xref: /openbmc/linux/drivers/firewire/sbp2.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * SBP2 driver (SCSI over IEEE1394)
4  *
5  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
6  */
7 
8 /*
9  * The basic structure of this driver is based on the old storage driver,
10  * drivers/ieee1394/sbp2.c, originally written by
11  *     James Goodwin <jamesg@filanet.com>
12  * with later contributions and ongoing maintenance from
13  *     Ben Collins <bcollins@debian.org>,
14  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
15  * and many others.
16  */
17 
18 #include <linux/blkdev.h>
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel.h>
29 #include <linux/kref.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/stringify.h>
39 #include <linux/workqueue.h>
40 
41 #include <asm/byteorder.h>
42 
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 
48 /*
49  * So far only bridges from Oxford Semiconductor are known to support
50  * concurrent logins. Depending on firmware, four or two concurrent logins
51  * are possible on OXFW911 and newer Oxsemi bridges.
52  *
53  * Concurrent logins are useful together with cluster filesystems.
54  */
55 static bool sbp2_param_exclusive_login = 1;
56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58 		 "(default = Y, use N for concurrent initiators)");
59 
60 /*
61  * Flags for firmware oddities
62  *
63  * - 128kB max transfer
64  *   Limit transfer size. Necessary for some old bridges.
65  *
66  * - 36 byte inquiry
67  *   When scsi_mod probes the device, let the inquiry command look like that
68  *   from MS Windows.
69  *
70  * - skip mode page 8
71  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
72  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
73  *
74  * - fix capacity
75  *   Tell sd_mod to correct the last sector number reported by read_capacity.
76  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
77  *   Don't use this with devices which don't have this bug.
78  *
79  * - delay inquiry
80  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81  *
82  * - power condition
83  *   Set the power condition field in the START STOP UNIT commands sent by
84  *   sd_mod on suspend, resume, and shutdown (if manage_system_start_stop or
85  *   manage_runtime_start_stop is on).
86  *   Some disks need this to spin down or to resume properly.
87  *
88  * - override internal blacklist
89  *   Instead of adding to the built-in blacklist, use only the workarounds
90  *   specified in the module load parameter.
91  *   Useful if a blacklist entry interfered with a non-broken device.
92  */
93 #define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
94 #define SBP2_WORKAROUND_INQUIRY_36	0x2
95 #define SBP2_WORKAROUND_MODE_SENSE_8	0x4
96 #define SBP2_WORKAROUND_FIX_CAPACITY	0x8
97 #define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
98 #define SBP2_INQUIRY_DELAY		12
99 #define SBP2_WORKAROUND_POWER_CONDITION	0x20
100 #define SBP2_WORKAROUND_OVERRIDE	0x100
101 
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105 	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106 	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107 	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108 	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109 	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 	", set power condition in start stop unit = "
111 				  __stringify(SBP2_WORKAROUND_POWER_CONDITION)
112 	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
113 	", or a combination)");
114 
115 /*
116  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
117  * and one struct scsi_device per sbp2_logical_unit.
118  */
119 struct sbp2_logical_unit {
120 	struct sbp2_target *tgt;
121 	struct list_head link;
122 	struct fw_address_handler address_handler;
123 	struct list_head orb_list;
124 
125 	u64 command_block_agent_address;
126 	u16 lun;
127 	int login_id;
128 
129 	/*
130 	 * The generation is updated once we've logged in or reconnected
131 	 * to the logical unit.  Thus, I/O to the device will automatically
132 	 * fail and get retried if it happens in a window where the device
133 	 * is not ready, e.g. after a bus reset but before we reconnect.
134 	 */
135 	int generation;
136 	int retries;
137 	work_func_t workfn;
138 	struct delayed_work work;
139 	bool has_sdev;
140 	bool blocked;
141 };
142 
143 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
144 {
145 	queue_delayed_work(fw_workqueue, &lu->work, delay);
146 }
147 
148 /*
149  * We create one struct sbp2_target per IEEE 1212 Unit Directory
150  * and one struct Scsi_Host per sbp2_target.
151  */
152 struct sbp2_target {
153 	struct fw_unit *unit;
154 	struct list_head lu_list;
155 
156 	u64 management_agent_address;
157 	u64 guid;
158 	int directory_id;
159 	int node_id;
160 	int address_high;
161 	unsigned int workarounds;
162 	unsigned int mgt_orb_timeout;
163 	unsigned int max_payload;
164 
165 	spinlock_t lock;
166 	int dont_block;	/* counter for each logical unit */
167 	int blocked;	/* ditto */
168 };
169 
170 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
171 {
172 	return fw_parent_device(tgt->unit);
173 }
174 
175 static const struct device *tgt_dev(const struct sbp2_target *tgt)
176 {
177 	return &tgt->unit->device;
178 }
179 
180 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
181 {
182 	return &lu->tgt->unit->device;
183 }
184 
185 /* Impossible login_id, to detect logout attempt before successful login */
186 #define INVALID_LOGIN_ID 0x10000
187 
188 #define SBP2_ORB_TIMEOUT		2000U		/* Timeout in ms */
189 #define SBP2_ORB_NULL			0x80000000
190 #define SBP2_RETRY_LIMIT		0xf		/* 15 retries */
191 #define SBP2_CYCLE_LIMIT		(0xc8 << 12)	/* 200 125us cycles */
192 
193 /*
194  * There is no transport protocol limit to the CDB length,  but we implement
195  * a fixed length only.  16 bytes is enough for disks larger than 2 TB.
196  */
197 #define SBP2_MAX_CDB_SIZE		16
198 
199 /*
200  * The maximum SBP-2 data buffer size is 0xffff.  We quadlet-align this
201  * for compatibility with earlier versions of this driver.
