1 /* 2 * SBP2 driver (SCSI over IEEE1394) 3 * 4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software Foundation, 18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 19 */ 20 21 /* 22 * The basic structure of this driver is based on the old storage driver, 23 * drivers/ieee1394/sbp2.c, originally written by 24 * James Goodwin <jamesg@filanet.com> 25 * with later contributions and ongoing maintenance from 26 * Ben Collins <bcollins@debian.org>, 27 * Stefan Richter <stefanr@s5r6.in-berlin.de> 28 * and many others. 29 */ 30 31 #include <linux/blkdev.h> 32 #include <linux/bug.h> 33 #include <linux/completion.h> 34 #include <linux/delay.h> 35 #include <linux/device.h> 36 #include <linux/dma-mapping.h> 37 #include <linux/firewire.h> 38 #include <linux/firewire-constants.h> 39 #include <linux/init.h> 40 #include <linux/jiffies.h> 41 #include <linux/kernel.h> 42 #include <linux/kref.h> 43 #include <linux/list.h> 44 #include <linux/mod_devicetable.h> 45 #include <linux/module.h> 46 #include <linux/moduleparam.h> 47 #include <linux/scatterlist.h> 48 #include <linux/slab.h> 49 #include <linux/spinlock.h> 50 #include <linux/string.h> 51 #include <linux/stringify.h> 52 #include <linux/workqueue.h> 53 54 #include <asm/byteorder.h> 55 56 #include <scsi/scsi.h> 57 #include <scsi/scsi_cmnd.h> 58 #include <scsi/scsi_device.h> 59 #include <scsi/scsi_host.h> 60 61 /* 62 * So far only bridges from Oxford Semiconductor are known to support 63 * concurrent logins. Depending on firmware, four or two concurrent logins 64 * are possible on OXFW911 and newer Oxsemi bridges. 65 * 66 * Concurrent logins are useful together with cluster filesystems. 67 */ 68 static bool sbp2_param_exclusive_login = 1; 69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644); 70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device " 71 "(default = Y, use N for concurrent initiators)"); 72 73 /* 74 * Flags for firmware oddities 75 * 76 * - 128kB max transfer 77 * Limit transfer size. Necessary for some old bridges. 78 * 79 * - 36 byte inquiry 80 * When scsi_mod probes the device, let the inquiry command look like that 81 * from MS Windows. 82 * 83 * - skip mode page 8 84 * Suppress sending of mode_sense for mode page 8 if the device pretends to 85 * support the SCSI Primary Block commands instead of Reduced Block Commands. 86 * 87 * - fix capacity 88 * Tell sd_mod to correct the last sector number reported by read_capacity. 89 * Avoids access beyond actual disk limits on devices with an off-by-one bug. 90 * Don't use this with devices which don't have this bug. 91 * 92 * - delay inquiry 93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry. 94 * 95 * - power condition 96 * Set the power condition field in the START STOP UNIT commands sent by 97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on). 98 * Some disks need this to spin down or to resume properly. 99 * 100 * - override internal blacklist 101 * Instead of adding to the built-in blacklist, use only the workarounds 102 * specified in the module load parameter. 103 * Useful if a blacklist entry interfered with a non-broken device. 104 */ 105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1 106 #define SBP2_WORKAROUND_INQUIRY_36 0x2 107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4 108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8 109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10 110 #define SBP2_INQUIRY_DELAY 12 111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20 112 #define SBP2_WORKAROUND_OVERRIDE 0x100 113 114 static int sbp2_param_workarounds; 115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644); 116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0" 117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS) 118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36) 119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8) 120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY) 121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY) 122 ", set power condition in start stop unit = " 123 __stringify(SBP2_WORKAROUND_POWER_CONDITION) 124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE) 125 ", or a combination)"); 126 127 /* 128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry 129 * and one struct scsi_device per sbp2_logical_unit. 130 */ 131 struct sbp2_logical_unit { 132 struct sbp2_target *tgt; 133 struct list_head link; 134 struct fw_address_handler address_handler; 135 struct list_head orb_list; 136 137 u64 command_block_agent_address; 138 u16 lun; 139 int login_id; 140 141 /* 142 * The generation is updated once we've logged in or reconnected 143 * to the logical unit. Thus, I/O to the device will automatically 144 * fail and get retried if it happens in a window where the device 145 * is not ready, e.g. after a bus reset but before we reconnect. 146 */ 147 int generation; 148 int retries; 149 work_func_t workfn; 150 struct delayed_work work; 151 bool has_sdev; 152 bool blocked; 153 }; 154 155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay) 156 { 157 queue_delayed_work(fw_workqueue, &lu->work, delay); 158 } 159 160 /* 161 * We create one struct sbp2_target per IEEE 1212 Unit Directory 162 * and one struct Scsi_Host per sbp2_target. 163 */ 164 struct sbp2_target { 165 struct fw_unit *unit; 166 struct list_head lu_list; 167 168 u64 management_agent_address; 169 u64 guid; 170 int directory_id; 171 int node_id; 172 int address_high; 173 unsigned int workarounds; 174 unsigned int mgt_orb_timeout; 175 unsigned int max_payload; 176 177 int dont_block; /* counter for each logical unit */ 178 int blocked; /* ditto */ 179 }; 180 181 static struct fw_device *target_parent_device(struct sbp2_target *tgt) 182 { 183 return fw_parent_device(tgt->unit); 184 } 185 186 static const struct device *tgt_dev(const struct sbp2_target *tgt) 187 { 188 return &tgt->unit->device; 189 } 190 191 static const struct device *lu_dev(const struct sbp2_logical_unit *lu) 192 { 193 return &lu->tgt->unit->device; 194 } 195 196 /* Impossible login_id, to detect logout attempt before successful login */ 197 #define INVALID_LOGIN_ID 0x10000 198 199 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */ 200 #define SBP2_ORB_NULL 0x80000000 201 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */ 202 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */ 203 204 /* 205 * There is no transport protocol limit to the CDB length, but we implement 206 * a fixed length only. 16 bytes is enough for disks larger than 2 TB. 207 */ 208 #define SBP2_MAX_CDB_SIZE 16 209 210 /* 211 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this 212 * for compatibility with earlier versions of this driver. 