1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * SBP2 driver (SCSI over IEEE1394)
4 *
5 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 /*
9 * The basic structure of this driver is based on the old storage driver,
10 * drivers/ieee1394/sbp2.c, originally written by
11 * James Goodwin <jamesg@filanet.com>
12 * with later contributions and ongoing maintenance from
13 * Ben Collins <bcollins@debian.org>,
14 * Stefan Richter <stefanr@s5r6.in-berlin.de>
15 * and many others.
16 */
17
18 #include <linux/blkdev.h>
19 #include <linux/bug.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/firewire.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/init.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel.h>
29 #include <linux/kref.h>
30 #include <linux/list.h>
31 #include <linux/mod_devicetable.h>
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/scatterlist.h>
35 #include <linux/slab.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/stringify.h>
39 #include <linux/workqueue.h>
40
41 #include <asm/byteorder.h>
42
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47
48 /*
49 * So far only bridges from Oxford Semiconductor are known to support
50 * concurrent logins. Depending on firmware, four or two concurrent logins
51 * are possible on OXFW911 and newer Oxsemi bridges.
52 *
53 * Concurrent logins are useful together with cluster filesystems.
54 */
55 static bool sbp2_param_exclusive_login = 1;
56 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
57 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
58 "(default = Y, use N for concurrent initiators)");
59
60 /*
61 * Flags for firmware oddities
62 *
63 * - 128kB max transfer
64 * Limit transfer size. Necessary for some old bridges.
65 *
66 * - 36 byte inquiry
67 * When scsi_mod probes the device, let the inquiry command look like that
68 * from MS Windows.
69 *
70 * - skip mode page 8
71 * Suppress sending of mode_sense for mode page 8 if the device pretends to
72 * support the SCSI Primary Block commands instead of Reduced Block Commands.
73 *
74 * - fix capacity
75 * Tell sd_mod to correct the last sector number reported by read_capacity.
76 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
77 * Don't use this with devices which don't have this bug.
78 *
79 * - delay inquiry
80 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
81 *
82 * - power condition
83 * Set the power condition field in the START STOP UNIT commands sent by
84 * sd_mod on suspend, resume, and shutdown (if manage_system_start_stop or
85 * manage_runtime_start_stop is on).
86 * Some disks need this to spin down or to resume properly.
87 *
88 * - override internal blacklist
89 * Instead of adding to the built-in blacklist, use only the workarounds
90 * specified in the module load parameter.
91 * Useful if a blacklist entry interfered with a non-broken device.
92 */
93 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
94 #define SBP2_WORKAROUND_INQUIRY_36 0x2
95 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
96 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
97 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
98 #define SBP2_INQUIRY_DELAY 12
99 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
100 #define SBP2_WORKAROUND_OVERRIDE 0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
107 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 ", set power condition in start stop unit = "
111 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
112 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
113 ", or a combination)");
114
115 /*
116 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
117 * and one struct scsi_device per sbp2_logical_unit.
118 */
119 struct sbp2_logical_unit {
120 struct sbp2_target *tgt;
121 struct list_head link;
122 struct fw_address_handler address_handler;
123 struct list_head orb_list;
124
125 u64 command_block_agent_address;
126 u16 lun;
127 int login_id;
128
129 /*
130 * The generation is updated once we've logged in or reconnected
131 * to the logical unit. Thus, I/O to the device will automatically
132 * fail and get retried if it happens in a window where the device
133 * is not ready, e.g. after a bus reset but before we reconnect.
134 */
135 int generation;
136 int retries;
137 work_func_t workfn;
138 struct delayed_work work;
139 bool has_sdev;
140 bool blocked;
141 };
142
sbp2_queue_work(struct sbp2_logical_unit * lu,unsigned long delay)143 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
144 {
145 queue_delayed_work(fw_workqueue, &lu->work, delay);
146 }
147
148 /*
149 * We create one struct sbp2_target per IEEE 1212 Unit Directory
150 * and one struct Scsi_Host per sbp2_target.
151 */
152 struct sbp2_target {
153 struct fw_unit *unit;
154 struct list_head lu_list;
155
156 u64 management_agent_address;
157 u64 guid;
158 int directory_id;
159 int node_id;
160 int address_high;
161 unsigned int workarounds;
162 unsigned int mgt_orb_timeout;
163 unsigned int max_payload;
164
165 spinlock_t lock;
166 int dont_block; /* counter for each logical unit */
167 int blocked; /* ditto */
168 };
169
target_parent_device(struct sbp2_target * tgt)170 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
171 {
172 return fw_parent_device(tgt->unit);
173 }
174
tgt_dev(const struct sbp2_target * tgt)175 static const struct device *tgt_dev(const struct sbp2_target *tgt)
176 {
177 return &tgt->unit->device;
178 }
179
lu_dev(const struct sbp2_logical_unit * lu)180 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
181 {
182 return &lu->tgt->unit->device;
183 }
184
185 /* Impossible login_id, to detect logout attempt before successful login */
186 #define INVALID_LOGIN_ID 0x10000
187
188 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
189 #define SBP2_ORB_NULL 0x80000000
190 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
191 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
192
193 /*
194 * There is no transport protocol limit to the CDB length, but we implement
195 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
196 */
197 #define SBP2_MAX_CDB_SIZE 16
198
199 /*
200 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
201 * for compatibility with earlier versions of this driver.