202  */
203 #define SBP2_MAX_SEG_SIZE		0xfffc
204 
205 /* Unit directory keys */
206 #define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
207 #define SBP2_CSR_FIRMWARE_REVISION	0x3c
208 #define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
209 #define SBP2_CSR_UNIT_UNIQUE_ID		0x8d
210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
211 
212 /* Management orb opcodes */
213 #define SBP2_LOGIN_REQUEST		0x0
214 #define SBP2_QUERY_LOGINS_REQUEST	0x1
215 #define SBP2_RECONNECT_REQUEST		0x3
216 #define SBP2_SET_PASSWORD_REQUEST	0x4
217 #define SBP2_LOGOUT_REQUEST		0x7
218 #define SBP2_ABORT_TASK_REQUEST		0xb
219 #define SBP2_ABORT_TASK_SET		0xc
220 #define SBP2_LOGICAL_UNIT_RESET		0xe
221 #define SBP2_TARGET_RESET_REQUEST	0xf
222 
223 /* Offsets for command block agent registers */
224 #define SBP2_AGENT_STATE		0x00
225 #define SBP2_AGENT_RESET		0x04
226 #define SBP2_ORB_POINTER		0x08
227 #define SBP2_DOORBELL			0x10
228 #define SBP2_UNSOLICITED_STATUS_ENABLE	0x14
229 
230 /* Status write response codes */
231 #define SBP2_STATUS_REQUEST_COMPLETE	0x0
232 #define SBP2_STATUS_TRANSPORT_FAILURE	0x1
233 #define SBP2_STATUS_ILLEGAL_REQUEST	0x2
234 #define SBP2_STATUS_VENDOR_DEPENDENT	0x3
235 
236 #define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
237 #define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
238 #define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
239 #define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
240 #define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
241 #define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
242 #define STATUS_GET_ORB_LOW(v)		((v).orb_low)
243 #define STATUS_GET_DATA(v)		((v).data)
244 
245 struct sbp2_status {
246 	u32 status;
247 	u32 orb_low;
248 	u8 data[24];
249 };
250 
251 struct sbp2_pointer {
252 	__be32 high;
253 	__be32 low;
254 };
255 
256 struct sbp2_orb {
257 	struct fw_transaction t;
258 	struct kref kref;
259 	dma_addr_t request_bus;
260 	int rcode;
261 	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262 	struct sbp2_logical_unit *lu;
263 	struct list_head link;
264 };
265 
266 #define MANAGEMENT_ORB_LUN(v)			((v))
267 #define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
268 #define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
269 #define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
270 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
271 #define MANAGEMENT_ORB_NOTIFY			((1) << 31)
272 
273 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
274 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
275 
276 struct sbp2_management_orb {
277 	struct sbp2_orb base;
278 	struct {
279 		struct sbp2_pointer password;
280 		struct sbp2_pointer response;
281 		__be32 misc;
282 		__be32 length;
283 		struct sbp2_pointer status_fifo;
284 	} request;
285 	__be32 response[4];
286 	dma_addr_t response_bus;
287 	struct completion done;
288 	struct sbp2_status status;
289 };
290 
291 struct sbp2_login_response {
292 	__be32 misc;
293 	struct sbp2_pointer command_block_agent;
294 	__be32 reconnect_hold;
295 };
296 #define COMMAND_ORB_DATA_SIZE(v)	((v))
297 #define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
298 #define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
299 #define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
300 #define COMMAND_ORB_SPEED(v)		((v) << 24)
301 #define COMMAND_ORB_DIRECTION		((1) << 27)
302 #define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
303 #define COMMAND_ORB_NOTIFY		((1) << 31)
304 
305 struct sbp2_command_orb {
306 	struct sbp2_orb base;
307 	struct {
308 		struct sbp2_pointer next;
309 		struct sbp2_pointer data_descriptor;
310 		__be32 misc;
311 		u8 command_block[SBP2_MAX_CDB_SIZE];
312 	} request;
313 	struct scsi_cmnd *cmd;
314 
315 	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316 	dma_addr_t page_table_bus;
317 };
318 
319 #define SBP2_ROM_VALUE_WILDCARD ~0         /* match all */
320 #define SBP2_ROM_VALUE_MISSING  0xff000000 /* not present in the unit dir. */
321 
322 /*
323  * List of devices with known bugs.
324  *
325  * The firmware_revision field, masked with 0xffff00, is the best
326  * indicator for the type of bridge chip of a device.  It yields a few
327  * false positives but this did not break correctly behaving devices
328  * so far.
329  */
330 static const struct {
331 	u32 firmware_revision;
332 	u32 model;
333 	unsigned int workarounds;
334 } sbp2_workarounds_table[] = {
335 	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336 		.firmware_revision	= 0x002800,
337 		.model			= 0x001010,
338 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
339 					  SBP2_WORKAROUND_MODE_SENSE_8 |
340 					  SBP2_WORKAROUND_POWER_CONDITION,
341 	},
342 	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343 		.firmware_revision	= 0x002800,
344 		.model			= 0x000000,
345 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
346 	},
347 	/* Initio bridges, actually only needed for some older ones */ {
348 		.firmware_revision	= 0x000200,
349 		.model			= SBP2_ROM_VALUE_WILDCARD,
350 		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
351 	},
352 	/* PL-3507 bridge with Prolific firmware */ {
353 		.firmware_revision	= 0x012800,
354 		.model			= SBP2_ROM_VALUE_WILDCARD,
355 		.workarounds		= SBP2_WORKAROUND_POWER_CONDITION,
356 	},
357 	/* Symbios bridge */ {
358 		.firmware_revision	= 0xa0b800,
359 		.model			= SBP2_ROM_VALUE_WILDCARD,
360 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
361 	},
362 	/* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363 		.firmware_revision	= 0x002600,
364 		.model			= SBP2_ROM_VALUE_WILDCARD,
365 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
366 	},
367 	/*
368 	 * iPod 2nd generation: needs 128k max transfer size workaround
369 	 * iPod 3rd generation: needs fix capacity workaround
370 	 */
371 	{
372 		.firmware_revision	= 0x0a2700,
373 		.model			= 0x000000,
374 		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS |
375 					  SBP2_WORKAROUND_FIX_CAPACITY,
376 	},
377 	/* iPod 4th generation */ {
378 		.firmware_revision	= 0x0a2700,
379 		.model			= 0x000021,
380 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
381 	},
382 	/* iPod mini */ {
383 		.firmware_revision	= 0x0a2700,
384 		.model			= 0x000022,
385 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
386 	},
387 	/* iPod mini */ {
388 		.firmware_revision	= 0x0a2700,
389 		.model			= 0x000023,
390 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
391 	},
392 	/* iPod Photo */ {
393 		.firmware_revision	= 0x0a2700,
394 		.model			= 0x00007e,
395 		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
396 	}
397 };
398 
399 static void free_orb(struct kref *kref)
400 {
401 	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
402 
403 	kfree(orb);
404 }
405 
406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407 			      int tcode, int destination, int source,
408 			      int generation, unsigned long long offset,
409 			      void *payload, size_t length, void *callback_data)
410 {
411 	struct sbp2_logical_unit *lu = callback_data;
412 	struct sbp2_orb *orb = NULL, *iter;
413 	struct sbp2_status status;
414 	unsigned long flags;
415 
416 	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417 	    length < 8 || length > sizeof(status)) {
418 		fw_send_response(card, request, RCODE_TYPE_ERROR);
419 		return;
420 	}
421 
422 	status.status  = be32_to_cpup(payload);
423 	status.orb_low = be32_to_cpup(payload + 4);
424 	memset(status.data, 0, sizeof(status.data));
425 	if (length > 8)
426 		memcpy(status.data, payload + 8, length - 8);
427 
428 	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429 		dev_notice(lu_dev(lu),
430 			   "non-ORB related status write, not handled\n");
431 		fw_send_response(card, request, RCODE_COMPLETE);
432 		return;
433 	}
434 
435 	/* Lookup the orb corresponding to this status write. */
436 	spin_lock_irqsave(&lu->tgt->lock, flags);
437 	list_for_each_entry(iter, &lu->orb_list, link) {
438 		if (STATUS_GET_ORB_HIGH(status) == 0 &&
439 		    STATUS_GET_ORB_LOW(status) == iter->request_bus) {
440 			iter->rcode = RCODE_COMPLETE;
441 			list_del(&iter->link);
442 			orb = iter;
443 			break;
444 		}
445 	}
446 	spin_unlock_irqrestore(&lu->tgt->lock, flags);
447 
448 	if (orb) {
449 		orb->callback(orb, &status);
450 		kref_put(&orb->kref, free_orb); /* orb callback reference */
451 	} else {
452 		dev_err(lu_dev(lu), "status write for unknown ORB\n");
453 	}
454 
455 	fw_send_response(card, request, RCODE_COMPLETE);
456 }
457 
458 static void complete_transaction(struct fw_card *card, int rcode,
459 				 void *payload, size_t length, void *data)
460 {
461 	struct sbp2_orb *orb = data;
462 	unsigned long flags;
463 
464 	/*
465 	 * This is a little tricky.  We can get the status write for
466 	 * the orb before we get this callback.  The status write
467 	 * handler above will assume the orb pointer transaction was
468 	 * successful and set the rcode to RCODE_COMPLETE for the orb.
