tgt); 665 struct fw_transaction *t; 666 static __be32 d; 667 668 t = kmalloc(sizeof(*t), GFP_ATOMIC); 669 if (t == NULL) 670 return; 671 672 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 673 lu->tgt->node_id, lu->generation, device->max_speed, 674 lu->command_block_agent_address + SBP2_AGENT_RESET, 675 &d, 4, complete_agent_reset_write_no_wait, t); 676 } 677 678 static inline void sbp2_allow_block(struct sbp2_target *tgt) 679 { 680 spin_lock_irq(&tgt->lock); 681 --tgt->dont_block; 682 spin_unlock_irq(&tgt->lock); 683 } 684 685 /* 686 * Blocks lu->tgt if all of the following conditions are met: 687 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 688 * logical units have been finished (indicated by dont_block == 0). 689 * - lu->generation is stale. 690 * 691 * Note, scsi_block_requests() must be called while holding tgt->lock, 692 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 693 * unblock the target. 694 */ 695 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 696 { 697 struct sbp2_target *tgt = lu->tgt; 698 struct fw_card *card = target_parent_device(tgt)->card; 699 struct Scsi_Host *shost = 700 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 701 unsigned long flags; 702 703 spin_lock_irqsave(&tgt->lock, flags); 704 if (!tgt->dont_block && !lu->blocked && 705 lu->generation != card->generation) { 706 lu->blocked = true; 707 if (++tgt->blocked == 1) 708 scsi_block_requests(shost); 709 } 710 spin_unlock_irqrestore(&tgt->lock, flags); 711 } 712 713 /* 714 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 715 * Note, it is harmless to run scsi_unblock_requests() outside the 716 * tgt->lock protected section. On the other hand, running it inside 717 * the section might clash with shost->host_lock. 718 */ 719 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 720 { 721 struct sbp2_target *tgt = lu->tgt; 722 struct fw_card *card = target_parent_device(tgt)->card; 723 struct Scsi_Host *shost = 724 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 725 bool unblock = false; 726 727 spin_lock_irq(&tgt->lock); 728 if (lu->blocked && lu->generation == card->generation) { 729 lu->blocked = false; 730 unblock = --tgt->blocked == 0; 731 } 732 spin_unlock_irq(&tgt->lock); 733 734 if (unblock) 735 scsi_unblock_requests(shost); 736 } 737 738 /* 739 * Prevents future blocking of tgt and unblocks it. 740 * Note, it is harmless to run scsi_unblock_requests() outside the 741 * tgt->lock protected section. On the other hand, running it inside 742 * the section might clash with shost->host_lock. 743 */ 744 static void sbp2_unblock(struct sbp2_target *tgt) 745 { 746 struct Scsi_Host *shost = 747 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 748 749 spin_lock_irq(&tgt->lock); 750 ++tgt->dont_block; 751 spin_unlock_irq(&tgt->lock); 752 753 scsi_unblock_requests(shost); 754 } 755 756 static int sbp2_lun2int(u16 lun) 757 { 758 struct scsi_lun eight_bytes_lun; 759 760 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 761 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 762 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 763 764 return scsilun_to_int(&eight_bytes_lun); 765 } 766 767 /* 768 * Write retransmit retry values into the BUSY_TIMEOUT register. 769 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 770 * default retry_limit value is 0 (i.e. never retry transmission). We write a 771 * saner value after logging into the device. 772 * - The dual-phase retry protocol is optional to implement, and if not 773 * supported, writes to the dual-phase portion of the register will be 774 * ignored. We try to write the original 1394-1995 default here. 775 * - In the case of devices that are also SBP-3-compliant, all writes are 776 * ignored, as the register is read-only, but contains single-phase retry of 777 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 778 * write attempt is safe and yields more consistent behavior for all devices. 779 * 780 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 781 * and section 6.4 of the SBP-3 spec for further details. 