202 */
203 #define SBP2_MAX_SEG_SIZE 0xfffc
204
205 /* Unit directory keys */
206 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
207 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
208 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
209 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
210 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
211
212 /* Management orb opcodes */
213 #define SBP2_LOGIN_REQUEST 0x0
214 #define SBP2_QUERY_LOGINS_REQUEST 0x1
215 #define SBP2_RECONNECT_REQUEST 0x3
216 #define SBP2_SET_PASSWORD_REQUEST 0x4
217 #define SBP2_LOGOUT_REQUEST 0x7
218 #define SBP2_ABORT_TASK_REQUEST 0xb
219 #define SBP2_ABORT_TASK_SET 0xc
220 #define SBP2_LOGICAL_UNIT_RESET 0xe
221 #define SBP2_TARGET_RESET_REQUEST 0xf
222
223 /* Offsets for command block agent registers */
224 #define SBP2_AGENT_STATE 0x00
225 #define SBP2_AGENT_RESET 0x04
226 #define SBP2_ORB_POINTER 0x08
227 #define SBP2_DOORBELL 0x10
228 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
229
230 /* Status write response codes */
231 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
232 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
233 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
234 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
235
236 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
237 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
238 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
239 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
240 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
241 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
242 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
243 #define STATUS_GET_DATA(v) ((v).data)
244
245 struct sbp2_status {
246 u32 status;
247 u32 orb_low;
248 u8 data[24];
249 };
250
251 struct sbp2_pointer {
252 __be32 high;
253 __be32 low;
254 };
255
256 struct sbp2_orb {
257 struct fw_transaction t;
258 struct kref kref;
259 dma_addr_t request_bus;
260 int rcode;
261 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
262 struct sbp2_logical_unit *lu;
263 struct list_head link;
264 };
265
266 #define MANAGEMENT_ORB_LUN(v) ((v))
267 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
268 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
269 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
270 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
271 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
272
273 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
274 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
275
276 struct sbp2_management_orb {
277 struct sbp2_orb base;
278 struct {
279 struct sbp2_pointer password;
280 struct sbp2_pointer response;
281 __be32 misc;
282 __be32 length;
283 struct sbp2_pointer status_fifo;
284 } request;
285 __be32 response[4];
286 dma_addr_t response_bus;
287 struct completion done;
288 struct sbp2_status status;
289 };
290
291 struct sbp2_login_response {
292 __be32 misc;
293 struct sbp2_pointer command_block_agent;
294 __be32 reconnect_hold;
295 };
296 #define COMMAND_ORB_DATA_SIZE(v) ((v))
297 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
298 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
299 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
300 #define COMMAND_ORB_SPEED(v) ((v) << 24)
301 #define COMMAND_ORB_DIRECTION ((1) << 27)
302 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
303 #define COMMAND_ORB_NOTIFY ((1) << 31)
304
305 struct sbp2_command_orb {
306 struct sbp2_orb base;
307 struct {
308 struct sbp2_pointer next;
309 struct sbp2_pointer data_descriptor;
310 __be32 misc;
311 u8 command_block[SBP2_MAX_CDB_SIZE];
312 } request;
313 struct scsi_cmnd *cmd;
314
315 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
316 dma_addr_t page_table_bus;
317 };
318
319 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
320 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
321
322 /*
323 * List of devices with known bugs.
324 *
325 * The firmware_revision field, masked with 0xffff00, is the best
326 * indicator for the type of bridge chip of a device. It yields a few
327 * false positives but this did not break correctly behaving devices
328 * so far.
329 */
330 static const struct {
331 u32 firmware_revision;
332 u32 model;
333 unsigned int workarounds;
334 } sbp2_workarounds_table[] = {
335 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
336 .firmware_revision = 0x002800,
337 .model = 0x001010,
338 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
339 SBP2_WORKAROUND_MODE_SENSE_8 |
340 SBP2_WORKAROUND_POWER_CONDITION,
341 },
342 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
343 .firmware_revision = 0x002800,
344 .model = 0x000000,
345 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
346 },
347 /* Initio bridges, actually only needed for some older ones */ {
348 .firmware_revision = 0x000200,
349 .model = SBP2_ROM_VALUE_WILDCARD,
350 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
351 },
352 /* PL-3507 bridge with Prolific firmware */ {
353 .firmware_revision = 0x012800,
354 .model = SBP2_ROM_VALUE_WILDCARD,
355 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
356 },
357 /* Symbios bridge */ {
358 .firmware_revision = 0xa0b800,
359 .model = SBP2_ROM_VALUE_WILDCARD,
360 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
361 },
362 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
363 .firmware_revision = 0x002600,
364 .model = SBP2_ROM_VALUE_WILDCARD,
365 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
366 },
367 /*
368 * iPod 2nd generation: needs 128k max transfer size workaround
369 * iPod 3rd generation: needs fix capacity workaround
370 */
371 {
372 .firmware_revision = 0x0a2700,
373 .model = 0x000000,
374 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
375 SBP2_WORKAROUND_FIX_CAPACITY,
376 },
377 /* iPod 4th generation */ {
378 .firmware_revision = 0x0a2700,
379 .model = 0x000021,
380 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
381 },
382 /* iPod mini */ {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000022,
385 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
386 },
387 /* iPod mini */ {
388 .firmware_revision = 0x0a2700,
389 .model = 0x000023,
390 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
391 },
392 /* iPod Photo */ {
393 .firmware_revision = 0x0a2700,
394 .model = 0x00007e,
395 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
396 }
397 };
398
free_orb(struct kref * kref)399 static void free_orb(struct kref *kref)
400 {
401 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
402
403 kfree(orb);
404 }
405
sbp2_status_write(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)406 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
407 int tcode, int destination, int source,
408 int generation, unsigned long long offset,
409 void *payload, size_t length, void *callback_data)
410 {
411 struct sbp2_logical_unit *lu = callback_data;
412 struct sbp2_orb *orb = NULL, *iter;
413 struct sbp2_status status;
414 unsigned long flags;
415
416 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
417 length < 8 || length > sizeof(status)) {
418 fw_send_response(card, request, RCODE_TYPE_ERROR);
419 return;
420 }
421
422 status.status = be32_to_cpup(payload);
423 status.orb_low = be32_to_cpup(payload + 4);
424 memset(status.data, 0, sizeof(status.data));
425 if (length > 8)
426 memcpy(status.data, payload + 8, length - 8);
427
428 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
429 dev_notice(lu_dev(lu),
430 "non-ORB related status write, not handled\n");
431 fw_send_response(card, request, RCODE_COMPLETE);
432 return;
433 }
434
435 /* Lookup the orb corresponding to this status write. */
436 spin_lock_irqsave(&lu->tgt->lock, flags);
437 list_for_each_entry(iter, &lu->orb_list, link) {
438 if (STATUS_GET_ORB_HIGH(status) == 0 &&
439 STATUS_GET_ORB_LOW(status) == iter->request_bus) {
440 iter->rcode = RCODE_COMPLETE;
441 list_del(&iter->link);
442 orb = iter;
443 break;
444 }
445 }
446 spin_unlock_irqrestore(&lu->tgt->lock, flags);
447
448 if (orb) {
449 orb->callback(orb, &status);
450 kref_put(&orb->kref, free_orb); /* orb callback reference */
451 } else {
452 dev_err(lu_dev(lu), "status write for unknown ORB\n");
453 }
454
455 fw_send_response(card, request, RCODE_COMPLETE);
456 }
457
complete_transaction(struct fw_card * card,int rcode,void * payload,size_t length,void * data)458 static void complete_transaction(struct fw_card *card, int rcode,
459 void *payload, size_t length, void *data)
460 {
461 struct sbp2_orb *orb = data;
462 unsigned long flags;
463
464 /*
465 * This is a little tricky. We can get the status write for
466 * the orb before we get this callback. The status write
467 * handler above will assume the orb pointer transaction was
468 * successful and set the rcode to RCODE_COMPLETE for the orb.