469 	 * So this callback only sets the rcode if it hasn't already
470 	 * been set and only does the cleanup if the transaction
471 	 * failed and we didn't already get a status write.
472 	 */
473 	spin_lock_irqsave(&orb->lu->tgt->lock, flags);
474 
475 	if (orb->rcode == -1)
476 		orb->rcode = rcode;
477 	if (orb->rcode != RCODE_COMPLETE) {
478 		list_del(&orb->link);
479 		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
480 
481 		orb->callback(orb, NULL);
482 		kref_put(&orb->kref, free_orb); /* orb callback reference */
483 	} else {
484 		spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
485 	}
486 
487 	kref_put(&orb->kref, free_orb); /* transaction callback reference */
488 }
489 
490 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
491 			  int node_id, int generation, u64 offset)
492 {
493 	struct fw_device *device = target_parent_device(lu->tgt);
494 	struct sbp2_pointer orb_pointer;
495 	unsigned long flags;
496 
497 	orb_pointer.high = 0;
498 	orb_pointer.low = cpu_to_be32(orb->request_bus);
499 
500 	orb->lu = lu;
501 	spin_lock_irqsave(&lu->tgt->lock, flags);
502 	list_add_tail(&orb->link, &lu->orb_list);
503 	spin_unlock_irqrestore(&lu->tgt->lock, flags);
504 
505 	kref_get(&orb->kref); /* transaction callback reference */
506 	kref_get(&orb->kref); /* orb callback reference */
507 
508 	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
509 			node_id, generation, device->max_speed, offset,
510 			&orb_pointer, 8, complete_transaction, orb);
511 }
512 
513 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
514 {
515 	struct fw_device *device = target_parent_device(lu->tgt);
516 	struct sbp2_orb *orb, *next;
517 	struct list_head list;
518 	int retval = -ENOENT;
519 
520 	INIT_LIST_HEAD(&list);
521 	spin_lock_irq(&lu->tgt->lock);
522 	list_splice_init(&lu->orb_list, &list);
523 	spin_unlock_irq(&lu->tgt->lock);
524 
525 	list_for_each_entry_safe(orb, next, &list, link) {
526 		retval = 0;
527 		if (fw_cancel_transaction(device->card, &orb->t) == 0)
528 			continue;
529 
530 		orb->rcode = RCODE_CANCELLED;
531 		orb->callback(orb, NULL);
532 		kref_put(&orb->kref, free_orb); /* orb callback reference */
533 	}
534 
535 	return retval;
536 }
537 
538 static void complete_management_orb(struct sbp2_orb *base_orb,
539 				    struct sbp2_status *status)
540 {
541 	struct sbp2_management_orb *orb =
542 		container_of(base_orb, struct sbp2_management_orb, base);
543 
544 	if (status)
545 		memcpy(&orb->status, status, sizeof(*status));
546 	complete(&orb->done);
547 }
548 
549 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
550 				    int generation, int function,
551 				    int lun_or_login_id, void *response)
552 {
553 	struct fw_device *device = target_parent_device(lu->tgt);
554 	struct sbp2_management_orb *orb;
555 	unsigned int timeout;
556 	int retval = -ENOMEM;
557 
558 	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
559 		return 0;
560 
561 	orb = kzalloc(sizeof(*orb), GFP_NOIO);
562 	if (orb == NULL)
563 		return -ENOMEM;
564 
565 	kref_init(&orb->base.kref);
566 	orb->response_bus =
567 		dma_map_single(device->card->device, &orb->response,
568 			       sizeof(orb->response), DMA_FROM_DEVICE);
569 	if (dma_mapping_error(device->card->device, orb->response_bus))
570 		goto fail_mapping_response;
571 
572 	orb->request.response.high = 0;
573 	orb->request.response.low  = cpu_to_be32(orb->response_bus);
574 
575 	orb->request.misc = cpu_to_be32(
576 		MANAGEMENT_ORB_NOTIFY |
577 		MANAGEMENT_ORB_FUNCTION(function) |
578 		MANAGEMENT_ORB_LUN(lun_or_login_id));
579 	orb->request.length = cpu_to_be32(
580 		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
581 
582 	orb->request.status_fifo.high =
583 		cpu_to_be32(lu->address_handler.offset >> 32);
584 	orb->request.status_fifo.low  =
585 		cpu_to_be32(lu->address_handler.offset);
586 
587 	if (function == SBP2_LOGIN_REQUEST) {
588 		/* Ask for 2^2 == 4 seconds reconnect grace period */
589 		orb->request.misc |= cpu_to_be32(
590 			MANAGEMENT_ORB_RECONNECT(2) |
591 			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
592 		timeout = lu->tgt->mgt_orb_timeout;
593 	} else {
594 		timeout = SBP2_ORB_TIMEOUT;
595 	}
596 
597 	init_completion(&orb->done);
598 	orb->base.callback = complete_management_orb;
599 
600 	orb->base.request_bus =
601 		dma_map_single(device->card->device, &orb->request,
602 			       sizeof(orb->request), DMA_TO_DEVICE);
603 	if (dma_mapping_error(device->card->device, orb->base.request_bus))
604 		goto fail_mapping_request;
605 
606 	sbp2_send_orb(&orb->base, lu, node_id, generation,
607 		      lu->tgt->management_agent_address);
608 
609 	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
610 
611 	retval = -EIO;
612 	if (sbp2_cancel_orbs(lu) == 0) {
613 		dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
614 			orb->base.rcode);
615 		goto out;
616 	}
617 
618 	if (orb->base.rcode != RCODE_COMPLETE) {
619 		dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
620 			orb->base.rcode);
621 		goto out;
622 	}
623 
624 	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
625 	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
626 		dev_err(lu_dev(lu), "error status: %d:%d\n",
627 			 STATUS_GET_RESPONSE(orb->status),