782 */ 783 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 784 { 785 struct fw_device *device = target_parent_device(lu->tgt); 786 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 787 788 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 789 lu->tgt->node_id, lu->generation, device->max_speed, 790 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 791 } 792 793 static void sbp2_reconnect(struct work_struct *work); 794 795 static void sbp2_login(struct work_struct *work) 796 { 797 struct sbp2_logical_unit *lu = 798 container_of(work, struct sbp2_logical_unit, work.work); 799 struct sbp2_target *tgt = lu->tgt; 800 struct fw_device *device = target_parent_device(tgt); 801 struct Scsi_Host *shost; 802 struct scsi_device *sdev; 803 struct sbp2_login_response response; 804 int generation, node_id, local_node_id; 805 806 if (fw_device_is_shutdown(device)) 807 return; 808 809 generation = device->generation; 810 smp_rmb(); /* node IDs must not be older than generation */ 811 node_id = device->node_id; 812 local_node_id = device->card->node_id; 813 814 /* If this is a re-login attempt, log out, or we might be rejected. */ 815 if (lu->has_sdev) 816 sbp2_send_management_orb(lu, device->node_id, generation, 817 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 818 819 if (sbp2_send_management_orb(lu, node_id, generation, 820 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 821 if (lu->retries++ < 5) { 822 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 823 } else { 824 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 825 lu->lun); 826 /* Let any waiting I/O fail from now on. */ 827 sbp2_unblock(lu->tgt); 828 } 829 return; 830 } 831 832 tgt->node_id = node_id; 833 tgt->address_high = local_node_id << 16; 834 smp_wmb(); /* node IDs must not be older than generation */ 835 lu->generation = generation; 836 837 lu->command_block_agent_address = 838 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 839 << 32) | be32_to_cpu(response.command_block_agent.low); 840 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 841 842 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 843 lu->lun, lu->retries); 844 845 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 846 sbp2_set_busy_timeout(lu); 847 848 lu->workfn = sbp2_reconnect; 849 sbp2_agent_reset(lu); 850 851 /* This was a re-login. */ 852 if (lu->has_sdev) { 853 sbp2_cancel_orbs(lu); 854 sbp2_conditionally_unblock(lu); 855 856 return; 857 } 858 859 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 860 ssleep(SBP2_INQUIRY_DELAY); 861 862 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 863 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 864 /* 865 * FIXME: We are unable to perform reconnects while in sbp2_login(). 866 * Therefore __scsi_add_device() will get into trouble if a bus reset 867 * happens in parallel. It will either fail or leave us with an 868 * unusable sdev. As a workaround we check for this and retry the 869 * whole login and SCSI probing. 870 */ 871 872 /* Reported error during __scsi_add_device() */ 873 if (IS_ERR(sdev)) 874 goto out_logout_login; 875 876 /* Unreported error during __scsi_add_device() */ 877 smp_rmb(); /* get current card generation */ 878 if (generation != device->card->generation) { 879 scsi_remove_device(sdev); 880 scsi_device_put(sdev); 881 goto out_logout_login; 882 } 883 884 /* No error during __scsi_add_device() */ 885 lu->has_sdev = true; 886 scsi_device_put(sdev); 887 sbp2_allow_block(tgt); 888 889 return; 890 891 out_logout_login: 892 smp_rmb(); /* generation may have changed */ 893 generation = device->generation; 894 smp_rmb(); /* node_id must not be older than generation */ 895 896 sbp2_send_management_orb(lu, device->node_id, generation, 897 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 898 /* 899 * If a bus reset happened, sbp2_update will have requeued 900 * lu->work already. Reset the work from reconnect to login. 