469 * So this callback only sets the rcode if it hasn't already
470 * been set and only does the cleanup if the transaction
471 * failed and we didn't already get a status write.
472 */
473 spin_lock_irqsave(&orb->lu->tgt->lock, flags);
474
475 if (orb->rcode == -1)
476 orb->rcode = rcode;
477 if (orb->rcode != RCODE_COMPLETE) {
478 list_del(&orb->link);
479 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
480
481 orb->callback(orb, NULL);
482 kref_put(&orb->kref, free_orb); /* orb callback reference */
483 } else {
484 spin_unlock_irqrestore(&orb->lu->tgt->lock, flags);
485 }
486
487 kref_put(&orb->kref, free_orb); /* transaction callback reference */
488 }
489
sbp2_send_orb(struct sbp2_orb * orb,struct sbp2_logical_unit * lu,int node_id,int generation,u64 offset)490 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
491 int node_id, int generation, u64 offset)
492 {
493 struct fw_device *device = target_parent_device(lu->tgt);
494 struct sbp2_pointer orb_pointer;
495 unsigned long flags;
496
497 orb_pointer.high = 0;
498 orb_pointer.low = cpu_to_be32(orb->request_bus);
499
500 orb->lu = lu;
501 spin_lock_irqsave(&lu->tgt->lock, flags);
502 list_add_tail(&orb->link, &lu->orb_list);
503 spin_unlock_irqrestore(&lu->tgt->lock, flags);
504
505 kref_get(&orb->kref); /* transaction callback reference */
506 kref_get(&orb->kref); /* orb callback reference */
507
508 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
509 node_id, generation, device->max_speed, offset,
510 &orb_pointer, 8, complete_transaction, orb);
511 }
512
sbp2_cancel_orbs(struct sbp2_logical_unit * lu)513 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
514 {
515 struct fw_device *device = target_parent_device(lu->tgt);
516 struct sbp2_orb *orb, *next;
517 struct list_head list;
518 int retval = -ENOENT;
519
520 INIT_LIST_HEAD(&list);
521 spin_lock_irq(&lu->tgt->lock);
522 list_splice_init(&lu->orb_list, &list);
523 spin_unlock_irq(&lu->tgt->lock);
524
525 list_for_each_entry_safe(orb, next, &list, link) {
526 retval = 0;
527 if (fw_cancel_transaction(device->card, &orb->t) == 0)
528 continue;
529
530 orb->rcode = RCODE_CANCELLED;
531 orb->callback(orb, NULL);
532 kref_put(&orb->kref, free_orb); /* orb callback reference */
533 }
534
535 return retval;
536 }
537
complete_management_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)538 static void complete_management_orb(struct sbp2_orb *base_orb,
539 struct sbp2_status *status)
540 {
541 struct sbp2_management_orb *orb =
542 container_of(base_orb, struct sbp2_management_orb, base);
543
544 if (status)
545 memcpy(&orb->status, status, sizeof(*status));
546 complete(&orb->done);
547 }
548
sbp2_send_management_orb(struct sbp2_logical_unit * lu,int node_id,int generation,int function,int lun_or_login_id,void * response)549 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
550 int generation, int function,
551 int lun_or_login_id, void *response)
552 {
553 struct fw_device *device = target_parent_device(lu->tgt);
554 struct sbp2_management_orb *orb;
555 unsigned int timeout;
556 int retval = -ENOMEM;
557
558 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
559 return 0;
560
561 orb = kzalloc(sizeof(*orb), GFP_NOIO);
562 if (orb == NULL)
563 return -ENOMEM;
564
565 kref_init(&orb->base.kref);
566 orb->response_bus =
567 dma_map_single(device->card->device, &orb->response,
568 sizeof(orb->response), DMA_FROM_DEVICE);
569 if (dma_mapping_error(device->card->device, orb->response_bus))
570 goto fail_mapping_response;
571
572 orb->request.response.high = 0;
573 orb->request.response.low = cpu_to_be32(orb->response_bus);
574
575 orb->request.misc = cpu_to_be32(
576 MANAGEMENT_ORB_NOTIFY |
577 MANAGEMENT_ORB_FUNCTION(function) |
578 MANAGEMENT_ORB_LUN(lun_or_login_id));
579 orb->request.length = cpu_to_be32(
580 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
581
582 orb->request.status_fifo.high =
583 cpu_to_be32(lu->address_handler.offset >> 32);
584 orb->request.status_fifo.low =
585 cpu_to_be32(lu->address_handler.offset);
586
587 if (function == SBP2_LOGIN_REQUEST) {
588 /* Ask for 2^2 == 4 seconds reconnect grace period */
589 orb->request.misc |= cpu_to_be32(
590 MANAGEMENT_ORB_RECONNECT(2) |
591 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
592 timeout = lu->tgt->mgt_orb_timeout;
593 } else {
594 timeout = SBP2_ORB_TIMEOUT;
595 }
596
597 init_completion(&orb->done);
598 orb->base.callback = complete_management_orb;
599
600 orb->base.request_bus =
601 dma_map_single(device->card->device, &orb->request,
602 sizeof(orb->request), DMA_TO_DEVICE);
603 if (dma_mapping_error(device->card->device, orb->base.request_bus))
604 goto fail_mapping_request;
605
606 sbp2_send_orb(&orb->base, lu, node_id, generation,
607 lu->tgt->management_agent_address);
608
609 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
610
611 retval = -EIO;
612 if (sbp2_cancel_orbs(lu) == 0) {
613 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
614 orb->base.rcode);
615 goto out;
616 }
617
618 if (orb->base.rcode != RCODE_COMPLETE) {
619 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
620 orb->base.rcode);
621 goto out;
622 }
623
624 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
625 STATUS_GET_SBP_STATUS(orb->status) != 0) {
626 dev_err(lu_dev(lu), "error status: %d:%d\n",
627 STATUS_GET_RESPONSE(orb->status),
628 STATUS_GET_SBP_STATUS(orb->status));
629 goto out;
630 }
631
632 retval = 0;
633 out:
634 dma_unmap_single(device->card->device, orb->base.request_bus,
635 sizeof(orb->request), DMA_TO_DEVICE);
636 fail_mapping_request:
637 dma_unmap_single(device->card->device, orb->response_bus,
638 sizeof(orb->response), DMA_FROM_DEVICE);
639 fail_mapping_response:
640 if (response)
641 memcpy(response, orb->response, sizeof(orb->response));
642 kref_put(&orb->base.kref, free_orb);
643
644 return retval;
645 }
646
sbp2_agent_reset(struct sbp2_logical_unit * lu)647 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
648 {
649 struct fw_device *device = target_parent_device(lu->tgt);
650 __be32 d = 0;
651
652 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
653 lu->tgt->node_id, lu->generation, device->max_speed,
654 lu->command_block_agent_address + SBP2_AGENT_RESET,
655 &d, 4);
656 }
657
complete_agent_reset_write_no_wait(struct fw_card * card,int rcode,void * payload,size_t length,void * data)658 static void complete_agent_reset_write_no_wait(struct fw_card *card,
659 int rcode, void *payload, size_t length, void *data)
660 {
661 kfree(data);
662 }
663
sbp2_agent_reset_no_wait(struct sbp2_logical_unit * lu)664 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
665 {
666 struct fw_device *device = target_parent_device(lu->tgt);
667 struct fw_transaction *t;
668 static __be32 d;
669
670 t = kmalloc(sizeof(*t), GFP_ATOMIC);
671 if (t == NULL)
672 return;
673
674 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
675 lu->tgt->node_id, lu->generation, device->max_speed,
676 lu->command_block_agent_address + SBP2_AGENT_RESET,
677 &d, 4, complete_agent_reset_write_no_wait, t);
678 }
679
sbp2_allow_block(struct sbp2_target * tgt)680 static inline void sbp2_allow_block(struct sbp2_target *tgt)
681 {
682 spin_lock_irq(&tgt->lock);
683 --tgt->dont_block;
684 spin_unlock_irq(&tgt->lock);
685 }
686
687 /*
688 * Blocks lu->tgt if all of the following conditions are met:
689 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
690 * logical units have been finished (indicated by dont_block == 0).