628 			 STATUS_GET_SBP_STATUS(orb->status));
629 		goto out;
630 	}
631 
632 	retval = 0;
633  out:
634 	dma_unmap_single(device->card->device, orb->base.request_bus,
635 			 sizeof(orb->request), DMA_TO_DEVICE);
636  fail_mapping_request:
637 	dma_unmap_single(device->card->device, orb->response_bus,
638 			 sizeof(orb->response), DMA_FROM_DEVICE);
639  fail_mapping_response:
640 	if (response)
641 		memcpy(response, orb->response, sizeof(orb->response));
642 	kref_put(&orb->base.kref, free_orb);
643 
644 	return retval;
645 }
646 
647 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
648 {
649 	struct fw_device *device = target_parent_device(lu->tgt);
650 	__be32 d = 0;
651 
652 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
653 			   lu->tgt->node_id, lu->generation, device->max_speed,
654 			   lu->command_block_agent_address + SBP2_AGENT_RESET,
655 			   &d, 4);
656 }
657 
658 static void complete_agent_reset_write_no_wait(struct fw_card *card,
659 		int rcode, void *payload, size_t length, void *data)
660 {
661 	kfree(data);
662 }
663 
664 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
665 {
666 	struct fw_device *device = target_parent_device(lu->tgt);
667 	struct fw_transaction *t;
668 	static __be32 d;
669 
670 	t = kmalloc(sizeof(*t), GFP_ATOMIC);
671 	if (t == NULL)
672 		return;
673 
674 	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
675 			lu->tgt->node_id, lu->generation, device->max_speed,
676 			lu->command_block_agent_address + SBP2_AGENT_RESET,
677 			&d, 4, complete_agent_reset_write_no_wait, t);
678 }
679 
680 static inline void sbp2_allow_block(struct sbp2_target *tgt)
681 {
682 	spin_lock_irq(&tgt->lock);
683 	--tgt->dont_block;
684 	spin_unlock_irq(&tgt->lock);
685 }
686 
687 /*
688  * Blocks lu->tgt if all of the following conditions are met:
689  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
690  *     logical units have been finished (indicated by dont_block == 0).
691  *   - lu->generation is stale.
692  *
693  * Note, scsi_block_requests() must be called while holding tgt->lock,
694  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
695  * unblock the target.
696  */
697 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
698 {
699 	struct sbp2_target *tgt = lu->tgt;
700 	struct fw_card *card = target_parent_device(tgt)->card;
701 	struct Scsi_Host *shost =
702 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&tgt->lock, flags);
706 	if (!tgt->dont_block && !lu->blocked &&
707 	    lu->generation != card->generation) {
708 		lu->blocked = true;
709 		if (++tgt->blocked == 1)
710 			scsi_block_requests(shost);
711 	}
712 	spin_unlock_irqrestore(&tgt->lock, flags);
713 }
714 
715 /*
716  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
717  * Note, it is harmless to run scsi_unblock_requests() outside the
718  * tgt->lock protected section.  On the other hand, running it inside
719  * the section might clash with shost->host_lock.
720  */
721 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
722 {
723 	struct sbp2_target *tgt = lu->tgt;
724 	struct fw_card *card = target_parent_device(tgt)->card;
725 	struct Scsi_Host *shost =
726 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
727 	bool unblock = false;
728 
729 	spin_lock_irq(&tgt->lock);
730 	if (lu->blocked && lu->generation == card->generation) {
731 		lu->blocked = false;
732 		unblock = --tgt->blocked == 0;
733 	}
734 	spin_unlock_irq(&tgt->lock);
735 
736 	if (unblock)
737 		scsi_unblock_requests(shost);
738 }
739 
740 /*
741  * Prevents future blocking of tgt and unblocks it.
742  * Note, it is harmless to run scsi_unblock_requests() outside the
743  * tgt->lock protected section.  On the other hand, running it inside
744  * the section might clash with shost->host_lock.
745  */
746 static void sbp2_unblock(struct sbp2_target *tgt)
747 {
748 	struct Scsi_Host *shost =
749 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
750 
751 	spin_lock_irq(&tgt->lock);
752 	++tgt->dont_block;
753 	spin_unlock_irq(&tgt->lock);
754 
755 	scsi_unblock_requests(shost);
756 }
757 
758 static int sbp2_lun2int(u16 lun)
759 {
760 	struct scsi_lun eight_bytes_lun;
761 
762 	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
763 	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
764 	eight_bytes_lun.scsi_lun[1] = lun & 0xff;
765 
766 	return scsilun_to_int(&eight_bytes_lun);
767 }
768 
769 /*
770  * Write retransmit retry values into the BUSY_TIMEOUT register.
771  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
772  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
773  *   saner value after logging into the device.
774  * - The dual-phase retry protocol is optional to implement, and if not
775  *   supported, writes to the dual-phase portion of the register will be
776  *   ignored. We try to write the original 1394-1995 default here.
777  * - In the case of devices that are also SBP-3-compliant, all writes are
778  *   ignored, as the register is read-only, but contains single-phase retry of
779  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
780  *   write attempt is safe and yields more consistent behavior for all devices.
781  *
782  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
783  * and section 6.4 of the SBP-3 spec for further details.