213 */ 214 #define SBP2_MAX_SEG_SIZE 0xfffc 215 216 /* Unit directory keys */ 217 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a 218 #define SBP2_CSR_FIRMWARE_REVISION 0x3c 219 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14 220 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d 221 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4 222 223 /* Management orb opcodes */ 224 #define SBP2_LOGIN_REQUEST 0x0 225 #define SBP2_QUERY_LOGINS_REQUEST 0x1 226 #define SBP2_RECONNECT_REQUEST 0x3 227 #define SBP2_SET_PASSWORD_REQUEST 0x4 228 #define SBP2_LOGOUT_REQUEST 0x7 229 #define SBP2_ABORT_TASK_REQUEST 0xb 230 #define SBP2_ABORT_TASK_SET 0xc 231 #define SBP2_LOGICAL_UNIT_RESET 0xe 232 #define SBP2_TARGET_RESET_REQUEST 0xf 233 234 /* Offsets for command block agent registers */ 235 #define SBP2_AGENT_STATE 0x00 236 #define SBP2_AGENT_RESET 0x04 237 #define SBP2_ORB_POINTER 0x08 238 #define SBP2_DOORBELL 0x10 239 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14 240 241 /* Status write response codes */ 242 #define SBP2_STATUS_REQUEST_COMPLETE 0x0 243 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1 244 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2 245 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3 246 247 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff) 248 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff) 249 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07) 250 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01) 251 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03) 252 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03) 253 #define STATUS_GET_ORB_LOW(v) ((v).orb_low) 254 #define STATUS_GET_DATA(v) ((v).data) 255 256 struct sbp2_status { 257 u32 status; 258 u32 orb_low; 259 u8 data[24]; 260 }; 261 262 struct sbp2_pointer { 263 __be32 high; 264 __be32 low; 265 }; 266 267 struct sbp2_orb { 268 struct fw_transaction t; 269 struct kref kref; 270 dma_addr_t request_bus; 271 int rcode; 272 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status); 273 struct list_head link; 274 }; 275 276 #define MANAGEMENT_ORB_LUN(v) ((v)) 277 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16) 278 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20) 279 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0) 280 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29) 281 #define MANAGEMENT_ORB_NOTIFY ((1) << 31) 282 283 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v)) 284 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16) 285 286 struct sbp2_management_orb { 287 struct sbp2_orb base; 288 struct { 289 struct sbp2_pointer password; 290 struct sbp2_pointer response; 291 __be32 misc; 292 __be32 length; 293 struct sbp2_pointer status_fifo; 294 } request; 295 __be32 response[4]; 296 dma_addr_t response_bus; 297 struct completion done; 298 struct sbp2_status status; 299 }; 300 301 struct sbp2_login_response { 302 __be32 misc; 303 struct sbp2_pointer command_block_agent; 304 __be32 reconnect_hold; 305 }; 306 #define COMMAND_ORB_DATA_SIZE(v) ((v)) 307 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16) 308 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19) 309 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20) 310 #define COMMAND_ORB_SPEED(v) ((v) << 24) 311 #define COMMAND_ORB_DIRECTION ((1) << 27) 312 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29) 313 #define COMMAND_ORB_NOTIFY ((1) << 31) 314 315 struct sbp2_command_orb { 316 struct sbp2_orb base; 317 struct { 318 struct sbp2_pointer next; 319 struct sbp2_pointer data_descriptor; 320 __be32 misc; 321 u8 command_block[SBP2_MAX_CDB_SIZE]; 322 } request; 323 struct scsi_cmnd *cmd; 324 struct sbp2_logical_unit *lu; 325 326 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8))); 327 dma_addr_t page_table_bus; 328 }; 329 330 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */ 331 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */ 332 333 /* 334 * List of devices with known bugs. 335 * 336 * The firmware_revision field, masked with 0xffff00, is the best 337 * indicator for the type of bridge chip of a device. It yields a few 338 * false positives but this did not break correctly behaving devices 339 * so far. 340 */ 341 static const struct { 342 u32 firmware_revision; 343 u32 model; 344 unsigned int workarounds; 345 } sbp2_workarounds_table[] = { 346 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ { 347 .firmware_revision = 0x002800, 348 .model = 0x001010, 349 .workarounds = SBP2_WORKAROUND_INQUIRY_36 | 350 SBP2_WORKAROUND_MODE_SENSE_8 | 351 SBP2_WORKAROUND_POWER_CONDITION, 352 }, 353 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ { 354 .firmware_revision = 0x002800, 355 .model = 0x000000, 356 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 357 }, 358 /* Initio bridges, actually only needed for some older ones */ { 359 .firmware_revision = 0x000200, 360 .model = SBP2_ROM_VALUE_WILDCARD, 361 .workarounds = SBP2_WORKAROUND_INQUIRY_36, 362 }, 363 /* PL-3507 bridge with Prolific firmware */ { 364 .firmware_revision = 0x012800, 365 .model = SBP2_ROM_VALUE_WILDCARD, 366 .workarounds = SBP2_WORKAROUND_POWER_CONDITION, 367 }, 368 /* Symbios bridge */ { 369 .firmware_revision = 0xa0b800, 370 .model = SBP2_ROM_VALUE_WILDCARD, 371 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 372 }, 373 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ { 374 .firmware_revision = 0x002600, 375 .model = SBP2_ROM_VALUE_WILDCARD, 376 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS, 377 }, 378 /* 379 * iPod 2nd generation: needs 128k max transfer size workaround 380 * iPod 3rd generation: needs fix capacity workaround 381 */ 382 { 383 .firmware_revision = 0x0a2700, 384 .model = 0x000000, 385 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS | 386 SBP2_WORKAROUND_FIX_CAPACITY, 387 }, 388 /* iPod 4th generation */ { 389 .firmware_revision = 0x0a2700, 390 .model = 0x000021, 391 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 392 }, 393 /* iPod mini */ { 394 .firmware_revision = 0x0a2700, 395 .model = 0x000022, 396 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 397 }, 398 /* iPod mini */ { 399 .firmware_revision = 0x0a2700, 400 .model = 0x000023, 401 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 402 }, 403 /* iPod Photo */ { 404 .firmware_revision = 