691 * - lu->generation is stale.
692 *
693 * Note, scsi_block_requests() must be called while holding tgt->lock,
694 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
695 * unblock the target.
696 */
sbp2_conditionally_block(struct sbp2_logical_unit * lu)697 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
698 {
699 struct sbp2_target *tgt = lu->tgt;
700 struct fw_card *card = target_parent_device(tgt)->card;
701 struct Scsi_Host *shost =
702 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
703 unsigned long flags;
704
705 spin_lock_irqsave(&tgt->lock, flags);
706 if (!tgt->dont_block && !lu->blocked &&
707 lu->generation != card->generation) {
708 lu->blocked = true;
709 if (++tgt->blocked == 1)
710 scsi_block_requests(shost);
711 }
712 spin_unlock_irqrestore(&tgt->lock, flags);
713 }
714
715 /*
716 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
717 * Note, it is harmless to run scsi_unblock_requests() outside the
718 * tgt->lock protected section. On the other hand, running it inside
719 * the section might clash with shost->host_lock.
720 */
sbp2_conditionally_unblock(struct sbp2_logical_unit * lu)721 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
722 {
723 struct sbp2_target *tgt = lu->tgt;
724 struct fw_card *card = target_parent_device(tgt)->card;
725 struct Scsi_Host *shost =
726 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
727 bool unblock = false;
728
729 spin_lock_irq(&tgt->lock);
730 if (lu->blocked && lu->generation == card->generation) {
731 lu->blocked = false;
732 unblock = --tgt->blocked == 0;
733 }
734 spin_unlock_irq(&tgt->lock);
735
736 if (unblock)
737 scsi_unblock_requests(shost);
738 }
739
740 /*
741 * Prevents future blocking of tgt and unblocks it.
742 * Note, it is harmless to run scsi_unblock_requests() outside the
743 * tgt->lock protected section. On the other hand, running it inside
744 * the section might clash with shost->host_lock.
745 */
sbp2_unblock(struct sbp2_target * tgt)746 static void sbp2_unblock(struct sbp2_target *tgt)
747 {
748 struct Scsi_Host *shost =
749 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
750
751 spin_lock_irq(&tgt->lock);
752 ++tgt->dont_block;
753 spin_unlock_irq(&tgt->lock);
754
755 scsi_unblock_requests(shost);
756 }
757
sbp2_lun2int(u16 lun)758 static int sbp2_lun2int(u16 lun)
759 {
760 struct scsi_lun eight_bytes_lun;
761
762 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
763 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
764 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
765
766 return scsilun_to_int(&eight_bytes_lun);
767 }
768
769 /*
770 * Write retransmit retry values into the BUSY_TIMEOUT register.
771 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
772 * default retry_limit value is 0 (i.e. never retry transmission). We write a
773 * saner value after logging into the device.
774 * - The dual-phase retry protocol is optional to implement, and if not
775 * supported, writes to the dual-phase portion of the register will be
776 * ignored. We try to write the original 1394-1995 default here.
777 * - In the case of devices that are also SBP-3-compliant, all writes are
778 * ignored, as the register is read-only, but contains single-phase retry of
779 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
780 * write attempt is safe and yields more consistent behavior for all devices.
781 *
782 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
783 * and section 6.4 of the SBP-3 spec for further details.
784 */
sbp2_set_busy_timeout(struct sbp2_logical_unit * lu)785 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
786 {
787 struct fw_device *device = target_parent_device(lu->tgt);
788 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
789
790 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
791 lu->tgt->node_id, lu->generation, device->max_speed,
792 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
793 }
794
795 static void sbp2_reconnect(struct work_struct *work);
796
sbp2_login(struct work_struct * work)797 static void sbp2_login(struct work_struct *work)
798 {
799 struct sbp2_logical_unit *lu =
800 container_of(work, struct sbp2_logical_unit, work.work);
801 struct sbp2_target *tgt = lu->tgt;
802 struct fw_device *device = target_parent_device(tgt);
803 struct Scsi_Host *shost;
804 struct scsi_device *sdev;
805 struct sbp2_login_response response;
806 int generation, node_id, local_node_id;
807
808 if (fw_device_is_shutdown(device))
809 return;
810
811 generation = device->generation;
812 smp_rmb(); /* node IDs must not be older than generation */
813 node_id = device->node_id;
814 local_node_id = device->card->node_id;
815
816 /* If this is a re-login attempt, log out, or we might be rejected. */
817 if (lu->has_sdev)
818 sbp2_send_management_orb(lu, device->node_id, generation,
819 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
820
821 if (sbp2_send_management_orb(lu, node_id, generation,
822 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
823 if (lu->retries++ < 5) {
824 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
825 } else {
826 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
827 lu->lun);
828 /* Let any waiting I/O fail from now on. */
829 sbp2_unblock(lu->tgt);
830 }
831 return;
832 }
833
834 tgt->node_id = node_id;
835 tgt->address_high = local_node_id << 16;
836 smp_wmb(); /* node IDs must not be older than generation */
837 lu->generation = generation;
838
839 lu->command_block_agent_address =
840 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
841 << 32) | be32_to_cpu(response.command_block_agent.low);
842 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
843
844 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
845 lu->lun, lu->retries);
846
847 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
848 sbp2_set_busy_timeout(lu);
849
850 lu->workfn = sbp2_reconnect;
851 sbp2_agent_reset(lu);
852
853 /* This was a re-login. */
854 if (lu->has_sdev) {
855 sbp2_cancel_orbs(lu);
856 sbp2_conditionally_unblock(lu);
857
858 return;
859 }
860
861 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
862 ssleep(SBP2_INQUIRY_DELAY);
863
864 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
865 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
866 /*
867 * FIXME: We are unable to perform reconnects while in sbp2_login().