784  */
785 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
786 {
787 	struct fw_device *device = target_parent_device(lu->tgt);
788 	__be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
789 
790 	fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
791 			   lu->tgt->node_id, lu->generation, device->max_speed,
792 			   CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
793 }
794 
795 static void sbp2_reconnect(struct work_struct *work);
796 
797 static void sbp2_login(struct work_struct *work)
798 {
799 	struct sbp2_logical_unit *lu =
800 		container_of(work, struct sbp2_logical_unit, work.work);
801 	struct sbp2_target *tgt = lu->tgt;
802 	struct fw_device *device = target_parent_device(tgt);
803 	struct Scsi_Host *shost;
804 	struct scsi_device *sdev;
805 	struct sbp2_login_response response;
806 	int generation, node_id, local_node_id;
807 
808 	if (fw_device_is_shutdown(device))
809 		return;
810 
811 	generation    = device->generation;
812 	smp_rmb();    /* node IDs must not be older than generation */
813 	node_id       = device->node_id;
814 	local_node_id = device->card->node_id;
815 
816 	/* If this is a re-login attempt, log out, or we might be rejected. */
817 	if (lu->has_sdev)
818 		sbp2_send_management_orb(lu, device->node_id, generation,
819 				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
820 
821 	if (sbp2_send_management_orb(lu, node_id, generation,
822 				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
823 		if (lu->retries++ < 5) {
824 			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
825 		} else {
826 			dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
827 				lu->lun);
828 			/* Let any waiting I/O fail from now on. */
829 			sbp2_unblock(lu->tgt);
830 		}
831 		return;
832 	}
833 
834 	tgt->node_id	  = node_id;
835 	tgt->address_high = local_node_id << 16;
836 	smp_wmb();	  /* node IDs must not be older than generation */
837 	lu->generation	  = generation;
838 
839 	lu->command_block_agent_address =
840 		((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
841 		      << 32) | be32_to_cpu(response.command_block_agent.low);
842 	lu->login_id = be32_to_cpu(response.misc) & 0xffff;
843 
844 	dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
845 		   lu->lun, lu->retries);
846 
847 	/* set appropriate retry limit(s) in BUSY_TIMEOUT register */
848 	sbp2_set_busy_timeout(lu);
849 
850 	lu->workfn = sbp2_reconnect;
851 	sbp2_agent_reset(lu);
852 
853 	/* This was a re-login. */
854 	if (lu->has_sdev) {
855 		sbp2_cancel_orbs(lu);
856 		sbp2_conditionally_unblock(lu);
857 
858 		return;
859 	}
860 
861 	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
862 		ssleep(SBP2_INQUIRY_DELAY);
863 
864 	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
865 	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
866 	/*
867 	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
868 	 * Therefore __scsi_add_device() will get into trouble if a bus reset
869 	 * happens in parallel.  It will either fail or leave us with an
870 	 * unusable sdev.  As a workaround we check for this and retry the
871 	 * whole login and SCSI probing.
872 	 */
873 
874 	/* Reported error during __scsi_add_device() */
875 	if (IS_ERR(sdev))
876 		goto out_logout_login;
877 
878 	/* Unreported error during __scsi_add_device() */
879 	smp_rmb(); /* get current card generation */
880 	if (generation != device->card->generation) {
881 		scsi_remove_device(sdev);
882 		scsi_device_put(sdev);
883 		goto out_logout_login;
884 	}
885 
886 	/* No error during __scsi_add_device() */
887 	lu->has_sdev = true;
888 	scsi_device_put(sdev);
889 	sbp2_allow_block(tgt);
890 
891 	return;
892 
893  out_logout_login:
894 	smp_rmb(); /* generation may have changed */
895 	generation = device->generation;
896 	smp_rmb(); /* node_id must not be older than generation */
897 
898 	sbp2_send_management_orb(lu, device->node_id, generation,
899 				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
900 	/*
901 	 * If a bus reset happened, sbp2_update will have requeued
902 	 * lu->work already.  Reset the work from reconnect to login.
903 	 */
904 	lu->workfn = sbp2_login;
905 }
906 
907 static void sbp2_reconnect(struct work_struct *work)
908 {
909 	struct sbp2_logical_unit *lu =
910 		container_of(work, struct sbp2_logical_unit, work.work);
911 	struct sbp2_target *tgt = lu->tgt;
912 	struct fw_device *device = target_parent_device(tgt);
913 	int generation, node_id, local_node_id;
914 
915 	if (fw_device_is_shutdown(device))
916 		return;
917 
918 	generation    = device->generation;
919 	smp_rmb();    /* node IDs must not be older than generation */
920 	node_id       = device->node_id;
921 	local_node_id = device->card->node_id;
922 
923 	if (sbp2_send_management_orb(lu, node_id, generation,
924 				     SBP2_RECONNECT_REQUEST,
925 				     lu->login_id, NULL) < 0) {
926 		/*
927 		 * If reconnect was impossible even though we are in the
928 		 * current generation, fall back and try to log in again.
929 		 *
930 		 * We could check for "Function rejected" status, but
931 		 * looking at the bus generation as simpler and more general.
932 		 */
933 		smp_rmb(); /* get current card generation */
934 		if (generation == device->card->generation ||
935 		    lu->retries++ >= 5) {
936 			dev_err(tgt_dev(tgt), "failed to reconnect\n");
937 			lu->retries = 0;
938 			lu->workfn = sbp2_login;
939 		}
940 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
941 
942 		return;
943 	}
944 
945 	tgt->node_id      = node_id;
946 	tgt->address_high = local_node_id << 16;
947 	smp_wmb();	  /* node IDs must not be older than generation */
948 	lu->generation	  = generation;
949 
950 	dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
951 		   lu->lun, lu->retries);
952 
953 	sbp2_agent_reset(lu);
954 	sbp2_cancel_orbs(lu);
955 	sbp2_conditionally_unblock(lu);
956 }
957 
958 static void sbp2_lu_workfn(struct work_struct *work)
959 {
960 	struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
961 						struct sbp2_logical_unit, work);
962 	lu->workfn(work);
963 }
964 
965 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
966 {
967 	struct sbp2_logical_unit *lu;
968 
969 	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
970 	if (!lu)
971 		return -ENOMEM;
972 
973 	lu->address_handler.length           = 0x100;
974 	lu->address_handler.address_callback = sbp2_status_write;
975 	lu->address_handler.callback_data    = lu;
976 
977 	if (fw_core_add_address_handler(&lu->address_handler,
978 					&fw_high_memory_region) < 0) {
979 		kfree(lu);
980 		return -ENOMEM;
981 	}
982 
983 	lu->tgt      = tgt;
984 	lu->lun      = lun_entry & 0xffff;
985 	lu->login_id = INVALID_LOGIN_ID;
986 	lu->retries  = 0;
987 	lu->has_sdev = false;
988 	lu->blocked  = false;
989 	++tgt->dont_block;
990 	INIT_LIST_HEAD(&lu->orb_list);
991 	lu->workfn = sbp2_login;
992 	INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
993 
994 	list_add_tail(&lu->link, &tgt->lu_list);
995 	return 0;
996 }
997 
998 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
999 				    const u32 *leaf)
1000 {
1001 	if ((leaf[0] & 0xffff0000) == 0x00020000)
1002 		tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1003 }
1004 
1005 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1006 				      const u32 *directory)
1007 {
1008 	struct fw_csr_iterator ci;
1009 	int key, value;
1010 
1011 	fw_csr_iterator_init(&ci, directory);
1012 	while (fw_csr_iterator_next(&ci, &key, &value))
1013 		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014 		    sbp2_add_logical_unit(tgt, value) < 0)
1015 			return -ENOMEM;
1016 	return 0;
1017 }
1018 
1019 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1020 			      u32 *model, u32 *firmware_revision)
1021 {
1022 	struct fw_csr_iterator ci;
1023 	int key, value;
1024 
1025 	fw_csr_iterator_init(&ci, directory);
1026 	while (fw_csr_iterator_next(&ci, &key, &value)) {
1027 		switch (key) {
1028 
1029 		case CSR_DEPENDENT_INFO | CSR_OFFSET:
1030 			tgt->management_agent_address =
1031 					CSR_REGISTER_BASE + 4 * value;
1032 			break;
1033 
1034 		case CSR_DIRECTORY_ID:
1035 			tgt->directory_id = value;
1036 			break;
1037 
1038 		case CSR_MODEL:
1039 			*model = value;
1040 			break;
1041 
1042 		case SBP2_CSR_FIRMWARE_REVISION:
1043 			*firmware_revision = value;
1044 			break;
1045 
1046 		case SBP2_CSR_UNIT_CHARACTERISTICS:
1047 			/* the timeout value is stored in 500ms units */
1048 			tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1049 			break;
1050 
1051 		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1052 			if (sbp2_add_logical_unit(tgt, value) < 0)
1053 				return -ENOMEM;
1054 			break;
1055 
1056 		case SBP2_CSR_UNIT_UNIQUE_ID:
1057 			sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1058 			break;
1059 
1060 		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1061 			/* Adjust for the increment in the iterator */
1062 			if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1063 				return -ENOMEM;
1064 			break;
1065 		}
1066 	}
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1072  * provided in the config rom. Most devices do provide a value, which
1073  * we'll use for login management orbs, but with some sane limits.