0x0a2700, 405 .model = 0x00007e, 406 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY, 407 } 408 }; 409 410 static void free_orb(struct kref *kref) 411 { 412 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref); 413 414 kfree(orb); 415 } 416 417 static void sbp2_status_write(struct fw_card *card, struct fw_request *request, 418 int tcode, int destination, int source, 419 int generation, unsigned long long offset, 420 void *payload, size_t length, void *callback_data) 421 { 422 struct sbp2_logical_unit *lu = callback_data; 423 struct sbp2_orb *orb; 424 struct sbp2_status status; 425 unsigned long flags; 426 427 if (tcode != TCODE_WRITE_BLOCK_REQUEST || 428 length < 8 || length > sizeof(status)) { 429 fw_send_response(card, request, RCODE_TYPE_ERROR); 430 return; 431 } 432 433 status.status = be32_to_cpup(payload); 434 status.orb_low = be32_to_cpup(payload + 4); 435 memset(status.data, 0, sizeof(status.data)); 436 if (length > 8) 437 memcpy(status.data, payload + 8, length - 8); 438 439 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) { 440 dev_notice(lu_dev(lu), 441 "non-ORB related status write, not handled\n"); 442 fw_send_response(card, request, RCODE_COMPLETE); 443 return; 444 } 445 446 /* Lookup the orb corresponding to this status write. */ 447 spin_lock_irqsave(&card->lock, flags); 448 list_for_each_entry(orb, &lu->orb_list, link) { 449 if (STATUS_GET_ORB_HIGH(status) == 0 && 450 STATUS_GET_ORB_LOW(status) == orb->request_bus) { 451 orb->rcode = RCODE_COMPLETE; 452 list_del(&orb->link); 453 break; 454 } 455 } 456 spin_unlock_irqrestore(&card->lock, flags); 457 458 if (&orb->link != &lu->orb_list) { 459 orb->callback(orb, &status); 460 kref_put(&orb->kref, free_orb); /* orb callback reference */ 461 } else { 462 dev_err(lu_dev(lu), "status write for unknown ORB\n"); 463 } 464 465 fw_send_response(card, request, RCODE_COMPLETE); 466 } 467 468 static void complete_transaction(struct fw_card *card, int rcode, 469 void *payload, size_t length, void *data) 470 { 471 struct sbp2_orb *orb = data; 472 unsigned long flags; 473 474 /* 475 * This is a little tricky. We can get the status write for 476 * the orb before we get this callback. The status write 477 * handler above will assume the orb pointer transaction was 478 * successful and set the rcode to RCODE_COMPLETE for the orb. 479 * So this callback only sets the rcode if it hasn't already 480 * been set and only does the cleanup if the transaction 481 * failed and we didn't already get a status write. 482 */ 483 spin_lock_irqsave(&card->lock, flags); 484 485 if (orb->rcode == -1) 486 orb->rcode = rcode; 487 if (orb->rcode != RCODE_COMPLETE) { 488 list_del(&orb->link); 489 spin_unlock_irqrestore(&card->lock, flags); 490 491 orb->callback(orb, NULL); 492 kref_put(&orb->kref, free_orb); /* orb callback reference */ 493 } else { 494 spin_unlock_irqrestore(&card->lock, flags); 495 } 496 497 kref_put(&orb->kref, free_orb); /* transaction callback reference */ 498 } 499 500 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu, 501 int node_id, int generation, u64 offset) 502 { 503 struct fw_device *device = target_parent_device(lu->tgt); 504 struct sbp2_pointer orb_pointer; 505 unsigned long flags; 506 507 orb_pointer.high = 0; 508 orb_pointer.low = cpu_to_be32(orb->request_bus); 509 510 spin_lock_irqsave(&device->card->lock, flags); 511 list_add_tail(&orb->link, &lu->orb_list); 512 spin_unlock_irqrestore(&device->card->lock, flags); 513 514 kref_get(&orb->kref); /* transaction callback reference */ 515 kref_get(&orb->kref); /* orb callback reference */ 516 517 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST, 518 node_id, generation, device->max_speed, offset, 519 &orb_pointer, 8, complete_transaction, orb); 520 } 521 522 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu) 523 { 524 struct fw_device *device = target_parent_device(lu->tgt); 525 struct sbp2_orb *orb, *next; 526 struct list_head list; 527 unsigned long flags; 528 int retval = -ENOENT; 529 530 INIT_LIST_HEAD(&list); 531 spin_lock_irqsave(&device->card->lock, flags); 532 list_splice_init(&lu->orb_list, &list); 533 spin_unlock_irqrestore(&device->card->lock, flags); 534 535 list_for_each_entry_safe(orb, next, &list, link) { 536 retval = 0; 537 if (fw_cancel_transaction(device->card, &orb->t) == 0) 538 continue; 539 540 orb->rcode = RCODE_CANCELLED; 541 orb->callback(orb, NULL); 542 kref_put(&orb->kref, free_orb); /* orb callback reference */ 543 } 544 545 return retval; 546 } 547 548 static void complete_management_orb(struct sbp2_orb *base_orb, 549 struct sbp2_status *status) 550 { 551 struct sbp2_management_orb *orb = 552 container_of(base_orb, struct sbp2_management_orb, base); 553 554 if (status) 555 memcpy(&orb->status, status, sizeof(*status)); 556 complete(&orb->done); 557 } 558 559 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id, 560 int generation, int function, 561 int lun_or_login_id, void *response) 562 { 563 struct fw_device *device = target_parent_device(lu->tgt); 564 struct sbp2_management_orb *orb; 565 unsigned int timeout; 566 int retval = -ENOMEM; 567 568 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device)) 569 return 0; 570 571 orb = kzalloc(sizeof(*orb), GFP_NOIO); 572 if (orb == NULL) 573 return -ENOMEM; 574 575 kref_init(&orb->base.kref); 576 orb->response_bus = 577 dma_map_single(device->card->device, &orb->response, 578 sizeof(orb->response), DMA_FROM_DEVICE); 579 if (dma_mapping_error(device->card->device, orb->response_bus)) 580 goto fail_mapping_response; 581 582 orb->request.response.high = 0; 583 orb->request.response.low = cpu_to_be32(orb->response_bus); 584 585 orb->request.misc = cpu_to_be32( 586 MANAGEMENT_ORB_NOTIFY | 587 MANAGEMENT_ORB_FUNCTION(function) | 588 MANAGEMENT_ORB_LUN(lun_or_login_id)); 589 orb->request.length = cpu_to_be32( 590 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response))); 591 592 orb->request.status_fifo.high = 593 cpu_to_be32(lu->address_handler.offset >> 32); 594 orb->request.status_fifo.low = 595 cpu_to_be32(lu->address_handler.offset); 596 597 if (function == SBP2_LOGIN_REQUEST) { 598 /* Ask for 2^2 == 4 seconds reconnect grace period */ 599 orb->request.misc |= cpu_to_be32( 600 MANAGEMENT_ORB_RECONNECT(2) | 601 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login)); 602 timeout = lu->tgt->mgt_orb_timeout; 603 } else { 604 timeout = SBP2_ORB_TIMEOUT; 605 } 606 607 init_completion(&orb->done); 608 orb->base.callback = complete_management_orb; 609 610 orb->base.request_bus = 611 