868 * Therefore __scsi_add_device() will get into trouble if a bus reset
869 * happens in parallel. It will either fail or leave us with an
870 * unusable sdev. As a workaround we check for this and retry the
871 * whole login and SCSI probing.
872 */
873
874 /* Reported error during __scsi_add_device() */
875 if (IS_ERR(sdev))
876 goto out_logout_login;
877
878 /* Unreported error during __scsi_add_device() */
879 smp_rmb(); /* get current card generation */
880 if (generation != device->card->generation) {
881 scsi_remove_device(sdev);
882 scsi_device_put(sdev);
883 goto out_logout_login;
884 }
885
886 /* No error during __scsi_add_device() */
887 lu->has_sdev = true;
888 scsi_device_put(sdev);
889 sbp2_allow_block(tgt);
890
891 return;
892
893 out_logout_login:
894 smp_rmb(); /* generation may have changed */
895 generation = device->generation;
896 smp_rmb(); /* node_id must not be older than generation */
897
898 sbp2_send_management_orb(lu, device->node_id, generation,
899 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
900 /*
901 * If a bus reset happened, sbp2_update will have requeued
902 * lu->work already. Reset the work from reconnect to login.
903 */
904 lu->workfn = sbp2_login;
905 }
906
sbp2_reconnect(struct work_struct * work)907 static void sbp2_reconnect(struct work_struct *work)
908 {
909 struct sbp2_logical_unit *lu =
910 container_of(work, struct sbp2_logical_unit, work.work);
911 struct sbp2_target *tgt = lu->tgt;
912 struct fw_device *device = target_parent_device(tgt);
913 int generation, node_id, local_node_id;
914
915 if (fw_device_is_shutdown(device))
916 return;
917
918 generation = device->generation;
919 smp_rmb(); /* node IDs must not be older than generation */
920 node_id = device->node_id;
921 local_node_id = device->card->node_id;
922
923 if (sbp2_send_management_orb(lu, node_id, generation,
924 SBP2_RECONNECT_REQUEST,
925 lu->login_id, NULL) < 0) {
926 /*
927 * If reconnect was impossible even though we are in the
928 * current generation, fall back and try to log in again.
929 *
930 * We could check for "Function rejected" status, but
931 * looking at the bus generation as simpler and more general.
932 */
933 smp_rmb(); /* get current card generation */
934 if (generation == device->card->generation ||
935 lu->retries++ >= 5) {
936 dev_err(tgt_dev(tgt), "failed to reconnect\n");
937 lu->retries = 0;
938 lu->workfn = sbp2_login;
939 }
940 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
941
942 return;
943 }
944
945 tgt->node_id = node_id;
946 tgt->address_high = local_node_id << 16;
947 smp_wmb(); /* node IDs must not be older than generation */
948 lu->generation = generation;
949
950 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
951 lu->lun, lu->retries);
952
953 sbp2_agent_reset(lu);
954 sbp2_cancel_orbs(lu);
955 sbp2_conditionally_unblock(lu);
956 }
957
sbp2_lu_workfn(struct work_struct * work)958 static void sbp2_lu_workfn(struct work_struct *work)
959 {
960 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
961 struct sbp2_logical_unit, work);
962 lu->workfn(work);
963 }
964
sbp2_add_logical_unit(struct sbp2_target * tgt,int lun_entry)965 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
966 {
967 struct sbp2_logical_unit *lu;
968
969 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
970 if (!lu)
971 return -ENOMEM;
972
973 lu->address_handler.length = 0x100;
974 lu->address_handler.address_callback = sbp2_status_write;
975 lu->address_handler.callback_data = lu;
976
977 if (fw_core_add_address_handler(&lu->address_handler,
978 &fw_high_memory_region) < 0) {
979 kfree(lu);
980 return -ENOMEM;
981 }
982
983 lu->tgt = tgt;
984 lu->lun = lun_entry & 0xffff;
985 lu->login_id = INVALID_LOGIN_ID;
986 lu->retries = 0;
987 lu->has_sdev = false;
988 lu->blocked = false;
989 ++tgt->dont_block;
990 INIT_LIST_HEAD(&lu->orb_list);
991 lu->workfn = sbp2_login;
992 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
993
994 list_add_tail(&lu->link, &tgt->lu_list);
995 return 0;
996 }
997
sbp2_get_unit_unique_id(struct sbp2_target * tgt,const u32 * leaf)998 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
999 const u32 *leaf)
1000 {
1001 if ((leaf[0] & 0xffff0000) == 0x00020000)
1002 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1003 }
1004
sbp2_scan_logical_unit_dir(struct sbp2_target * tgt,const u32 * directory)1005 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1006 const u32 *directory)
1007 {
1008 struct fw_csr_iterator ci;
1009 int key, value;
1010
1011 fw_csr_iterator_init(&ci, directory);
1012 while (fw_csr_iterator_next(&ci, &key, &value))
1013 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014 sbp2_add_logical_unit(tgt, value) < 0)
1015 return -ENOMEM;
1016 return 0;
1017 }
1018
sbp2_scan_unit_dir(struct sbp2_target * tgt,const u32 * directory,u32 * model,u32 * firmware_revision)1019 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1020 u32 *model, u32 *firmware_revision)
1021 {
1022 struct fw_csr_iterator ci;
1023 int key, value;
1024
1025 fw_csr_iterator_init(&ci, directory);
1026 while (fw_csr_iterator_next(&ci, &key, &value)) {
1027 switch (key) {
1028
1029 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1030 tgt->management_agent_address =
1031 CSR_REGISTER_BASE + 4 * value;
1032 break;
1033
1034 case CSR_DIRECTORY_ID:
1035 tgt->directory_id = value;
1036 break;
1037
1038 case CSR_MODEL:
1039 *model = value;
1040 break;
1041
1042 case SBP2_CSR_FIRMWARE_REVISION:
1043 *firmware_revision = value;
1044 break;
1045
1046 case SBP2_CSR_UNIT_CHARACTERISTICS:
1047 /* the timeout value is stored in 500ms units */
1048 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1049 break;
1050
1051 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1052 if (sbp2_add_logical_unit(tgt, value) < 0)
1053 return -ENOMEM;
1054 break;
1055
1056 case SBP2_CSR_UNIT_UNIQUE_ID:
1057 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1058 break;
1059
1060 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1061 /* Adjust for the increment in the iterator */
1062 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1063 return -ENOMEM;
1064 break;
1065 }
1066 }
1067 return 0;
1068 }
1069
1070 /*
1071 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1072 * provided in the config rom. Most devices do provide a value, which
1073 * we'll use for login management orbs, but with some sane limits.