901 */ 902 lu->workfn = sbp2_login; 903 } 904 905 static void sbp2_reconnect(struct work_struct *work) 906 { 907 struct sbp2_logical_unit *lu = 908 container_of(work, struct sbp2_logical_unit, work.work); 909 struct sbp2_target *tgt = lu->tgt; 910 struct fw_device *device = target_parent_device(tgt); 911 int generation, node_id, local_node_id; 912 913 if (fw_device_is_shutdown(device)) 914 return; 915 916 generation = device->generation; 917 smp_rmb(); /* node IDs must not be older than generation */ 918 node_id = device->node_id; 919 local_node_id = device->card->node_id; 920 921 if (sbp2_send_management_orb(lu, node_id, generation, 922 SBP2_RECONNECT_REQUEST, 923 lu->login_id, NULL) < 0) { 924 /* 925 * If reconnect was impossible even though we are in the 926 * current generation, fall back and try to log in again. 927 * 928 * We could check for "Function rejected" status, but 929 * looking at the bus generation as simpler and more general. 930 */ 931 smp_rmb(); /* get current card generation */ 932 if (generation == device->card->generation || 933 lu->retries++ >= 5) { 934 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 935 lu->retries = 0; 936 lu->workfn = sbp2_login; 937 } 938 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 939 940 return; 941 } 942 943 tgt->node_id = node_id; 944 tgt->address_high = local_node_id << 16; 945 smp_wmb(); /* node IDs must not be older than generation */ 946 lu->generation = generation; 947 948 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 949 lu->lun, lu->retries); 950 951 sbp2_agent_reset(lu); 952 sbp2_cancel_orbs(lu); 953 sbp2_conditionally_unblock(lu); 954 } 955 956 static void sbp2_lu_workfn(struct work_struct *work) 957 { 958 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work), 959 struct sbp2_logical_unit, work); 960 lu->workfn(work); 961 } 962 963 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 964 { 965 struct sbp2_logical_unit *lu; 966 967 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 968 if (!lu) 969 return -ENOMEM; 970 971 lu->address_handler.length = 0x100; 972 lu->address_handler.address_callback = sbp2_status_write; 973 lu->address_handler.callback_data = lu; 974 975 if (fw_core_add_address_handler(&lu->address_handler, 976 &fw_high_memory_region) < 0) { 977 kfree(lu); 978 return -ENOMEM; 979 } 980 981 lu->tgt = tgt; 982 lu->lun = lun_entry & 0xffff; 983 lu->login_id = INVALID_LOGIN_ID; 984 lu->retries = 0; 985 lu->has_sdev = false; 986 lu->blocked = false; 987 ++tgt->dont_block; 988 INIT_LIST_HEAD(&lu->orb_list); 989 lu->workfn = sbp2_login; 990 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn); 991 992 list_add_tail(&lu->link, &tgt->lu_list); 993 return 0; 994 } 995 996 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 997 const u32 *leaf) 998 { 999 if ((leaf[0] & 0xffff0000) == 0x00020000) 1000 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1001 } 1002 1003 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1004 const u32 *directory) 1005 { 1006 struct fw_csr_iterator ci; 1007 int key, value; 1008 1009 fw_csr_iterator_init(&ci, directory); 1010 while (fw_csr_iterator_next(&ci, &key, &value)) 1011 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1012 sbp2_add_logical_unit(tgt, value) < 0) 1013 return -ENOMEM; 1014 return 0; 1015 } 1016 1017 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1018 u32 *model, u32 *firmware_revision) 1019 { 1020 struct fw_csr_iterator ci; 1021 int key, value; 1022 1023 fw_csr_iterator_init(&ci, directory); 1024 while (fw_csr_iterator_next(&ci, &key, &value)) { 1025 switch (key) { 1026 1027 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1028 tgt->management_agent_address = 1029 CSR_REGISTER_BASE + 4 * value; 1030 break; 1031 1032 case CSR_DIRECTORY_ID: 1033 tgt->directory_id = value; 1034 break; 1035 1036 case CSR_MODEL: 1037 *model = value; 1038 break; 1039 1040 case SBP2_CSR_FIRMWARE_REVISION: 1041 *firmware_revision = value; 1042 break; 1043 1044 case SBP2_CSR_UNIT_CHARACTERISTICS: 1045 /* the timeout value is stored in 500ms units */ 1046 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1047 break; 1048 1049 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1050 if (sbp2_add_logical_unit(tgt, value) < 0) 1051 return -ENOMEM; 1052 break; 1053 1054 case SBP2_CSR_UNIT_UNIQUE_ID: 1055 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1056 break; 1057 1058 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1059 /* Adjust for the increment in the iterator */ 1060 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1061 return -ENOMEM; 1062 break; 1063 } 1064 } 1065 return 0; 1066 } 1067 1068 /* 1069 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1070 * provided in the config rom. Most devices do provide a value, which 1071 * we'll use for login management orbs, but with some sane limits. 