dma_map_single(device->card->device, &orb->request, 612 sizeof(orb->request), DMA_TO_DEVICE); 613 if (dma_mapping_error(device->card->device, orb->base.request_bus)) 614 goto fail_mapping_request; 615 616 sbp2_send_orb(&orb->base, lu, node_id, generation, 617 lu->tgt->management_agent_address); 618 619 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout)); 620 621 retval = -EIO; 622 if (sbp2_cancel_orbs(lu) == 0) { 623 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n", 624 orb->base.rcode); 625 goto out; 626 } 627 628 if (orb->base.rcode != RCODE_COMPLETE) { 629 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n", 630 orb->base.rcode); 631 goto out; 632 } 633 634 if (STATUS_GET_RESPONSE(orb->status) != 0 || 635 STATUS_GET_SBP_STATUS(orb->status) != 0) { 636 dev_err(lu_dev(lu), "error status: %d:%d\n", 637 STATUS_GET_RESPONSE(orb->status), 638 STATUS_GET_SBP_STATUS(orb->status)); 639 goto out; 640 } 641 642 retval = 0; 643 out: 644 dma_unmap_single(device->card->device, orb->base.request_bus, 645 sizeof(orb->request), DMA_TO_DEVICE); 646 fail_mapping_request: 647 dma_unmap_single(device->card->device, orb->response_bus, 648 sizeof(orb->response), DMA_FROM_DEVICE); 649 fail_mapping_response: 650 if (response) 651 memcpy(response, orb->response, sizeof(orb->response)); 652 kref_put(&orb->base.kref, free_orb); 653 654 return retval; 655 } 656 657 static void sbp2_agent_reset(struct sbp2_logical_unit *lu) 658 { 659 struct fw_device *device = target_parent_device(lu->tgt); 660 __be32 d = 0; 661 662 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 663 lu->tgt->node_id, lu->generation, device->max_speed, 664 lu->command_block_agent_address + SBP2_AGENT_RESET, 665 &d, 4); 666 } 667 668 static void complete_agent_reset_write_no_wait(struct fw_card *card, 669 int rcode, void *payload, size_t length, void *data) 670 { 671 kfree(data); 672 } 673 674 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu) 675 { 676 struct fw_device *device = target_parent_device(lu->tgt); 677 struct fw_transaction *t; 678 static __be32 d; 679 680 t = kmalloc(sizeof(*t), GFP_ATOMIC); 681 if (t == NULL) 682 return; 683 684 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST, 685 lu->tgt->node_id, lu->generation, device->max_speed, 686 lu->command_block_agent_address + SBP2_AGENT_RESET, 687 &d, 4, complete_agent_reset_write_no_wait, t); 688 } 689 690 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu) 691 { 692 /* 693 * We may access dont_block without taking card->lock here: 694 * All callers of sbp2_allow_block() and all callers of sbp2_unblock() 695 * are currently serialized against each other. 696 * And a wrong result in sbp2_conditionally_block()'s access of 697 * dont_block is rather harmless, it simply misses its first chance. 698 */ 699 --lu->tgt->dont_block; 700 } 701 702 /* 703 * Blocks lu->tgt if all of the following conditions are met: 704 * - Login, INQUIRY, and high-level SCSI setup of all of the target's 705 * logical units have been finished (indicated by dont_block == 0). 706 * - lu->generation is stale. 707 * 708 * Note, scsi_block_requests() must be called while holding card->lock, 709 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to 710 * unblock the target. 711 */ 712 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu) 713 { 714 struct sbp2_target *tgt = lu->tgt; 715 struct fw_card *card = target_parent_device(tgt)->card; 716 struct Scsi_Host *shost = 717 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 718 unsigned long flags; 719 720 spin_lock_irqsave(&card->lock, flags); 721 if (!tgt->dont_block && !lu->blocked && 722 lu->generation != card->generation) { 723 lu->blocked = true; 724 if (++tgt->blocked == 1) 725 scsi_block_requests(shost); 726 } 727 spin_unlock_irqrestore(&card->lock, flags); 728 } 729 730 /* 731 * Unblocks lu->tgt as soon as all its logical units can be unblocked. 732 * Note, it is harmless to run scsi_unblock_requests() outside the 733 * card->lock protected section. On the other hand, running it inside 734 * the section might clash with shost->host_lock. 735 */ 736 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu) 737 { 738 struct sbp2_target *tgt = lu->tgt; 739 struct fw_card *card = target_parent_device(tgt)->card; 740 struct Scsi_Host *shost = 741 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 742 unsigned long flags; 743 bool unblock = false; 744 745 spin_lock_irqsave(&card->lock, flags); 746 if (lu->blocked && lu->generation == card->generation) { 747 lu->blocked = false; 748 unblock = --tgt->blocked == 0; 749 } 750 spin_unlock_irqrestore(&card->lock, flags); 751 752 if (unblock) 753 scsi_unblock_requests(shost); 754 } 755 756 /* 757 * Prevents future blocking of tgt and unblocks it. 758 * Note, it is harmless to run scsi_unblock_requests() outside the 759 * card->lock protected section. On the other hand, running it inside 760 * the section might clash with shost->host_lock. 761 */ 762 static void sbp2_unblock(struct sbp2_target *tgt) 763 { 764 struct fw_card *card = target_parent_device(tgt)->card; 765 struct Scsi_Host *shost = 766 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 767 unsigned long flags; 768 769 spin_lock_irqsave(&card->lock, flags); 770 ++tgt->dont_block; 771 spin_unlock_irqrestore(&card->lock, flags); 772 773 scsi_unblock_requests(shost); 774 } 775 776 static int sbp2_lun2int(u16 lun) 777 { 778 struct scsi_lun eight_bytes_lun; 779 780 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun)); 781 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff; 782 eight_bytes_lun.scsi_lun[1] = lun & 0xff; 783 784 return scsilun_to_int(&eight_bytes_lun); 785 } 786 787 /* 788 * Write retransmit retry values into the BUSY_TIMEOUT register. 789 * - The single-phase retry protocol is supported by all SBP-2 devices, but the 790 * default retry_limit value is 0 (i.e. never retry transmission). We write a 791 * saner value after logging into the device. 792 * - The dual-phase retry protocol is optional to implement, and if not 793 * supported, writes to the dual-phase portion of the register will be 794 * ignored. We try to write the original 1394-1995 default here. 795 * - In the case of devices that are also SBP-3-compliant, all writes are 796 * ignored, as the register is read-only, but contains single-phase retry of 797 * 15, which is what we're trying to set for all SBP-2 device anyway, so this 798 * write attempt is safe and yields more consistent behavior for all devices. 