1074 */
sbp2_clamp_management_orb_timeout(struct sbp2_target * tgt)1075 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1076 {
1077 unsigned int timeout = tgt->mgt_orb_timeout;
1078
1079 if (timeout > 40000)
1080 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1081 timeout / 1000);
1082
1083 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1084 }
1085
sbp2_init_workarounds(struct sbp2_target * tgt,u32 model,u32 firmware_revision)1086 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1087 u32 firmware_revision)
1088 {
1089 int i;
1090 unsigned int w = sbp2_param_workarounds;
1091
1092 if (w)
1093 dev_notice(tgt_dev(tgt),
1094 "Please notify linux1394-devel@lists.sf.net "
1095 "if you need the workarounds parameter\n");
1096
1097 if (w & SBP2_WORKAROUND_OVERRIDE)
1098 goto out;
1099
1100 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1101
1102 if (sbp2_workarounds_table[i].firmware_revision !=
1103 (firmware_revision & 0xffffff00))
1104 continue;
1105
1106 if (sbp2_workarounds_table[i].model != model &&
1107 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1108 continue;
1109
1110 w |= sbp2_workarounds_table[i].workarounds;
1111 break;
1112 }
1113 out:
1114 if (w)
1115 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1116 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1117 w, firmware_revision, model);
1118 tgt->workarounds = w;
1119 }
1120
1121 static const struct scsi_host_template scsi_driver_template;
1122 static void sbp2_remove(struct fw_unit *unit);
1123
sbp2_probe(struct fw_unit * unit,const struct ieee1394_device_id * id)1124 static int sbp2_probe(struct fw_unit *unit, const struct ieee1394_device_id *id)
1125 {
1126 struct fw_device *device = fw_parent_device(unit);
1127 struct sbp2_target *tgt;
1128 struct sbp2_logical_unit *lu;
1129 struct Scsi_Host *shost;
1130 u32 model, firmware_revision;
1131
1132 /* cannot (or should not) handle targets on the local node */
1133 if (device->is_local)
1134 return -ENODEV;
1135
1136 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1137 if (shost == NULL)
1138 return -ENOMEM;
1139
1140 tgt = (struct sbp2_target *)shost->hostdata;
1141 dev_set_drvdata(&unit->device, tgt);
1142 tgt->unit = unit;
1143 INIT_LIST_HEAD(&tgt->lu_list);
1144 spin_lock_init(&tgt->lock);
1145 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1146
1147 if (fw_device_enable_phys_dma(device) < 0)
1148 goto fail_shost_put;
1149
1150 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1151
1152 if (scsi_add_host_with_dma(shost, &unit->device,
1153 device->card->device) < 0)
1154 goto fail_shost_put;
1155
1156 /* implicit directory ID */
1157 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1158 + CSR_CONFIG_ROM) & 0xffffff;
1159
1160 firmware_revision = SBP2_ROM_VALUE_MISSING;
1161 model = SBP2_ROM_VALUE_MISSING;
1162
1163 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1164 &firmware_revision) < 0)
1165 goto fail_remove;
1166
1167 sbp2_clamp_management_orb_timeout(tgt);
1168 sbp2_init_workarounds(tgt, model, firmware_revision);
1169
1170 /*
1171 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1172 * and so on up to 4096 bytes. The SBP-2 max_payload field
1173 * specifies the max payload size as 2 ^ (max_payload + 2), so
1174 * if we set this to max_speed + 7, we get the right value.
1175 */
1176 tgt->max_payload = min3(device->max_speed + 7, 10U,
1177 device->card->max_receive - 1);
1178
1179 /* Do the login in a workqueue so we can easily reschedule retries. */
1180 list_for_each_entry(lu, &tgt->lu_list, link)
1181 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1182
1183 return 0;
1184
1185 fail_remove:
1186 sbp2_remove(unit);
1187 return -ENOMEM;
1188
1189 fail_shost_put:
1190 scsi_host_put(shost);
1191 return -ENOMEM;
1192 }
1193
sbp2_update(struct fw_unit * unit)1194 static void sbp2_update(struct fw_unit *unit)
1195 {
1196 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1197 struct sbp2_logical_unit *lu;
1198
1199 fw_device_enable_phys_dma(fw_parent_device(unit));
1200
1201 /*
1202 * Fw-core serializes sbp2_update() against sbp2_remove().
1203 * Iteration over tgt->lu_list is therefore safe here.
1204 */
1205 list_for_each_entry(lu, &tgt->lu_list, link) {
1206 sbp2_conditionally_block(lu);
1207 lu->retries = 0;
1208 sbp2_queue_work(lu, 0);
1209 }
1210 }
1211
sbp2_remove(struct fw_unit * unit)1212 static void sbp2_remove(struct fw_unit *unit)
1213 {
1214 struct fw_device *device = fw_parent_device(unit);
1215 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1216 struct sbp2_logical_unit *lu, *next;
1217 struct Scsi_Host *shost =
1218 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1219 struct scsi_device *sdev;
1220
1221 /* prevent deadlocks */
1222 sbp2_unblock(tgt);
1223
1224 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1225 cancel_delayed_work_sync(&lu->work);
1226 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1227 if (sdev) {
1228 scsi_remove_device(sdev);
1229 scsi_device_put(sdev);
1230 }
1231 if (lu->login_id != INVALID_LOGIN_ID) {
1232 int generation, node_id;
1233 /*
1234 * tgt->node_id may be obsolete here if we failed
1235 * during initial login or after a bus reset where
1236 * the topology changed.