1074  */
1075 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1076 {
1077 	unsigned int timeout = tgt->mgt_orb_timeout;
1078 
1079 	if (timeout > 40000)
1080 		dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1081 			   timeout / 1000);
1082 
1083 	tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1084 }
1085 
1086 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1087 				  u32 firmware_revision)
1088 {
1089 	int i;
1090 	unsigned int w = sbp2_param_workarounds;
1091 
1092 	if (w)
1093 		dev_notice(tgt_dev(tgt),
1094 			   "Please notify linux1394-devel@lists.sf.net "
1095 			   "if you need the workarounds parameter\n");
1096 
1097 	if (w & SBP2_WORKAROUND_OVERRIDE)
1098 		goto out;
1099 
1100 	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1101 
1102 		if (sbp2_workarounds_table[i].firmware_revision !=
1103 		    (firmware_revision & 0xffffff00))
1104 			continue;
1105 
1106 		if (sbp2_workarounds_table[i].model != model &&
1107 		    sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1108 			continue;
1109 
1110 		w |= sbp2_workarounds_table[i].workarounds;
1111 		break;
1112 	}
1113  out:
1114 	if (w)
1115 		dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1116 			   "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1117 			   w, firmware_revision, model);
1118 	tgt->workarounds = w;
1119 }
1120 
1121 static const struct scsi_host_template scsi_driver_template;
1122 static void sbp2_remove(struct fw_unit *unit);
1123 
1124 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1125 {
1126 	struct fw_device *device = fw_parent_device(unit);
1127 	struct sbp2_target *tgt;
1128 	struct sbp2_logical_unit *lu;
1129 	struct Scsi_Host *shost;
1130 	u32 model, firmware_revision;
1131 
1132 	/* cannot (or should not) handle targets on the local node */
1133 	if (device->is_local)
1134 		return -ENODEV;
1135 
1136 	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1137 	if (shost == NULL)
1138 		return -ENOMEM;
1139 
1140 	tgt = (struct sbp2_target *)shost->hostdata;
1141 	dev_set_drvdata(&unit->device, tgt);
1142 	tgt->unit = unit;
1143 	INIT_LIST_HEAD(&tgt->lu_list);
1144 	spin_lock_init(&tgt->lock);
1145 	tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1146 
1147 	if (fw_device_enable_phys_dma(device) < 0)
1148 		goto fail_shost_put;
1149 
1150 	shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1151 
1152 	if (scsi_add_host_with_dma(shost, &unit->device,
1153 				   device->card->device) < 0)
1154 		goto fail_shost_put;
1155 
1156 	/* implicit directory ID */
1157 	tgt->directory_id = ((unit->directory - device->config_rom) * 4
1158 			     + CSR_CONFIG_ROM) & 0xffffff;
1159 
1160 	firmware_revision = SBP2_ROM_VALUE_MISSING;
1161 	model		  = SBP2_ROM_VALUE_MISSING;
1162 
1163 	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1164 			       &firmware_revision) < 0)
1165 		goto fail_remove;
1166 
1167 	sbp2_clamp_management_orb_timeout(tgt);
1168 	sbp2_init_workarounds(tgt, model, firmware_revision);
1169 
1170 	/*
1171 	 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1172 	 * and so on up to 4096 bytes.  The SBP-2 max_payload field
1173 	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1174 	 * if we set this to max_speed + 7, we get the right value.
1175 	 */
1176 	tgt->max_payload = min3(device->max_speed + 7, 10U,
1177 				device->card->max_receive - 1);
1178 
1179 	/* Do the login in a workqueue so we can easily reschedule retries. */
1180 	list_for_each_entry(lu, &tgt->lu_list, link)
1181 		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1182 
1183 	return 0;
1184 
1185  fail_remove:
1186 	sbp2_remove(unit);
1187 	return -ENOMEM;
1188 
1189  fail_shost_put:
1190 	scsi_host_put(shost);
1191 	return -ENOMEM;
1192 }
1193 
1194 static void sbp2_update(struct fw_unit *unit)
1195 {
1196 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1197 	struct sbp2_logical_unit *lu;
1198 
1199 	fw_device_enable_phys_dma(fw_parent_device(unit));
1200 
1201 	/*
1202 	 * Fw-core serializes sbp2_update() against sbp2_remove().
1203 	 * Iteration over tgt->lu_list is therefore safe here.
1204 	 */
1205 	list_for_each_entry(lu, &tgt->lu_list, link) {
1206 		sbp2_conditionally_block(lu);
1207 		lu->retries = 0;
1208 		sbp2_queue_work(lu, 0);
1209 	}
1210 }
1211 
1212 static void sbp2_remove(struct fw_unit *unit)
1213 {
1214 	struct fw_device *device = fw_parent_device(unit);
1215 	struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1216 	struct sbp2_logical_unit *lu, *next;
1217 	struct Scsi_Host *shost =
1218 		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1219 	struct scsi_device *sdev;
1220 
1221 	/* prevent deadlocks */
1222 	sbp2_unblock(tgt);
1223 
1224 	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1225 		cancel_delayed_work_sync(&lu->work);
1226 		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1227 		if (sdev) {
1228 			scsi_remove_device(sdev);
1229 			scsi_device_put(sdev);
1230 		}
1231 		if (lu->login_id != INVALID_LOGIN_ID) {
1232 			int generation, node_id;
1233 			/*
1234 			 * tgt->node_id may be obsolete here if we failed
1235 			 * during initial login or after a bus reset where
1236 			 * the topology changed.