799 * 800 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec, 801 * and section 6.4 of the SBP-3 spec for further details. 802 */ 803 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu) 804 { 805 struct fw_device *device = target_parent_device(lu->tgt); 806 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT); 807 808 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST, 809 lu->tgt->node_id, lu->generation, device->max_speed, 810 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4); 811 } 812 813 static void sbp2_reconnect(struct work_struct *work); 814 815 static void sbp2_login(struct work_struct *work) 816 { 817 struct sbp2_logical_unit *lu = 818 container_of(work, struct sbp2_logical_unit, work.work); 819 struct sbp2_target *tgt = lu->tgt; 820 struct fw_device *device = target_parent_device(tgt); 821 struct Scsi_Host *shost; 822 struct scsi_device *sdev; 823 struct sbp2_login_response response; 824 int generation, node_id, local_node_id; 825 826 if (fw_device_is_shutdown(device)) 827 return; 828 829 generation = device->generation; 830 smp_rmb(); /* node IDs must not be older than generation */ 831 node_id = device->node_id; 832 local_node_id = device->card->node_id; 833 834 /* If this is a re-login attempt, log out, or we might be rejected. */ 835 if (lu->has_sdev) 836 sbp2_send_management_orb(lu, device->node_id, generation, 837 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 838 839 if (sbp2_send_management_orb(lu, node_id, generation, 840 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) { 841 if (lu->retries++ < 5) { 842 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 843 } else { 844 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n", 845 lu->lun); 846 /* Let any waiting I/O fail from now on. */ 847 sbp2_unblock(lu->tgt); 848 } 849 return; 850 } 851 852 tgt->node_id = node_id; 853 tgt->address_high = local_node_id << 16; 854 smp_wmb(); /* node IDs must not be older than generation */ 855 lu->generation = generation; 856 857 lu->command_block_agent_address = 858 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff) 859 << 32) | be32_to_cpu(response.command_block_agent.low); 860 lu->login_id = be32_to_cpu(response.misc) & 0xffff; 861 862 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n", 863 lu->lun, lu->retries); 864 865 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */ 866 sbp2_set_busy_timeout(lu); 867 868 lu->workfn = sbp2_reconnect; 869 sbp2_agent_reset(lu); 870 871 /* This was a re-login. */ 872 if (lu->has_sdev) { 873 sbp2_cancel_orbs(lu); 874 sbp2_conditionally_unblock(lu); 875 876 return; 877 } 878 879 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY) 880 ssleep(SBP2_INQUIRY_DELAY); 881 882 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 883 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu); 884 /* 885 * FIXME: We are unable to perform reconnects while in sbp2_login(). 886 * Therefore __scsi_add_device() will get into trouble if a bus reset 887 * happens in parallel. It will either fail or leave us with an 888 * unusable sdev. As a workaround we check for this and retry the 889 * whole login and SCSI probing. 890 */ 891 892 /* Reported error during __scsi_add_device() */ 893 if (IS_ERR(sdev)) 894 goto out_logout_login; 895 896 /* Unreported error during __scsi_add_device() */ 897 smp_rmb(); /* get current card generation */ 898 if (generation != device->card->generation) { 899 scsi_remove_device(sdev); 900 scsi_device_put(sdev); 901 goto out_logout_login; 902 } 903 904 /* No error during __scsi_add_device() */ 905 lu->has_sdev = true; 906 scsi_device_put(sdev); 907 sbp2_allow_block(lu); 908 909 return; 910 911 out_logout_login: 912 smp_rmb(); /* generation may have changed */ 913 generation = device->generation; 914 smp_rmb(); /* node_id must not be older than generation */ 915 916 sbp2_send_management_orb(lu, device->node_id, generation, 917 SBP2_LOGOUT_REQUEST, lu->login_id, NULL); 918 /* 919 * If a bus reset happened, sbp2_update will have requeued 920 * lu->work already. Reset the work from reconnect to login. 921 */ 922 lu->workfn = sbp2_login; 923 } 924 925 static void sbp2_reconnect(struct work_struct *work) 926 { 927 struct sbp2_logical_unit *lu = 928 container_of(work, struct sbp2_logical_unit, work.work); 929 struct sbp2_target *tgt = lu->tgt; 930 struct fw_device *device = target_parent_device(tgt); 931 int generation, node_id, local_node_id; 932 933 if (fw_device_is_shutdown(device)) 934 return; 935 936 generation = device->generation; 937 smp_rmb(); /* node IDs must not be older than generation */ 938 node_id = device->node_id; 939 local_node_id = device->card->node_id; 940 941 if (sbp2_send_management_orb(lu, node_id, generation, 942 SBP2_RECONNECT_REQUEST, 943 lu->login_id, NULL) < 0) { 944 /* 945 * If reconnect was impossible even though we are in the 946 * current generation, fall back and try to log in again. 947 * 948 * We could check for "Function rejected" status, but 949 * looking at the bus generation as simpler and more general. 950 */ 951 smp_rmb(); /* get current card generation */ 952 if (generation == device->card->generation || 953 lu->retries++ >= 5) { 954 dev_err(tgt_dev(tgt), "failed to reconnect\n"); 955 lu->retries = 0; 956 lu->workfn = sbp2_login; 957 } 958 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 959 960 return; 961 } 962 963 tgt->node_id = node_id; 964 tgt->address_high = local_node_id << 16; 965 smp_wmb(); /* node IDs must not be older than generation */ 966 lu->generation = generation; 967 968 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n", 969 lu->lun, lu->retries); 970 971 sbp2_agent_reset(lu); 972 sbp2_cancel_orbs(lu); 973 sbp2_conditionally_unblock(lu); 974 } 975 976 static void sbp2_lu_workfn(struct work_struct *work) 977 { 978 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work), 979 struct sbp2_logical_unit, work); 980 lu->workfn(work); 981 } 982 983 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry) 984 { 985 struct sbp2_logical_unit *lu; 986 987 lu = kmalloc(sizeof(*lu), GFP_KERNEL); 988 if (!lu) 989 return -ENOMEM; 990 991 lu->address_handler.length = 0x100; 992 lu->address_handler.address_callback = sbp2_status_write; 993 lu->address_handler.callback_data = lu; 994 995 if (fw_core_add_address_handler(&lu->address_handler, 996 &fw_high_memory_region) < 0) { 997 kfree(lu); 998 return -ENOMEM; 999 } 1000 1001 lu->tgt = tgt; 1002 lu->lun = lun_entry & 0xffff; 1003 lu->login_id = INVALID_LOGIN_ID; 1004 lu->retries = 0; 1005 lu->has_sdev = false; 1006 lu->blocked = false; 1007 ++tgt->dont_block; 