1237 */
1238 generation = device->generation;
1239 smp_rmb(); /* node_id vs. generation */
1240 node_id = device->node_id;
1241 sbp2_send_management_orb(lu, node_id, generation,
1242 SBP2_LOGOUT_REQUEST,
1243 lu->login_id, NULL);
1244 }
1245 fw_core_remove_address_handler(&lu->address_handler);
1246 list_del(&lu->link);
1247 kfree(lu);
1248 }
1249 scsi_remove_host(shost);
1250 dev_notice(&unit->device, "released target %d:0:0\n", shost->host_no);
1251
1252 scsi_host_put(shost);
1253 }
1254
1255 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1256 #define SBP2_SW_VERSION_ENTRY 0x00010483
1257
1258 static const struct ieee1394_device_id sbp2_id_table[] = {
1259 {
1260 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1261 IEEE1394_MATCH_VERSION,
1262 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1263 .version = SBP2_SW_VERSION_ENTRY,
1264 },
1265 { }
1266 };
1267
1268 static struct fw_driver sbp2_driver = {
1269 .driver = {
1270 .owner = THIS_MODULE,
1271 .name = KBUILD_MODNAME,
1272 .bus = &fw_bus_type,
1273 },
1274 .probe = sbp2_probe,
1275 .update = sbp2_update,
1276 .remove = sbp2_remove,
1277 .id_table = sbp2_id_table,
1278 };
1279
sbp2_unmap_scatterlist(struct device * card_device,struct sbp2_command_orb * orb)1280 static void sbp2_unmap_scatterlist(struct device *card_device,
1281 struct sbp2_command_orb *orb)
1282 {
1283 scsi_dma_unmap(orb->cmd);
1284
1285 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1286 dma_unmap_single(card_device, orb->page_table_bus,
1287 sizeof(orb->page_table), DMA_TO_DEVICE);
1288 }
1289
sbp2_status_to_sense_data(u8 * sbp2_status,u8 * sense_data)1290 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1291 {
1292 int sam_status;
1293 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1294
1295 if (sfmt == 2 || sfmt == 3) {
1296 /*
1297 * Reserved for future standardization (2) or
1298 * Status block format vendor-dependent (3)
1299 */
1300 return DID_ERROR << 16;
1301 }
1302
1303 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1304 sense_data[1] = 0x0;
1305 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1306 sense_data[3] = sbp2_status[4];
1307 sense_data[4] = sbp2_status[5];
1308 sense_data[5] = sbp2_status[6];
1309 sense_data[6] = sbp2_status[7];
1310 sense_data[7] = 10;
1311 sense_data[8] = sbp2_status[8];
1312 sense_data[9] = sbp2_status[9];
1313 sense_data[10] = sbp2_status[10];
1314 sense_data[11] = sbp2_status[11];
1315 sense_data[12] = sbp2_status[2];
1316 sense_data[13] = sbp2_status[3];
1317 sense_data[14] = sbp2_status[12];
1318 sense_data[15] = sbp2_status[13];
1319
1320 sam_status = sbp2_status[0] & 0x3f;
1321
1322 switch (sam_status) {
1323 case SAM_STAT_GOOD:
1324 case SAM_STAT_CHECK_CONDITION:
1325 case SAM_STAT_CONDITION_MET:
1326 case SAM_STAT_BUSY:
1327 case SAM_STAT_RESERVATION_CONFLICT:
1328 case SAM_STAT_COMMAND_TERMINATED:
1329 return DID_OK << 16 | sam_status;
1330
1331 default:
1332 return DID_ERROR << 16;
1333 }
1334 }
1335
complete_command_orb(struct sbp2_orb * base_orb,struct sbp2_status * status)1336 static void complete_command_orb(struct sbp2_orb *base_orb,
1337 struct sbp2_status *status)
1338 {
1339 struct sbp2_command_orb *orb =
1340 container_of(base_orb, struct sbp2_command_orb, base);
1341 struct fw_device *device = target_parent_device(base_orb->lu->tgt);
1342 int result;
1343
1344 if (status != NULL) {
1345 if (STATUS_GET_DEAD(*status))
1346 sbp2_agent_reset_no_wait(base_orb->lu);
1347
1348 switch (STATUS_GET_RESPONSE(*status)) {
1349 case SBP2_STATUS_REQUEST_COMPLETE:
1350 result = DID_OK << 16;
1351 break;
1352 case SBP2_STATUS_TRANSPORT_FAILURE:
1353 result = DID_BUS_BUSY << 16;
1354 break;
1355 case SBP2_STATUS_ILLEGAL_REQUEST:
1356 case SBP2_STATUS_VENDOR_DEPENDENT:
1357 default:
1358 result = DID_ERROR << 16;
1359 break;
1360 }
1361
1362 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1363 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1364 orb->cmd->sense_buffer);
1365 } else {
1366 /*
1367 * If the orb completes with status == NULL, something
1368 * went wrong, typically a bus reset happened mid-orb
1369 * or when sending the write (less likely).
1370 */
1371 result = DID_BUS_BUSY << 16;
1372 sbp2_conditionally_block(base_orb->lu);
1373 }
1374
1375 dma_unmap_single(device->card->device, orb->base.request_bus,
1376 sizeof(orb->request), DMA_TO_DEVICE);
1377 sbp2_unmap_scatterlist(device->card->device, orb);
1378
1379 orb->cmd->result = result;
1380 scsi_done(orb->cmd);
1381 }
1382
sbp2_map_scatterlist(struct sbp2_command_orb * orb,struct fw_device * device,struct sbp2_logical_unit * lu)1383 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1384 struct fw_device *device, struct sbp2_logical_unit *lu)
1385 {
1386 struct scatterlist *sg = scsi_sglist(orb->cmd);
1387 int i, n;
1388
1389 n = scsi_dma_map(orb->cmd);
1390 if (n <= 0)
1391 goto fail;
1392
1393 /*
1394 * Handle the special case where there is only one element in
1395 * the scatter list by converting it to an immediate block
1396 * request. This is also a workaround for broken devices such
1397 * as the second generation iPod which doesn't support page
1398 * tables.