1072 */ 1073 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1074 { 1075 unsigned int timeout = tgt->mgt_orb_timeout; 1076 1077 if (timeout > 40000) 1078 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1079 timeout / 1000); 1080 1081 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1082 } 1083 1084 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1085 u32 firmware_revision) 1086 { 1087 int i; 1088 unsigned int w = sbp2_param_workarounds; 1089 1090 if (w) 1091 dev_notice(tgt_dev(tgt), 1092 "Please notify linux1394-devel@lists.sf.net " 1093 "if you need the workarounds parameter\n"); 1094 1095 if (w & SBP2_WORKAROUND_OVERRIDE) 1096 goto out; 1097 1098 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1099 1100 if (sbp2_workarounds_table[i].firmware_revision != 1101 (firmware_revision & 0xffffff00)) 1102 continue; 1103 1104 if (sbp2_workarounds_table[i].model != model && 1105 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1106 continue; 1107 1108 w |= sbp2_workarounds_table[i].workarounds; 1109 break; 1110 } 1111 out: 1112 if (w) 1113 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1114 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1115 w, firmware_revision, model); 1116 tgt->workarounds = w; 1117 } 1118 1119 static struct scsi_host_template scsi_driver_template; 1120 static void sbp2_remove(struct fw_unit *unit); 1121 1122 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) 1123 { 1124 struct fw_device *device = fw_parent_device(unit); 1125 struct sbp2_target *tgt; 1126 struct sbp2_logical_unit *lu; 1127 struct Scsi_Host *shost; 1128 u32 model, firmware_revision; 1129 1130 /* cannot (or should not) handle targets on the local node */ 1131 if (device->is_local) 1132 return -ENODEV; 1133 1134 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1135 if (shost == NULL) 1136 return -ENOMEM; 1137 1138 tgt = (struct sbp2_target *)shost->hostdata; 1139 dev_set_drvdata(&unit->device, tgt); 1140 tgt->unit = unit; 1141 INIT_LIST_HEAD(&tgt->lu_list); 1142 spin_lock_init(&tgt->lock); 1143 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1144 1145 if (fw_device_enable_phys_dma(device) < 0) 1146 goto fail_shost_put; 1147 1148 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1149 1150 if (scsi_add_host_with_dma(shost, &unit->device, 1151 device->card->device) < 0) 1152 goto fail_shost_put; 1153 1154 /* implicit directory ID */ 1155 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1156 + CSR_CONFIG_ROM) & 0xffffff; 1157 1158 firmware_revision = SBP2_ROM_VALUE_MISSING; 1159 model = SBP2_ROM_VALUE_MISSING; 1160 1161 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1162 &firmware_revision) < 0) 1163 goto fail_remove; 1164 1165 sbp2_clamp_management_orb_timeout(tgt); 1166 sbp2_init_workarounds(tgt, model, firmware_revision); 1167 1168 /* 1169 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1170 * and so on up to 4096 bytes. The SBP-2 max_payload field 1171 * specifies the max payload size as 2 ^ (max_payload + 2), so 1172 * if we set this to max_speed + 7, we get the right value. 1173 */ 1174 tgt->max_payload = min3(device->max_speed + 7, 10U, 1175 device->card->max_receive - 1); 1176 1177 /* Do the login in a workqueue so we can easily reschedule retries. */ 1178 list_for_each_entry(lu, &tgt->lu_list, link) 1179 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1180 1181 return 0; 1182 1183 fail_remove: 1184 sbp2_remove(unit); 1185 return -ENOMEM; 1186 1187 fail_shost_put: 1188 scsi_host_put(shost); 1189 return -ENOMEM; 1190 } 1191 1192 static void sbp2_update(struct fw_unit *unit) 1193 { 1194 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1195 struct sbp2_logical_unit *lu; 1196 1197 fw_device_enable_phys_dma(fw_parent_device(unit)); 1198 1199 /* 1200 * Fw-core serializes sbp2_update() against sbp2_remove(). 