1008 INIT_LIST_HEAD(&lu->orb_list); 1009 lu->workfn = sbp2_login; 1010 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn); 1011 1012 list_add_tail(&lu->link, &tgt->lu_list); 1013 return 0; 1014 } 1015 1016 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt, 1017 const u32 *leaf) 1018 { 1019 if ((leaf[0] & 0xffff0000) == 0x00020000) 1020 tgt->guid = (u64)leaf[1] << 32 | leaf[2]; 1021 } 1022 1023 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, 1024 const u32 *directory) 1025 { 1026 struct fw_csr_iterator ci; 1027 int key, value; 1028 1029 fw_csr_iterator_init(&ci, directory); 1030 while (fw_csr_iterator_next(&ci, &key, &value)) 1031 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER && 1032 sbp2_add_logical_unit(tgt, value) < 0) 1033 return -ENOMEM; 1034 return 0; 1035 } 1036 1037 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory, 1038 u32 *model, u32 *firmware_revision) 1039 { 1040 struct fw_csr_iterator ci; 1041 int key, value; 1042 1043 fw_csr_iterator_init(&ci, directory); 1044 while (fw_csr_iterator_next(&ci, &key, &value)) { 1045 switch (key) { 1046 1047 case CSR_DEPENDENT_INFO | CSR_OFFSET: 1048 tgt->management_agent_address = 1049 CSR_REGISTER_BASE + 4 * value; 1050 break; 1051 1052 case CSR_DIRECTORY_ID: 1053 tgt->directory_id = value; 1054 break; 1055 1056 case CSR_MODEL: 1057 *model = value; 1058 break; 1059 1060 case SBP2_CSR_FIRMWARE_REVISION: 1061 *firmware_revision = value; 1062 break; 1063 1064 case SBP2_CSR_UNIT_CHARACTERISTICS: 1065 /* the timeout value is stored in 500ms units */ 1066 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500; 1067 break; 1068 1069 case SBP2_CSR_LOGICAL_UNIT_NUMBER: 1070 if (sbp2_add_logical_unit(tgt, value) < 0) 1071 return -ENOMEM; 1072 break; 1073 1074 case SBP2_CSR_UNIT_UNIQUE_ID: 1075 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value); 1076 break; 1077 1078 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY: 1079 /* Adjust for the increment in the iterator */ 1080 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0) 1081 return -ENOMEM; 1082 break; 1083 } 1084 } 1085 return 0; 1086 } 1087 1088 /* 1089 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be 1090 * provided in the config rom. Most devices do provide a value, which 1091 * we'll use for login management orbs, but with some sane limits. 1092 */ 1093 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt) 1094 { 1095 unsigned int timeout = tgt->mgt_orb_timeout; 1096 1097 if (timeout > 40000) 1098 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n", 1099 timeout / 1000); 1100 1101 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000); 1102 } 1103 1104 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model, 1105 u32 firmware_revision) 1106 { 1107 int i; 1108 unsigned int w = sbp2_param_workarounds; 1109 1110 if (w) 1111 dev_notice(tgt_dev(tgt), 1112 "Please notify linux1394-devel@lists.sf.net " 1113 "if you need the workarounds parameter\n"); 1114 1115 if (w & SBP2_WORKAROUND_OVERRIDE) 1116 goto out; 1117 1118 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) { 1119 1120 if (sbp2_workarounds_table[i].firmware_revision != 1121 (firmware_revision & 0xffffff00)) 1122 continue; 1123 1124 if (sbp2_workarounds_table[i].model != model && 1125 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD) 1126 continue; 1127 1128 w |= sbp2_workarounds_table[i].workarounds; 1129 break; 1130 } 1131 out: 1132 if (w) 1133 dev_notice(tgt_dev(tgt), "workarounds 0x%x " 1134 "(firmware_revision 0x%06x, model_id 0x%06x)\n", 1135 w, firmware_revision, model); 1136 tgt->workarounds = w; 1137 } 1138 1139 static struct scsi_host_template scsi_driver_template; 1140 static void sbp2_remove(struct fw_unit *unit); 1141 1142 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id) 1143 { 1144 struct fw_device *device = fw_parent_device(unit); 1145 struct sbp2_target *tgt; 1146 struct sbp2_logical_unit *lu; 1147 struct Scsi_Host *shost; 1148 u32 model, firmware_revision; 1149 1150 /* cannot (or should not) handle targets on the local node */ 1151 if (device->is_local) 1152 return -ENODEV; 1153 1154 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE) 1155 WARN_ON(dma_set_max_seg_size(device->card->device, 1156 SBP2_MAX_SEG_SIZE)); 1157 1158 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt)); 1159 if (shost == NULL) 1160 return -ENOMEM; 1161 1162 tgt = (struct sbp2_target *)shost->hostdata; 1163 dev_set_drvdata(&unit->device, tgt); 1164 tgt->unit = unit; 1165 INIT_LIST_HEAD(&tgt->lu_list); 1166 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4]; 1167 1168 if (fw_device_enable_phys_dma(device) < 0) 1169 goto fail_shost_put; 1170 1171 shost->max_cmd_len = SBP2_MAX_CDB_SIZE; 1172 1173 if (scsi_add_host_with_dma(shost, &unit->device, 1174 device->card->device) < 0) 1175 goto fail_shost_put; 1176 1177 /* implicit directory ID */ 1178 tgt->directory_id = ((unit->directory - device->config_rom) * 4 1179 + CSR_CONFIG_ROM) & 0xffffff; 1180 1181 firmware_revision = SBP2_ROM_VALUE_MISSING; 1182 model = SBP2_ROM_VALUE_MISSING; 1183 1184 if (sbp2_scan_unit_dir(tgt, unit->directory, &model, 1185 &firmware_revision) < 0) 1186 goto fail_remove; 1187 1188 sbp2_clamp_management_orb_timeout(tgt); 1189 sbp2_init_workarounds(tgt, model, firmware_revision); 1190 1191 /* 1192 * At S100 we can do 512 bytes per packet, at S200 1024 bytes, 1193 * and so on up to 4096 bytes. The SBP-2 max_payload field 1194 * specifies the max payload size as 2 ^ (max_payload + 2), so 1195 * if we set this to max_speed + 7, we get the right value. 1196 */ 1197 tgt->max_payload = min3(device->max_speed + 7, 10U, 1198 device->card->max_receive - 1); 1199 1200 /* Do the login in a workqueue so we can easily reschedule retries. */ 1201 list_for_each_entry(lu, &tgt->lu_list, link) 1202 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5)); 1203 1204 return 0; 1205 1206 fail_remove: 1207 sbp2_remove(unit); 1208 return -ENOMEM; 1209 1210 fail_shost_put: 1211 scsi_host_put(shost); 1212 return -ENOMEM; 1213 } 1214 1215 static void sbp2_update(struct fw_unit *unit) 1216 { 1217 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1218 struct sbp2_logical_unit *lu; 1219 1220 fw_device_enable_phys_dma(fw_parent_device(unit)); 1221 1222 /* 1223 * Fw-core serializes sbp2_update() against sbp2_remove(). 