1399 */
1400 if (n == 1) {
1401 orb->request.data_descriptor.high =
1402 cpu_to_be32(lu->tgt->address_high);
1403 orb->request.data_descriptor.low =
1404 cpu_to_be32(sg_dma_address(sg));
1405 orb->request.misc |=
1406 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1407 return 0;
1408 }
1409
1410 for_each_sg(sg, sg, n, i) {
1411 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1412 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1413 }
1414
1415 orb->page_table_bus =
1416 dma_map_single(device->card->device, orb->page_table,
1417 sizeof(orb->page_table), DMA_TO_DEVICE);
1418 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1419 goto fail_page_table;
1420
1421 /*
1422 * The data_descriptor pointer is the one case where we need
1423 * to fill in the node ID part of the address. All other
1424 * pointers assume that the data referenced reside on the
1425 * initiator (i.e. us), but data_descriptor can refer to data
1426 * on other nodes so we need to put our ID in descriptor.high.
1427 */
1428 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1429 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1430 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1431 COMMAND_ORB_DATA_SIZE(n));
1432
1433 return 0;
1434
1435 fail_page_table:
1436 scsi_dma_unmap(orb->cmd);
1437 fail:
1438 return -ENOMEM;
1439 }
1440
1441 /* SCSI stack integration */
1442
sbp2_scsi_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * cmd)1443 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1444 struct scsi_cmnd *cmd)
1445 {
1446 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1447 struct fw_device *device = target_parent_device(lu->tgt);
1448 struct sbp2_command_orb *orb;
1449 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1450
1451 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1452 if (orb == NULL)
1453 return SCSI_MLQUEUE_HOST_BUSY;
1454
1455 /* Initialize rcode to something not RCODE_COMPLETE. */
1456 orb->base.rcode = -1;
1457 kref_init(&orb->base.kref);
1458 orb->cmd = cmd;
1459 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1460 orb->request.misc = cpu_to_be32(
1461 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1462 COMMAND_ORB_SPEED(device->max_speed) |
1463 COMMAND_ORB_NOTIFY);
1464
1465 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1466 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1467
1468 generation = device->generation;
1469 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1470
1471 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1472 goto out;
1473
1474 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1475
1476 orb->base.callback = complete_command_orb;
1477 orb->base.request_bus =
1478 dma_map_single(device->card->device, &orb->request,
1479 sizeof(orb->request), DMA_TO_DEVICE);
1480 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1481 sbp2_unmap_scatterlist(device->card->device, orb);
1482 goto out;
1483 }
1484
1485 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1486 lu->command_block_agent_address + SBP2_ORB_POINTER);
1487 retval = 0;
1488 out:
1489 kref_put(&orb->base.kref, free_orb);
1490 return retval;
1491 }
1492
sbp2_scsi_slave_alloc(struct scsi_device * sdev)1493 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1494 {
1495 struct sbp2_logical_unit *lu = sdev->hostdata;
1496
1497 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1498 if (!lu)
1499 return -ENOSYS;
1500
1501 sdev->allow_restart = 1;
1502
1503 /*
1504 * SBP-2 does not require any alignment, but we set it anyway
1505 * for compatibility with earlier versions of this driver.
1506 */
1507 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1508
1509 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1510 sdev->inquiry_len = 36;
1511
1512 return 0;
1513 }
1514
sbp2_scsi_slave_configure(struct scsi_device * sdev)1515 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1516 {
1517 struct sbp2_logical_unit *lu = sdev->hostdata;
1518
1519 sdev->use_10_for_rw = 1;
1520
1521 if (sbp2_param_exclusive_login) {
1522 sdev->manage_system_start_stop = 1;
1523 sdev->manage_runtime_start_stop = 1;
1524 sdev->manage_shutdown = 1;
1525 }
1526
1527 if (sdev->type == TYPE_ROM)
1528 sdev->use_10_for_ms = 1;
1529
1530 if (sdev->type == TYPE_DISK &&
1531 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1532 sdev->skip_ms_page_8 = 1;
1533
1534 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1535 sdev->fix_capacity = 1;
1536
1537 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1538 sdev->start_stop_pwr_cond = 1;
1539
1540 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1541 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Called by scsi stack when something has really gone wrong. Usually
1548 * called when a command has timed-out for some reason.
1549 */
sbp2_scsi_abort(struct scsi_cmnd * cmd)1550 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1551 {
1552 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1553
1554 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1555 sbp2_agent_reset(lu);
1556 sbp2_cancel_orbs(lu);
1557
1558 return SUCCESS;
1559 }
1560
1561 /*
1562 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1563 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1564 *
1565 * This is the concatenation of target port identifier and logical unit
1566 * identifier as per SAM-2...SAM-4 annex A.
1567 */
sbp2_sysfs_ieee1394_id_show(struct device * dev,struct device_attribute * attr,char * buf)1568 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1569 struct device_attribute *attr, char *buf)
1570 {
1571 struct scsi_device *sdev = to_scsi_device(dev);
1572 struct sbp2_logical_unit *lu;
1573
1574 if (!sdev)
1575 return 0;
1576
1577 lu = sdev->hostdata;
1578
1579 return sprintf(buf, "%016llx:%06x:%04x\n",
1580 (unsigned long long)lu->tgt->guid,
1581 lu->tgt->directory_id, lu->lun);
1582 }
1583
1584 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1585
1586 static struct attribute *sbp2_scsi_sysfs_attrs[] = {
1587 &dev_attr_ieee1394_id.attr,
1588 NULL
1589 };
1590
1591 ATTRIBUTE_GROUPS(sbp2_scsi_sysfs);
1592
1593 static const struct scsi_host_template scsi_driver_template = {
1594 .module = THIS_MODULE,
1595 .name = "SBP-2 IEEE-1394",
1596 .proc_name = "sbp2",
1597 .queuecommand = sbp2_scsi_queuecommand,
1598 .slave_alloc = sbp2_scsi_slave_alloc,
1599 .slave_configure = sbp2_scsi_slave_configure,
1600 .eh_abort_handler = sbp2_scsi_abort,
1601 .this_id = -1,
1602 .sg_tablesize = SG_ALL,
1603 .max_segment_size = SBP2_MAX_SEG_SIZE,
1604 .can_queue = 1,
1605 .sdev_groups = sbp2_scsi_sysfs_groups,
1606 };
1607
1608 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1609 MODULE_DESCRIPTION("SCSI over IEEE1394");
1610 MODULE_LICENSE("GPL");
1611 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1612
1613 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1614 MODULE_ALIAS("sbp2");
1615
sbp2_init(void)1616 static int __init sbp2_init(void)
1617 {
1618 return driver_register(&sbp2_driver.driver);
1619 }
1620
sbp2_cleanup(void)1621 static void __exit sbp2_cleanup(void)
1622 {
1623 driver_unregister(&sbp2_driver.driver);
1624 }
1625
1626 module_init(sbp2_init);
1627 module_exit(sbp2_cleanup);
1628