1237 			 */
1238 			generation = device->generation;
1239 			smp_rmb(); /* node_id vs. generation */
1240 			node_id    = device->node_id;
1241 			sbp2_send_management_orb(lu, node_id, generation,
1242 						 SBP2_LOGOUT_REQUEST,
1243 						 lu->login_id, NULL);
1244 		}
1245 		fw_core_remove_address_handler(&lu->address_handler);
1246 		list_del(&lu->link);
1247 		kfree(lu);
1248 	}
1249 	scsi_remove_host(shost);
1250 	dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1251 
1252 	scsi_host_put(shost);
1253 }
1254 
1255 #define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
1256 #define SBP2_SW_VERSION_ENTRY	0x00010483
1257 
1258 static const struct ieee1394_device_id sbp2_id_table[] = {
1259 	{
1260 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1261 				IEEE1394_MATCH_VERSION,
1262 		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1263 		.version      = SBP2_SW_VERSION_ENTRY,
1264 	},
1265 	{ }
1266 };
1267 
1268 static struct fw_driver sbp2_driver = {
1269 	.driver   = {
1270 		.owner  = THIS_MODULE,
1271 		.name   = KBUILD_MODNAME,
1272 		.bus    = &fw_bus_type,
1273 	},
1274 	.probe    = sbp2_probe,
1275 	.update   = sbp2_update,
1276 	.remove   = sbp2_remove,
1277 	.id_table = sbp2_id_table,
1278 };
1279 
1280 static void sbp2_unmap_scatterlist(struct device *card_device,
1281 				   struct sbp2_command_orb *orb)
1282 {
1283 	scsi_dma_unmap(orb->cmd);
1284 
1285 	if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1286 		dma_unmap_single(card_device, orb->page_table_bus,
1287 				 sizeof(orb->page_table), DMA_TO_DEVICE);
1288 }
1289 
1290 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1291 {
1292 	int sam_status;
1293 	int sfmt = (sbp2_status[0] >> 6) & 0x03;
1294 
1295 	if (sfmt == 2 || sfmt == 3) {
1296 		/*
1297 		 * Reserved for future standardization (2) or
1298 		 * Status block format vendor-dependent (3)
1299 		 */
1300 		return DID_ERROR << 16;
1301 	}
1302 
1303 	sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1304 	sense_data[1] = 0x0;
1305 	sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1306 	sense_data[3] = sbp2_status[4];
1307 	sense_data[4] = sbp2_status[5];
1308 	sense_data[5] = sbp2_status[6];
1309 	sense_data[6] = sbp2_status[7];
1310 	sense_data[7] = 10;
1311 	sense_data[8] = sbp2_status[8];
1312 	sense_data[9] = sbp2_status[9];
1313 	sense_data[10] = sbp2_status[10];
1314 	sense_data[11] = sbp2_status[11];
1315 	sense_data[12] = sbp2_status[2];
1316 	sense_data[13] = sbp2_status[3];
1317 	sense_data[14] = sbp2_status[12];
1318 	sense_data[15] = sbp2_status[13];
1319 
1320 	sam_status = sbp2_status[0] & 0x3f;
1321 
1322 	switch (sam_status) {
1323 	case SAM_STAT_GOOD:
1324 	case SAM_STAT_CHECK_CONDITION:
1325 	case SAM_STAT_CONDITION_MET:
1326 	case SAM_STAT_BUSY:
1327 	case SAM_STAT_RESERVATION_CONFLICT:
1328 	case SAM_STAT_COMMAND_TERMINATED:
1329 		return DID_OK << 16 | sam_status;
1330 
1331 	default:
1332 		return DID_ERROR << 16;
1333 	}
1334 }
1335 
1336 static void complete_command_orb(struct sbp2_orb *base_orb,
1337 				 struct sbp2_status *status)
1338 {
1339 	struct sbp2_command_orb *orb =
1340 		container_of(base_orb, struct sbp2_command_orb, base);
1341 	struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1342 	int result;
1343 
1344 	if (status != NULL) {
1345 		if (STATUS_GET_DEAD(*status))
1346 			sbp2_agent_reset_no_wait(base_orb->lu);
1347 
1348 		switch (STATUS_GET_RESPONSE(*status)) {
1349 		case SBP2_STATUS_REQUEST_COMPLETE:
1350 			result = DID_OK << 16;
1351 			break;
1352 		case SBP2_STATUS_TRANSPORT_FAILURE:
1353 			result = DID_BUS_BUSY << 16;
1354 			break;
1355 		case SBP2_STATUS_ILLEGAL_REQUEST:
1356 		case SBP2_STATUS_VENDOR_DEPENDENT:
1357 		default:
1358 			result = DID_ERROR << 16;
1359 			break;
1360 		}
1361 
1362 		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1363 			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1364 							   orb->cmd->sense_buffer);
1365 	} else {
1366 		/*
1367 		 * If the orb completes with status == NULL, something
1368 		 * went wrong, typically a bus reset happened mid-orb
1369 		 * or when sending the write (less likely).
1370 		 */
1371 		result = DID_BUS_BUSY << 16;
1372 		sbp2_conditionally_block(base_orb->lu);
1373 	}
1374 
1375 	dma_unmap_single(device->card->device, orb->base.request_bus,
1376 			 sizeof(orb->request), DMA_TO_DEVICE);
1377 	sbp2_unmap_scatterlist(device->card->device, orb);
1378 
1379 	orb->cmd->result = result;
1380 	scsi_done(orb->cmd);
1381 }
1382 
1383 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1384 		struct fw_device *device, struct sbp2_logical_unit *lu)
1385 {
1386 	struct scatterlist *sg = scsi_sglist(orb->cmd);
1387 	int i, n;
1388 
1389 	n = scsi_dma_map(orb->cmd);
1390 	if (n <= 0)
1391 		goto fail;
1392 
1393 	/*
1394 	 * Handle the special case where there is only one element in
1395 	 * the scatter list by converting it to an immediate block
1396 	 * request. This is also a workaround for broken devices such
1397 	 * as the second generation iPod which doesn't support page
1398 	 * tables.