1224 * Iteration over tgt->lu_list is therefore safe here. 1225 */ 1226 list_for_each_entry(lu, &tgt->lu_list, link) { 1227 sbp2_conditionally_block(lu); 1228 lu->retries = 0; 1229 sbp2_queue_work(lu, 0); 1230 } 1231 } 1232 1233 static void sbp2_remove(struct fw_unit *unit) 1234 { 1235 struct fw_device *device = fw_parent_device(unit); 1236 struct sbp2_target *tgt = dev_get_drvdata(&unit->device); 1237 struct sbp2_logical_unit *lu, *next; 1238 struct Scsi_Host *shost = 1239 container_of((void *)tgt, struct Scsi_Host, hostdata[0]); 1240 struct scsi_device *sdev; 1241 1242 /* prevent deadlocks */ 1243 sbp2_unblock(tgt); 1244 1245 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) { 1246 cancel_delayed_work_sync(&lu->work); 1247 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun)); 1248 if (sdev) { 1249 scsi_remove_device(sdev); 1250 scsi_device_put(sdev); 1251 } 1252 if (lu->login_id != INVALID_LOGIN_ID) { 1253 int generation, node_id; 1254 /* 1255 * tgt->node_id may be obsolete here if we failed 1256 * during initial login or after a bus reset where 1257 * the topology changed. 1258 */ 1259 generation = device->generation; 1260 smp_rmb(); /* node_id vs. generation */ 1261 node_id = device->node_id; 1262 sbp2_send_management_orb(lu, node_id, generation, 1263 SBP2_LOGOUT_REQUEST, 1264 lu->login_id, NULL); 1265 } 1266 fw_core_remove_address_handler(&lu->address_handler); 1267 list_del(&lu->link); 1268 kfree(lu); 1269 } 1270 scsi_remove_host(shost); 1271 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no); 1272 1273 scsi_host_put(shost); 1274 } 1275 1276 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e 1277 #define SBP2_SW_VERSION_ENTRY 0x00010483 1278 1279 static const struct ieee1394_device_id sbp2_id_table[] = { 1280 { 1281 .match_flags = IEEE1394_MATCH_SPECIFIER_ID | 1282 IEEE1394_MATCH_VERSION, 1283 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY, 1284 .version = SBP2_SW_VERSION_ENTRY, 1285 }, 1286 { } 1287 }; 1288 1289 static struct fw_driver sbp2_driver = { 1290 .driver = { 1291 .owner = THIS_MODULE, 1292 .name = KBUILD_MODNAME, 1293 .bus = &fw_bus_type, 1294 }, 1295 .probe = sbp2_probe, 1296 .update = sbp2_update, 1297 .remove = sbp2_remove, 1298 .id_table = sbp2_id_table, 1299 }; 1300 1301 static void sbp2_unmap_scatterlist(struct device *card_device, 1302 struct sbp2_command_orb *orb) 1303 { 1304 scsi_dma_unmap(orb->cmd); 1305 1306 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT)) 1307 dma_unmap_single(card_device, orb->page_table_bus, 1308 sizeof(orb->page_table), DMA_TO_DEVICE); 1309 } 1310 1311 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data) 1312 { 1313 int sam_status; 1314 int sfmt = (sbp2_status[0] >> 6) & 0x03; 1315 1316 if (sfmt == 2 || sfmt == 3) { 1317 /* 1318 * Reserved for future standardization (2) or 1319 * Status block format vendor-dependent (3) 1320 */ 1321 return DID_ERROR << 16; 1322 } 1323 1324 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80); 1325 sense_data[1] = 0x0; 1326 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f); 1327 sense_data[3] = sbp2_status[4]; 1328 sense_data[4] = sbp2_status[5]; 1329 sense_data[5] = sbp2_status[6]; 1330 sense_data[6] = sbp2_status[7]; 1331 sense_data[7] = 10; 1332 sense_data[8] = sbp2_status[8]; 1333 sense_data[9] = sbp2_status[9]; 1334 sense_data[10] = sbp2_status[10]; 1335 sense_data[11] = sbp2_status[11]; 1336 sense_data[12] = sbp2_status[2]; 1337 sense_data[13] = sbp2_status[3]; 1338 sense_data[14] = sbp2_status[12]; 1339 sense_data[15] = sbp2_status[13]; 1340 1341 sam_status = sbp2_status[0] & 0x3f; 1342 1343 switch (sam_status) { 1344 case SAM_STAT_GOOD: 1345 case SAM_STAT_CHECK_CONDITION: 1346 case SAM_STAT_CONDITION_MET: 1347 case SAM_STAT_BUSY: 1348 case SAM_STAT_RESERVATION_CONFLICT: 1349 case SAM_STAT_COMMAND_TERMINATED: 1350 return DID_OK << 16 | sam_status; 1351 1352 default: 1353 return DID_ERROR << 16; 1354 } 1355 } 1356 1357 static void complete_command_orb(struct sbp2_orb *base_orb, 1358 struct sbp2_status *status) 1359 { 1360 struct sbp2_command_orb *orb = 1361 container_of(base_orb, struct sbp2_command_orb, base); 1362 struct fw_device *device = target_parent_device(orb->lu->tgt); 1363 int result; 1364 1365 if (status != NULL) { 1366 if (STATUS_GET_DEAD(*status)) 1367 sbp2_agent_reset_no_wait(orb->lu); 1368 1369 switch (STATUS_GET_RESPONSE(*status)) { 1370 case SBP2_STATUS_REQUEST_COMPLETE: 1371 result = DID_OK << 16; 1372 break; 1373 case SBP2_STATUS_TRANSPORT_FAILURE: 1374 result = DID_BUS_BUSY << 16; 1375 break; 1376 case SBP2_STATUS_ILLEGAL_REQUEST: 1377 case SBP2_STATUS_VENDOR_DEPENDENT: 1378 default: 1379 result = DID_ERROR << 16; 1380 break; 1381 } 1382 1383 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1) 1384 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status), 1385 orb->cmd->sense_buffer); 1386 } else { 1387 /* 1388 * If the orb completes with status == NULL, something 1389 * went wrong, typically a bus reset happened mid-orb 1390 * or when sending the write (less likely). 1391 */ 1392 result = DID_BUS_BUSY << 16; 1393 sbp2_conditionally_block(orb->lu); 1394 } 1395 1396 dma_unmap_single(device->card->device, orb->base.request_bus, 1397 sizeof(orb->request), DMA_TO_DEVICE); 1398 sbp2_unmap_scatterlist(device->card->device, orb); 1399 1400 orb->cmd->result = result; 1401 orb->cmd->scsi_done(orb->cmd); 1402 } 1403 1404 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb, 1405 struct fw_device *device, struct sbp2_logical_unit *lu) 1406 { 1407 struct scatterlist *sg = scsi_sglist(orb->cmd); 1408 int i, n; 1409 1410 n = scsi_dma_map(orb->cmd); 1411 if (n <= 0) 1412 goto fail; 1413 1414 /* 1415 * Handle the special case where there is only one element in 1416 * the scatter list by converting it to an immediate block 1417 * request. This is also a workaround for broken devices such 1418 * as the second generation iPod which doesn't support page 1419 * tables. 