1201 * Iteration over tgt->lu_list is therefore safe here. 1202 */ 1203 list_for_each_entry(lu, &tgt->lu_list, link) { 1204 sbp2_conditionally_block(lu); 1205 lu->retries = 0; 1206 sbp2_queue_work(lu, 0); 1207 } 1208 } 1209 1210 static void sbp2_remove(struct fw_unit *unit) 1211 { 1212 struct fw_device *device = fw_parent_device(unit); 1213 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1214 struct sbp2_logical_unit *lu, *next; 1215 struct Scsi_Host *shost = 1216 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1217 struct scsi_device *sdev; 1218 1219 /* prevent deadlocks */ 1220 sbp2_unblock(tgt); 1221 1222 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1223 cancel_delayed_work_sync(&lu->work); 1224 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1225 if (sdev) { 1226 scsi_remove_device(sdev); 1227 scsi_device_put(sdev); 1228 } 1229 if (lu->login_id != INVALID_LOGIN_ID) { 1230 int generation, node_id; 1231 /* 1232 * tgt->node_id may be obsolete here if we failed 1233 * during initial login or after a bus reset where 1234 * the topology changed. 1235 */ 1236 generation = device->generation; 1237 smp_rmb(); /* node_id vs. generation */ 1238 node_id = device->node_id; 1239 sbp2_send_management_orb(lu, node_id, generation, 1240 SBP2_LOGOUT_REQUEST, 1241 lu->login_id, NULL); 1242 } 1243 fw_core_remove_address_handler(&lu->address_handler); 1244 list_del(&lu->link); 1245 kfree(lu); 1246 } 1247 scsi_remove_host(shost); 1248 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no); 1249 1250 scsi_host_put(shost); 1251 } 1252 1253 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1254 #define SBP2_SW_VERSION_ENTRY 0x00010483 1255 1256 static const struct ieee1394_device_id sbp2_id_table[] = { 1257 { 1258 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1259 IEEE1394_MATCH_VERSION, 1260 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1261 .version = SBP2_SW_VERSION_ENTRY, 1262 }, 1263 { } 1264 }; 1265 1266 static struct fw_driver sbp2_driver = { 1267 .driver = { 1268 .owner = THIS_MODULE, 1269 .name = KBUILD_MODNAME, 1270 .bus = &fw_bus_type, 1271 }, 1272 .probe = sbp2_probe, 1273 .update = sbp2_update, 1274 .remove = sbp2_remove, 1275 .id_table = sbp2_id_table, 1276 }; 1277 1278 static void sbp2_unmap_scatterlist(struct device *card_device, 1279 struct sbp2_command_orb *orb) 1280 { 1281 scsi_dma_unmap(orb->cmd); 1282 1283 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1284 dma_unmap_single(card_device, orb->page_table_bus, 1285 sizeof(orb->page_table), DMA_TO_DEVICE); 1286 } 1287 1288 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1289 { 1290 int sam_status; 1291 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1292 1293 if (sfmt == 2 || sfmt == 3) { 1294 /* 1295 * Reserved for future standardization (2) or 1296 * Status block format vendor-dependent (3) 1297 */ 1298 return DID_ERROR << 16; 1299 } 1300 1301 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1302 sense_data[1] = 0x0; 1303 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1304 sense_data[3] = sbp2_status[4]; 1305 sense_data[4] = sbp2_status[5]; 1306 sense_data[5] = sbp2_status[6]; 1307 sense_data[6] = sbp2_status[7]; 1308 sense_data[7] = 10; 1309 sense_data[8] = sbp2_status[8]; 1310 sense_data[9] = sbp2_status[9]; 1311 sense_data[10] = sbp2_status[10]; 1312 sense_data[11] = sbp2_status[11]; 1313 sense_data[12] = sbp2_status[2]; 1314 sense_data[13] = sbp2_status[3]; 1315 sense_data[14] = sbp2_status[12]; 1316 sense_data[15] = sbp2_status[13]; 1317 1318 sam_status = sbp2_status[0] & 0x3f; 1319 1320 switch (sam_status) { 1321 case SAM_STAT_GOOD: 1322 case SAM_STAT_CHECK_CONDITION: 1323 case SAM_STAT_CONDITION_MET: 1324 case SAM_STAT_BUSY: 1325 case SAM_STAT_RESERVATION_CONFLICT: 1326 case SAM_STAT_COMMAND_TERMINATED: 1327 return DID_OK << 16 | sam_status; 1328 1329 default: 1330 return DID_ERROR << 16; 1331 } 1332 } 1333 1334 static void complete_command_orb(struct sbp2_orb *base_orb, 1335 struct sbp2_status *status) 1336 { 1337 struct sbp2_command_orb *orb = 1338 container_of(base_orb, struct sbp2_command_orb, base); 1339 struct fw_device *device = target_parent_device(base_orb->lu->tgt); 1340 int result; 1341 1342 if (status != NULL) { 1343 if (STATUS_GET_DEAD(*status)) 1344 sbp2_agent_reset_no_wait(base_orb->lu); 1345 1346 switch (STATUS_GET_RESPONSE(*status)) { 