1399 	 */
1400 	if (n == 1) {
1401 		orb->request.data_descriptor.high =
1402 			cpu_to_be32(lu->tgt->address_high);
1403 		orb->request.data_descriptor.low  =
1404 			cpu_to_be32(sg_dma_address(sg));
1405 		orb->request.misc |=
1406 			cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1407 		return 0;
1408 	}
1409 
1410 	for_each_sg(sg, sg, n, i) {
1411 		orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1412 		orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1413 	}
1414 
1415 	orb->page_table_bus =
1416 		dma_map_single(device->card->device, orb->page_table,
1417 			       sizeof(orb->page_table), DMA_TO_DEVICE);
1418 	if (dma_mapping_error(device->card->device, orb->page_table_bus))
1419 		goto fail_page_table;
1420 
1421 	/*
1422 	 * The data_descriptor pointer is the one case where we need
1423 	 * to fill in the node ID part of the address.  All other
1424 	 * pointers assume that the data referenced reside on the
1425 	 * initiator (i.e. us), but data_descriptor can refer to data
1426 	 * on other nodes so we need to put our ID in descriptor.high.
1427 	 */
1428 	orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1429 	orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1430 	orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1431 					 COMMAND_ORB_DATA_SIZE(n));
1432 
1433 	return 0;
1434 
1435  fail_page_table:
1436 	scsi_dma_unmap(orb->cmd);
1437  fail:
1438 	return -ENOMEM;
1439 }
1440 
1441 /* SCSI stack integration */
1442 
1443 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1444 				  struct scsi_cmnd *cmd)
1445 {
1446 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1447 	struct fw_device *device = target_parent_device(lu->tgt);
1448 	struct sbp2_command_orb *orb;
1449 	int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1450 
1451 	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 	if (orb == NULL)
1453 		return SCSI_MLQUEUE_HOST_BUSY;
1454 
1455 	/* Initialize rcode to something not RCODE_COMPLETE. */
1456 	orb->base.rcode = -1;
1457 	kref_init(&orb->base.kref);
1458 	orb->cmd = cmd;
1459 	orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1460 	orb->request.misc = cpu_to_be32(
1461 		COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1462 		COMMAND_ORB_SPEED(device->max_speed) |
1463 		COMMAND_ORB_NOTIFY);
1464 
1465 	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1466 		orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1467 
1468 	generation = device->generation;
1469 	smp_rmb();    /* sbp2_map_scatterlist looks at tgt->address_high */
1470 
1471 	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1472 		goto out;
1473 
1474 	memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1475 
1476 	orb->base.callback = complete_command_orb;
1477 	orb->base.request_bus =
1478 		dma_map_single(device->card->device, &orb->request,
1479 			       sizeof(orb->request), DMA_TO_DEVICE);
1480 	if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1481 		sbp2_unmap_scatterlist(device->card->device, orb);
1482 		goto out;
1483 	}
1484 
1485 	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1486 		      lu->command_block_agent_address + SBP2_ORB_POINTER);
1487 	retval = 0;
1488  out:
1489 	kref_put(&orb->base.kref, free_orb);
1490 	return retval;
1491 }
1492 
1493 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1494 {
1495 	struct sbp2_logical_unit *lu = sdev->hostdata;
1496 
1497 	/* (Re-)Adding logical units via the SCSI stack is not supported. */
1498 	if (!lu)
1499 		return -ENOSYS;
1500 
1501 	sdev->allow_restart = 1;
1502 
1503 	/*
1504 	 * SBP-2 does not require any alignment, but we set it anyway
1505 	 * for compatibility with earlier versions of this driver.
1506 	 */
1507 	blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1508 
1509 	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1510 		sdev->inquiry_len = 36;
1511 
1512 	return 0;
1513 }
1514 
1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1516 {
1517 	struct sbp2_logical_unit *lu = sdev->hostdata;
1518 
1519 	sdev->use_10_for_rw = 1;
1520 
1521 	if (sbp2_param_exclusive_login) {
1522 		sdev->manage_system_start_stop = 1;
1523 		sdev->manage_runtime_start_stop = 1;
1524 		sdev->manage_shutdown = 1;
1525 	}
1526 
1527 	if (sdev->type == TYPE_ROM)
1528 		sdev->use_10_for_ms = 1;
1529 
1530 	if (sdev->type == TYPE_DISK &&
1531 	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1532 		sdev->skip_ms_page_8 = 1;
1533 
1534 	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1535 		sdev->fix_capacity = 1;
1536 
1537 	if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1538 		sdev->start_stop_pwr_cond = 1;
1539 
1540 	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1541 		blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1542 
1543 	return 0;
1544 }
1545 
1546 /*
1547  * Called by scsi stack when something has really gone wrong.  Usually
1548  * called when a command has timed-out for some reason.
1549  */
1550 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1551 {
1552 	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1553 
1554 	dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1555 	sbp2_agent_reset(lu);
1556 	sbp2_cancel_orbs(lu);
1557 
1558 	return SUCCESS;
1559 }
1560 
1561 /*
1562  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1563  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1564  *
1565  * This is the concatenation of target port identifier and logical unit
1566  * identifier as per SAM-2...SAM-4 annex A.
1567  */
1568 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1569 			struct device_attribute *attr, char *buf)
1570 {
1571 	struct scsi_device *sdev = to_scsi_device(dev);
1572 	struct sbp2_logical_unit *lu;
1573 
1574 	if (!sdev)
1575 		return 0;
1576 
1577 	lu = sdev->hostdata;
1578 
1579 	return sprintf(buf, "%016llx:%06x:%04x\n",
1580 			(unsigned long long)lu->tgt->guid,
1581 			lu->tgt->directory_id, lu->lun);
1582 }
1583 
1584 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1585 
1586 static struct attribute *sbp2_scsi_sysfs_attrs[] = {
1587 	&dev_attr_ieee1394_id.attr,
1588 	NULL
1589 };
1590 
1591 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs);
1592 
1593 static const struct scsi_host_template scsi_driver_template = {
1594 	.module			= THIS_MODULE,
1595 	.name			= "SBP-2 IEEE-1394",
1596 	.proc_name		= "sbp2",
1597 	.queuecommand		= sbp2_scsi_queuecommand,
1598 	.slave_alloc		= sbp2_scsi_slave_alloc,
1599 	.slave_configure	= sbp2_scsi_slave_configure,
1600 	.eh_abort_handler	= sbp2_scsi_abort,
1601 	.this_id		= -1,
1602 	.sg_tablesize		= SG_ALL,
1603 	.max_segment_size	= SBP2_MAX_SEG_SIZE,
1604 	.can_queue		= 1,
1605 	.sdev_groups		= sbp2_scsi_sysfs_groups,
1606 };
1607 
1608 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1609 MODULE_DESCRIPTION("SCSI over IEEE1394");
1610 MODULE_LICENSE("GPL");
1611 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1612 
1613 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1614 MODULE_ALIAS("sbp2");
1615 
1616 static int __init sbp2_init(void)
1617 {
1618 	return driver_register(&sbp2_driver.driver);
1619 }
1620 
1621 static void __exit sbp2_cleanup(void)
1622 {
1623 	driver_unregister(&sbp2_driver.driver);
1624 }
1625 
1626 module_init(sbp2_init);
1627 module_exit(sbp2_cleanup);
1628