1420 */ 1421 if (n == 1) { 1422 orb->request.data_descriptor.high = 1423 cpu_to_be32(lu->tgt->address_high); 1424 orb->request.data_descriptor.low = 1425 cpu_to_be32(sg_dma_address(sg)); 1426 orb->request.misc |= 1427 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg))); 1428 return 0; 1429 } 1430 1431 for_each_sg(sg, sg, n, i) { 1432 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16); 1433 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg)); 1434 } 1435 1436 orb->page_table_bus = 1437 dma_map_single(device->card->device, orb->page_table, 1438 sizeof(orb->page_table), DMA_TO_DEVICE); 1439 if (dma_mapping_error(device->card->device, orb->page_table_bus)) 1440 goto fail_page_table; 1441 1442 /* 1443 * The data_descriptor pointer is the one case where we need 1444 * to fill in the node ID part of the address. All other 1445 * pointers assume that the data referenced reside on the 1446 * initiator (i.e. us), but data_descriptor can refer to data 1447 * on other nodes so we need to put our ID in descriptor.high. 1448 */ 1449 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high); 1450 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus); 1451 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT | 1452 COMMAND_ORB_DATA_SIZE(n)); 1453 1454 return 0; 1455 1456 fail_page_table: 1457 scsi_dma_unmap(orb->cmd); 1458 fail: 1459 return -ENOMEM; 1460 } 1461 1462 /* SCSI stack integration */ 1463 1464 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost, 1465 struct scsi_cmnd *cmd) 1466 { 1467 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1468 struct fw_device *device = target_parent_device(lu->tgt); 1469 struct sbp2_command_orb *orb; 1470 int generation, retval = SCSI_MLQUEUE_HOST_BUSY; 1471 1472 /* 1473 * Bidirectional commands are not yet implemented, and unknown 1474 * transfer direction not handled. 1475 */ 1476 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) { 1477 dev_err(lu_dev(lu), "cannot handle bidirectional command\n"); 1478 cmd->result = DID_ERROR << 16; 1479 cmd->scsi_done(cmd); 1480 return 0; 1481 } 1482 1483 orb = kzalloc(sizeof(*orb), GFP_ATOMIC); 1484 if (orb == NULL) 1485 return SCSI_MLQUEUE_HOST_BUSY; 1486 1487 /* Initialize rcode to something not RCODE_COMPLETE. */ 1488 orb->base.rcode = -1; 1489 kref_init(&orb->base.kref); 1490 orb->lu = lu; 1491 orb->cmd = cmd; 1492 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL); 1493 orb->request.misc = cpu_to_be32( 1494 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) | 1495 COMMAND_ORB_SPEED(device->max_speed) | 1496 COMMAND_ORB_NOTIFY); 1497 1498 if (cmd->sc_data_direction == DMA_FROM_DEVICE) 1499 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION); 1500 1501 generation = device->generation; 1502 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */ 1503 1504 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0) 1505 goto out; 1506 1507 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len); 1508 1509 orb->base.callback = complete_command_orb; 1510 orb->base.request_bus = 1511 dma_map_single(device->card->device, &orb->request, 1512 sizeof(orb->request), DMA_TO_DEVICE); 1513 if (dma_mapping_error(device->card->device, orb->base.request_bus)) { 1514 sbp2_unmap_scatterlist(device->card->device, orb); 1515 goto out; 1516 } 1517 1518 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation, 1519 lu->command_block_agent_address + SBP2_ORB_POINTER); 1520 retval = 0; 1521 out: 1522 kref_put(&orb->base.kref, free_orb); 1523 return retval; 1524 } 1525 1526 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev) 1527 { 1528 struct sbp2_logical_unit *lu = sdev->hostdata; 1529 1530 /* (Re-)Adding logical units via the SCSI stack is not supported. */ 1531 if (!lu) 1532 return -ENOSYS; 1533 1534 sdev->allow_restart = 1; 1535 1536 /* 1537 * SBP-2 does not require any alignment, but we set it anyway 1538 * for compatibility with earlier versions of this driver. 1539 */ 1540 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1); 1541 1542 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36) 1543 sdev->inquiry_len = 36; 1544 1545 return 0; 1546 } 1547 1548 static int sbp2_scsi_slave_configure(struct scsi_device *sdev) 1549 { 1550 struct sbp2_logical_unit *lu = sdev->hostdata; 1551 1552 sdev->use_10_for_rw = 1; 1553 1554 if (sbp2_param_exclusive_login) 1555 sdev->manage_start_stop = 1; 1556 1557 if (sdev->type == TYPE_ROM) 1558 sdev->use_10_for_ms = 1; 1559 1560 if (sdev->type == TYPE_DISK && 1561 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8) 1562 sdev->skip_ms_page_8 = 1; 1563 1564 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) 1565 sdev->fix_capacity = 1; 1566 1567 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION) 1568 sdev->start_stop_pwr_cond = 1; 1569 1570 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS) 1571 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512); 1572 1573 return 0; 1574 } 1575 1576 /* 1577 * Called by scsi stack when something has really gone wrong. Usually 1578 * called when a command has timed-out for some reason. 1579 */ 1580 static int sbp2_scsi_abort(struct scsi_cmnd *cmd) 1581 { 1582 struct sbp2_logical_unit *lu = cmd->device->hostdata; 1583 1584 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n"); 1585 sbp2_agent_reset(lu); 1586 sbp2_cancel_orbs(lu); 1587 1588 return SUCCESS; 1589 } 1590 1591 /* 1592 * Format of /sys/bus/scsi/devices/.../ieee1394_id: 1593 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal) 1594 * 1595 * This is the concatenation of target port identifier and logical unit 1596 * identifier as per SAM-2...SAM-4 annex A. 1597 */ 1598 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev, 1599 struct device_attribute *attr, char *buf) 1600 { 1601 struct scsi_device *sdev = to_scsi_device(dev); 1602 struct sbp2_logical_unit *lu; 1603 1604 if (!sdev) 1605 return 0; 1606 1607 lu = sdev->hostdata; 1608 1609 return sprintf(buf, "%016llx:%06x:%04x\n", 1610 (unsigned long long)lu->tgt->guid, 1611 lu->tgt->directory_id, lu->lun); 1612 } 1613 1614 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL); 1615 1616 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = { 1617 &dev_attr_ieee1394_id, 1618 NULL 1619 }; 1620 1621 static struct scsi_host_template scsi_driver_template = { 1622 .module = THIS_MODULE, 1623 .name = "SBP-2 IEEE-1394", 1624 .proc_name = "sbp2", 1625 .queuecommand = sbp2_scsi_queuecommand, 1626 .slave_alloc = sbp2_scsi_slave_alloc, 1627 .slave_configure = sbp2_scsi_slave_configure, 1628 .eh_abort_handler = sbp2_scsi_abort, 1629 .this_id = -1, 1630 .sg_tablesize = SG_ALL, 1631 .use_clustering = ENABLE_CLUSTERING, 1632 .cmd_per_lun = 1, 1633 .can_queue = 1, 1634 .sdev_attrs = sbp2_scsi_sysfs_attrs, 1635 }; 1636 1637 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>"); 1638 MODULE_DESCRIPTION("SCSI over IEEE1394"); 1639 MODULE_LICENSE("GPL"); 1640 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table); 1641 1642 /* Provide a module alias so root-on-sbp2 initrds don't break. */ 1643 MODULE_ALIAS("sbp2"); 1644 1645 static int __init sbp2_init(void) 1646 { 1647 return driver_register(&sbp2_driver.driver); 1648 } 1649 1650 static void __exit sbp2_cleanup(void) 1651 { 1652 driver_unregister(&sbp2_driver.driver); 1653 } 1654 1655 module_init(sbp2_init); 1656 module_exit(sbp2_cleanup); 1657