1347 case SBP2_STATUS_REQUEST_COMPLETE: 1348 result = DID_OK << 16; 1349 break; 1350 case SBP2_STATUS_TRANSPORT_FAILURE: 1351 result = DID_BUS_BUSY << 16; 1352 break; 1353 case SBP2_STATUS_ILLEGAL_REQUEST: 1354 case SBP2_STATUS_VENDOR_DEPENDENT: 1355 default: 1356 result = DID_ERROR << 16; 1357 break; 1358 } 1359 1360 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1361 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1362 orb->cmd->sense_buffer); 1363 } else { 1364 /* 1365 * If the orb completes with status == NULL, something 1366 * went wrong, typically a bus reset happened mid-orb 1367 * or when sending the write (less likely). 1368 */ 1369 result = DID_BUS_BUSY << 16; 1370 sbp2_conditionally_block(base_orb->lu); 1371 } 1372 1373 dma_unmap_single(device->card->device, orb->base.request_bus, 1374 sizeof(orb->request), DMA_TO_DEVICE); 1375 sbp2_unmap_scatterlist(device->card->device, orb); 1376 1377 orb->cmd->result = result; 1378 scsi_done(orb->cmd); 1379 } 1380 1381 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1382 struct fw_device *device, struct sbp2_logical_unit *lu) 1383 { 1384 struct scatterlist *sg = scsi_sglist(orb->cmd); 1385 int i, n; 1386 1387 n = scsi_dma_map(orb->cmd); 1388 if (n <= 0) 1389 goto fail; 1390 1391 /* 1392 * Handle the special case where there is only one element in 1393 * the scatter list by converting it to an immediate block 1394 * request. This is also a workaround for broken devices such 1395 * as the second generation iPod which doesn't support page 1396 * tables. 1397 */ 1398 if (n == 1) { 1399 orb->request.data_descriptor.high = 1400 cpu_to_be32(lu->tgt->address_high); 1401 orb->request.data_descriptor.low = 1402 cpu_to_be32(sg_dma_address(sg)); 1403 orb->request.misc |= 1404 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1405 return 0; 1406 } 1407 1408 for_each_sg(sg, sg, n, i) { 1409 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1410 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1411 } 1412 1413 orb->page_table_bus = 1414 dma_map_single(device->card->device, orb->page_table, 1415 sizeof(orb->page_table), DMA_TO_DEVICE); 1416 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1417 goto fail_page_table; 1418 1419 /* 1420 * The data_descriptor pointer is the one case where we need 1421 * to fill in the node ID part of the address. All other 1422 * pointers assume that the data referenced reside on the 1423 * initiator (i.e. us), but data_descriptor can refer to data 1424 * on other nodes so we need to put our ID in descriptor.high. 1425 */ 1426 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1427 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1428 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1429 COMMAND_ORB_DATA_SIZE(n)); 1430 1431 return 0; 1432 1433 fail_page_table: 1434 scsi_dma_unmap(orb->cmd); 1435 fail: 1436 return -ENOMEM; 1437 } 1438 1439 /* SCSI stack integration */ 1440 1441 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1442 struct scsi_cmnd *cmd) 1443 { 1444 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1445 struct fw_device *device = target_parent_device(lu->tgt); 1446 struct sbp2_command_orb *orb; 1447 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1448 1449 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1450 if (orb == NULL) 1451 return SCSI_MLQUEUE_HOST_BUSY; 1452 1453 /* Initialize rcode to something not RCODE_COMPLETE. */ 1454 orb->base.rcode = -1; 1455 kref_init(&orb->base.kref); 1456 orb->cmd = cmd; 1457 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1458 orb->request.misc = cpu_to_be32( 1459 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1460 COMMAND_ORB_SPEED(device->max_speed) | 1461 COMMAND_ORB_NOTIFY); 1462 1463 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1464 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1465 1466 generation = device->generation; 1467 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1468 1469 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1470 goto out; 1471 1472 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1473 1474 orb->base.callback = complete_command_orb; 1475 orb->base.request_bus = 1476 dma_map_single(device->card->device, &orb->request, 1477 sizeof(orb->request), DMA_TO_DEVICE); 1478 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1479 sbp2_unmap_scatterlist(device->card->device, orb); 1480 goto out; 1481 } 1482 1483 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1484 lu->command_block_agent_address + SBP2_ORB_POINTER); 1485 retval = 0; 1486 out: 1487 kref_put(&orb->base.kref, free_orb); 1488 return retval; 1489 } 1490 1491 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1492 { 1493 struct sbp2_logical_unit *lu = sdev->hostdata; 1494 1495 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1496 if (!lu) 1497 return -ENOSYS; 1498 1499 sdev->allow_restart = 1; 1500 1501 /* 1502 * SBP-2 does not require any alignment, but we set it anyway 1503 * for compatibility with earlier versions of this driver. 1504 */ 1505 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1506 1507 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1508 sdev->inquiry_len = 36; 1509 1510 return 0; 1511 } 1512 1513 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1514 { 1515 struct sbp2_logical_unit *lu = sdev->hostdata; 1516 1517 sdev->use_10_for_rw = 1; 1518 1519 if (sbp2_param_exclusive_login) 1520 sdev->manage_start_stop = 1; 1521 1522 if (sdev->type == TYPE_ROM) 1523 sdev->use_10_for_ms = 1; 1524 1525 if (sdev->type == TYPE_DISK && 1526 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1527 sdev->skip_ms_page_8 = 1; 1528 1529 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1530 sdev->fix_capacity = 1; 1531 1532 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1533 sdev->start_stop_pwr_cond = 1; 1534 1535 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1536 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1537 1538 return 0; 1539 } 1540 1541 /* 1542 * Called by scsi stack when something has really gone wrong. Usually 1543 * called when a command has timed-out for some reason. 1544 */ 1545 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1546 { 1547 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1548 1549 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1550 sbp2_agent_reset(lu); 1551 sbp2_cancel_orbs(lu); 1552 1553 return SUCCESS; 1554 } 1555 1556 /* 1557 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1558 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1559 * 1560 * This is the concatenation of target port identifier and logical unit 1561 * identifier as per SAM-2...SAM-4 annex A. 1562 */ 1563 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1564 struct device_attribute *attr, char *buf) 1565 { 1566 struct scsi_device *sdev = to_scsi_device(dev); 1567 struct sbp2_logical_unit *lu; 1568 1569 if (!sdev) 1570 return 0; 1571 1572 lu = sdev->hostdata; 1573 1574 return sprintf(buf, "%016llx:%06x:%04x\n", 1575 (unsigned long long)lu->tgt->guid, 1576 lu->tgt->directory_id, lu->lun); 1577 } 1578 1579 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1580 1581 static struct attribute *sbp2_scsi_sysfs_attrs[] = { 1582 &dev_attr_ieee1394_id.attr, 1583 NULL 1584 }; 1585 1586 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs); 1587 1588 static struct scsi_host_template scsi_driver_template = { 1589 .module = THIS_MODULE, 1590 .name = "SBP-2 IEEE-1394", 1591 .proc_name = "sbp2", 1592 .queuecommand = sbp2_scsi_queuecommand, 1593 .slave_alloc = sbp2_scsi_slave_alloc, 1594 .slave_configure = sbp2_scsi_slave_configure, 1595 .eh_abort_handler = sbp2_scsi_abort, 1596 .this_id = -1, 1597 .sg_tablesize = SG_ALL, 1598 .max_segment_size = SBP2_MAX_SEG_SIZE, 1599 .can_queue = 1, 1600 .sdev_groups = sbp2_scsi_sysfs_groups, 1601 }; 1602 1603 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1604 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1605 MODULE_LICENSE("GPL"); 1606 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1607 1608 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1609 MODULE_ALIAS("sbp2"); 1610 1611 static int __init sbp2_init(void) 1612 { 1613 return driver_register(&sbp2_driver.driver); 1614 } 1615 1616 static void __exit sbp2_cleanup(void) 1617 { 1618 driver_unregister(&sbp2_driver.driver); 1619 } 1620 1621 module_init(sbp2_init); 1622 module_exit(sbp2_cleanup); 1623